|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import PIL.Image |
|
import torch |
|
from torchvision import transforms |
|
|
|
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
trans = transforms.Compose( |
|
[ |
|
transforms.Resize((256, 256)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
|
|
def preprocess(image): |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
image = [trans(img.convert("RGB")) for img in image] |
|
image = torch.stack(image) |
|
return image |
|
|
|
|
|
class DDIMNoiseComparativeAnalysisPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of |
|
[`DDPMScheduler`], or [`DDIMScheduler`]. |
|
""" |
|
|
|
def __init__(self, unet, scheduler): |
|
super().__init__() |
|
|
|
|
|
scheduler = DDIMScheduler.from_config(scheduler.config) |
|
|
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
def check_inputs(self, strength): |
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
init_latents = image.to(device=device, dtype=dtype) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
print("add noise to latents at timestep", timestep) |
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
strength: float = 0.8, |
|
batch_size: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
eta: float = 0.0, |
|
num_inference_steps: int = 50, |
|
use_clipped_model_output: Optional[bool] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
Args: |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
batch_size (`int`, *optional*, defaults to 1): |
|
The number of images to generate. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
use_clipped_model_output (`bool`, *optional*, defaults to `None`): |
|
if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed |
|
downstream to the scheduler. So use `None` for schedulers which don't support this argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
self.check_inputs(strength) |
|
|
|
|
|
image = preprocess(image) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=self.device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device) |
|
latent_timestep = timesteps[:1].repeat(batch_size) |
|
|
|
|
|
latents = self.prepare_latents(image, latent_timestep, batch_size, self.unet.dtype, self.device, generator) |
|
image = latents |
|
|
|
|
|
for t in self.progress_bar(timesteps): |
|
|
|
model_output = self.unet(image, t).sample |
|
|
|
|
|
|
|
|
|
image = self.scheduler.step( |
|
model_output, |
|
t, |
|
image, |
|
eta=eta, |
|
use_clipped_model_output=use_clipped_model_output, |
|
generator=generator, |
|
).prev_sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, latent_timestep.item()) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|