|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo |
|
from einops import rearrange, repeat |
|
from gmflow.gmflow import GMFlow |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def clear_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def coords_grid(b, h, w, homogeneous=False, device=None): |
|
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) |
|
|
|
stacks = [x, y] |
|
|
|
if homogeneous: |
|
ones = torch.ones_like(x) |
|
stacks.append(ones) |
|
|
|
grid = torch.stack(stacks, dim=0).float() |
|
|
|
grid = grid[None].repeat(b, 1, 1, 1) |
|
|
|
if device is not None: |
|
grid = grid.to(device) |
|
|
|
return grid |
|
|
|
|
|
def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False): |
|
|
|
|
|
if sample_coords.size(1) != 2: |
|
sample_coords = sample_coords.permute(0, 3, 1, 2) |
|
|
|
b, _, h, w = sample_coords.shape |
|
|
|
|
|
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 |
|
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 |
|
|
|
grid = torch.stack([x_grid, y_grid], dim=-1) |
|
|
|
img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) |
|
|
|
if return_mask: |
|
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) |
|
|
|
return img, mask |
|
|
|
return img |
|
|
|
|
|
class Dilate: |
|
def __init__(self, kernel_size=7, channels=1, device="cpu"): |
|
self.kernel_size = kernel_size |
|
self.channels = channels |
|
gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) |
|
gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) |
|
self.mean = (self.kernel_size - 1) // 2 |
|
gaussian_kernel = gaussian_kernel.to(device) |
|
self.gaussian_filter = gaussian_kernel |
|
|
|
def __call__(self, x): |
|
x = F.pad(x, (self.mean, self.mean, self.mean, self.mean), "replicate") |
|
return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) |
|
|
|
|
|
def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"): |
|
b, c, h, w = feature.size() |
|
assert flow.size(1) == 2 |
|
|
|
grid = coords_grid(b, h, w).to(flow.device) + flow |
|
grid = grid.to(feature.dtype) |
|
return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask) |
|
|
|
|
|
def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5): |
|
|
|
|
|
|
|
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 |
|
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 |
|
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) |
|
|
|
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) |
|
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) |
|
|
|
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) |
|
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) |
|
|
|
threshold = alpha * flow_mag + beta |
|
|
|
fwd_occ = (diff_fwd > threshold).float() |
|
bwd_occ = (diff_bwd > threshold).float() |
|
|
|
return fwd_occ, bwd_occ |
|
|
|
|
|
def numpy2tensor(img): |
|
x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1.0 |
|
x0 = torch.stack([x0], dim=0) |
|
|
|
return x0.permute(0, 3, 1, 2) |
|
|
|
|
|
def calc_mean_std(feat, eps=1e-5, chunk=1): |
|
size = feat.size() |
|
assert len(size) == 4 |
|
if chunk == 2: |
|
feat = torch.cat(feat.chunk(2), dim=3) |
|
N, C = size[:2] |
|
feat_var = feat.view(N // chunk, C, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(N, C, 1, 1) |
|
feat_mean = feat.view(N // chunk, C, -1).mean(dim=2).view(N // chunk, C, 1, 1) |
|
return feat_mean.repeat(chunk, 1, 1, 1), feat_std.repeat(chunk, 1, 1, 1) |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat, chunk=1): |
|
assert content_feat.size()[:2] == style_feat.size()[:2] |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat, chunk) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
|
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
def optimize_feature( |
|
sample, flows, occs, correlation_matrix=[], intra_weight=1e2, iters=20, unet_chunk_size=2, optimize_temporal=True |
|
): |
|
""" |
|
FRESO-guided latent feature optimization |
|
* optimize spatial correspondence (match correlation_matrix) |
|
* optimize temporal correspondence (match warped_image) |
|
""" |
|
if (flows is None or occs is None or (not optimize_temporal)) and ( |
|
intra_weight == 0 or len(correlation_matrix) == 0 |
|
): |
|
return sample |
|
|
|
|
|
|
|
torch.cuda.empty_cache() |
|
video_length = sample.shape[0] // unet_chunk_size |
|
latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length) |
|
|
|
cs = torch.nn.Parameter((latent.detach().clone())) |
|
optimizer = torch.optim.Adam([cs], lr=0.2) |
|
|
|
|
|
if flows is not None and occs is not None: |
|
scale = sample.shape[2] * 1.0 / flows[0].shape[2] |
|
kernel = int(1 / scale) |
|
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear").repeat( |
|
unet_chunk_size, 1, 1, 1 |
|
) |
|
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat( |
|
unet_chunk_size, 1, 1, 1 |
|
) |
|
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear").repeat( |
|
unet_chunk_size, 1, 1, 1 |
|
) |
|
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat( |
|
unet_chunk_size, 1, 1, 1 |
|
) |
|
|
|
reshuffle_list = list(range(1, video_length)) + [0] |
|
|
|
|
|
attention_probs = None |
|
for tmp in correlation_matrix: |
|
if sample.shape[2] * sample.shape[3] == tmp.shape[1]: |
|
attention_probs = tmp |
|
break |
|
|
|
n_iter = [0] |
|
while n_iter[0] < iters: |
|
|
|
def closure(): |
|
optimizer.zero_grad() |
|
|
|
loss = 0 |
|
|
|
|
|
if optimize_temporal and flows is not None and occs is not None: |
|
c1 = rearrange(cs[:, :], "b f c h w -> (b f) c h w") |
|
c2 = rearrange(cs[:, reshuffle_list], "b f c h w -> (b f) c h w") |
|
warped_image1 = flow_warp(c1, bwd_flow_) |
|
warped_image2 = flow_warp(c2, fwd_flow_) |
|
loss = ( |
|
abs((c2 - warped_image1) * (1 - bwd_occ_)) + abs((c1 - warped_image2) * (1 - fwd_occ_)) |
|
).mean() * 2 |
|
|
|
|
|
if attention_probs is not None and intra_weight > 0: |
|
cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c") |
|
|
|
|
|
cs_vector = cs_vector / ((cs_vector**2).sum(dim=2, keepdims=True) ** 0.5) |
|
cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) |
|
tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight |
|
loss = tmp + loss |
|
|
|
loss.backward() |
|
n_iter[0] += 1 |
|
|
|
return loss |
|
|
|
optimizer.step(closure) |
|
|
|
torch.cuda.empty_cache() |
|
return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample) |
|
|
|
|
|
@torch.no_grad() |
|
def warp_tensor(sample, flows, occs, saliency, unet_chunk_size): |
|
""" |
|
Warp images or features based on optical flow |
|
Fuse the warped imges or features based on occusion masks and saliency map |
|
""" |
|
scale = sample.shape[2] * 1.0 / flows[0].shape[2] |
|
kernel = int(1 / scale) |
|
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear") |
|
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel) |
|
if scale == 1: |
|
bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_) |
|
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear") |
|
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel) |
|
if scale == 1: |
|
fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_) |
|
scale2 = sample.shape[2] * 1.0 / saliency.shape[2] |
|
saliency = F.interpolate(saliency, scale_factor=scale2, mode="bilinear") |
|
latent = sample.to(torch.float32) |
|
video_length = sample.shape[0] // unet_chunk_size |
|
warp_saliency = flow_warp(saliency, bwd_flow_) |
|
warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length - 1 : video_length]) |
|
|
|
for j in range(unet_chunk_size): |
|
for ii in range(video_length - 1): |
|
i = video_length * j + ii |
|
warped_image = flow_warp(latent[i : i + 1], bwd_flow_[ii : ii + 1]) |
|
mask = (1 - bwd_occ_[ii : ii + 1]) * saliency[ii + 1 : ii + 2] * warp_saliency[ii : ii + 1] |
|
latent[i + 1 : i + 2] = latent[i + 1 : i + 2] * (1 - mask) + warped_image * mask |
|
i = video_length * j |
|
ii = video_length - 1 |
|
warped_image = flow_warp(latent[i : i + 1], fwd_flow_[ii : ii + 1]) |
|
mask = (1 - fwd_occ_[ii : ii + 1]) * saliency[ii : ii + 1] * warp_saliency_ |
|
latent[ii + i : ii + i + 1] = latent[ii + i : ii + i + 1] * (1 - mask) + warped_image * mask |
|
|
|
return latent.to(sample.dtype) |
|
|
|
|
|
def my_forward( |
|
self, |
|
steps=[], |
|
layers=[0, 1, 2, 3], |
|
flows=None, |
|
occs=None, |
|
correlation_matrix=[], |
|
intra_weight=1e2, |
|
iters=20, |
|
optimize_temporal=True, |
|
saliency=None, |
|
): |
|
""" |
|
Hacked pipe.unet.forward() |
|
copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700 |
|
if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code) |
|
* restore and return the decoder features |
|
* optimize the decoder features |
|
* perform background smoothing |
|
""" |
|
|
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
The [`UNet2DConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. |
|
encoder_attention_mask (`torch.Tensor`): |
|
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If |
|
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, |
|
which adds large negative values to the attention scores corresponding to "discard" tokens. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. |
|
added_cond_kwargs: (`dict`, *optional*): |
|
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that |
|
are passed along to the UNet blocks. |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise |
|
a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
elif self.config.addition_embed_type == "text_image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
|
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) |
|
aug_emb = self.add_embedding(text_embs, image_embs) |
|
elif self.config.addition_embed_type == "text_time": |
|
|
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
|
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
elif self.config.addition_embed_type == "image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
aug_emb = self.add_embedding(image_embs) |
|
elif self.config.addition_embed_type == "image_hint": |
|
|
|
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
hint = added_cond_kwargs.get("hint") |
|
aug_emb, hint = self.add_embedding(image_embs, hint) |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
|
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(image_embeds) |
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
|
|
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None |
|
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_block_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
if is_adapter and len(down_block_additional_residuals) > 0: |
|
sample += down_block_additional_residuals.pop(0) |
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
""" |
|
[HACK] restore the decoder features in up_samples |
|
""" |
|
up_samples = () |
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
""" |
|
[HACK] restore the decoder features in up_samples |
|
[HACK] optimize the decoder features |
|
[HACK] perform background smoothing |
|
""" |
|
if i in layers: |
|
up_samples += (sample,) |
|
if timestep in steps and i in layers: |
|
sample = optimize_feature( |
|
sample, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal=optimize_temporal |
|
) |
|
if saliency is not None: |
|
sample = warp_tensor(sample, flows, occs, saliency, 2) |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
""" |
|
[HACK] return the output feature as well as the decoder features |
|
""" |
|
if not return_dict: |
|
return (sample,) + up_samples |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
|
|
return forward |
|
|
|
|
|
@torch.no_grad() |
|
def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0): |
|
""" |
|
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) |
|
Find the correspondence between every pixels in a pair of frames |
|
|
|
[input] |
|
bwd_flow: 1*2*H*W |
|
bwd_occ: 1*H*W i.e., f2 = warp(f1, bwd_flow) * bwd_occ |
|
imgs: 2*3*H*W i.e., [f1,f2] |
|
|
|
[output] |
|
mapping_ind: pixel index correspondence |
|
unlinkedmask: indicate whether a pixel has no correspondence |
|
i.e., f2 = f1[mapping_ind] * unlinkedmask |
|
""" |
|
flows = F.interpolate(bwd_flow, scale_factor=1.0 / scale, mode="bilinear")[0][[1, 0]] / scale |
|
_, H, W = flows.shape |
|
masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1.0 / scale, mode="bilinear") > 0.5)[ |
|
0 |
|
] |
|
frames = F.interpolate(imgs, scale_factor=1.0 / scale, mode="bilinear").view(2, 3, -1) |
|
grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device) |
|
warp_grid = torch.round(grid + flows) |
|
mask = torch.logical_and( |
|
torch.logical_and( |
|
torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), warp_grid[1] >= 0), |
|
warp_grid[1] < W, |
|
), |
|
masks[0], |
|
).view(-1) |
|
warp_grid = warp_grid.view(2, -1) |
|
warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long) |
|
mapping_ind = torch.zeros_like(warp_ind) - 1 |
|
|
|
for f0ind, f1ind in enumerate(warp_ind): |
|
if mask[f0ind]: |
|
if mapping_ind[f1ind] == -1: |
|
mapping_ind[f1ind] = f0ind |
|
else: |
|
targetv = frames[0, :, f1ind] |
|
pref0ind = mapping_ind[f1ind] |
|
prev = frames[1, :, pref0ind] |
|
v = frames[1, :, f0ind] |
|
if ((prev - targetv) ** 2).mean() > ((v - targetv) ** 2).mean(): |
|
mask[pref0ind] = False |
|
mapping_ind[f1ind] = f0ind |
|
else: |
|
mask[f0ind] = False |
|
|
|
unusedind = torch.arange(len(mask)).to(mask.device)[~mask] |
|
unlinkedmask = mapping_ind == -1 |
|
mapping_ind[unlinkedmask] = unusedind |
|
return mapping_ind, unlinkedmask |
|
|
|
|
|
@torch.no_grad() |
|
def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0): |
|
""" |
|
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) |
|
Find pixel correspondence between every consecutive frames in a batch |
|
|
|
[input] |
|
bwd_flow: (N-1)*2*H*W |
|
bwd_occ: (N-1)*H*W |
|
imgs: N*3*H*W |
|
|
|
[output] |
|
fwd_mappings: N*1*HW |
|
bwd_mappings: N*1*HW |
|
flattn_mask: HW*1*N*N |
|
i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0] |
|
i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i] |
|
""" |
|
N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale) |
|
iterattn_mask = torch.ones(H * W, N, N, dtype=torch.bool).to(imgs.device) |
|
for i in range(len(imgs) - 1): |
|
one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device) |
|
one_mask[: i + 1, i + 1 :] = False |
|
one_mask[i + 1 :, : i + 1] = False |
|
mapping_ind, unlinkedmask = get_single_mapping_ind( |
|
bwd_flows[i : i + 1], bwd_occs[i : i + 1], imgs[i : i + 2], scale |
|
) |
|
if i == 0: |
|
fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] |
|
bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] |
|
iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and( |
|
iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask |
|
) |
|
fwd_mapping += [mapping_ind[fwd_mapping[-1]]] |
|
bwd_mapping += [torch.sort(fwd_mapping[-1])[1]] |
|
fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1) |
|
bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1) |
|
return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1) |
|
|
|
|
|
def apply_FRESCO_opt( |
|
pipe, |
|
steps=[], |
|
layers=[0, 1, 2, 3], |
|
flows=None, |
|
occs=None, |
|
correlation_matrix=[], |
|
intra_weight=1e2, |
|
iters=20, |
|
optimize_temporal=True, |
|
saliency=None, |
|
): |
|
""" |
|
Apply FRESCO-based optimization to a StableDiffusionPipeline |
|
""" |
|
pipe.unet.forward = my_forward( |
|
pipe.unet, steps, layers, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal, saliency |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def get_intraframe_paras(pipe, imgs, frescoProc, prompt_embeds, do_classifier_free_guidance=True, generator=None): |
|
""" |
|
Get parameters for spatial-guided attention and optimization |
|
* perform one step denoising |
|
* collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn'] |
|
* compute the gram matrix of the normalized feature for spatial consistency loss |
|
""" |
|
|
|
noise_scheduler = pipe.scheduler |
|
timestep = noise_scheduler.timesteps[-1] |
|
device = pipe._execution_device |
|
B, C, H, W = imgs.shape |
|
|
|
frescoProc.controller.disable_controller() |
|
apply_FRESCO_opt(pipe) |
|
frescoProc.controller.clear_store() |
|
frescoProc.controller.enable_store() |
|
|
|
latents = pipe.prepare_latents( |
|
imgs.to(pipe.unet.dtype), timestep, B, 1, prompt_embeds.dtype, device, generator=generator, repeat_noise=False |
|
) |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
model_output = pipe.unet( |
|
latent_model_input, |
|
timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=None, |
|
return_dict=False, |
|
) |
|
|
|
frescoProc.controller.disable_store() |
|
|
|
|
|
correlation_matrix = [] |
|
for tmp in model_output[1:]: |
|
latent_vector = rearrange(tmp, "b c h w -> b (h w) c") |
|
latent_vector = latent_vector / ((latent_vector**2).sum(dim=2, keepdims=True) ** 0.5) |
|
attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2)) |
|
correlation_matrix += [attention_probs.detach().clone().to(torch.float32)] |
|
del attention_probs, latent_vector, tmp |
|
del model_output |
|
|
|
clear_cache() |
|
|
|
return correlation_matrix |
|
|
|
|
|
@torch.no_grad() |
|
def get_flow_and_interframe_paras(flow_model, imgs): |
|
""" |
|
Get parameters for temporal-guided attention and optimization |
|
* predict optical flow and occlusion mask |
|
* compute pixel index correspondence for FLATTEN |
|
""" |
|
images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda() |
|
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) |
|
|
|
reshuffle_list = list(range(1, len(images))) + [0] |
|
|
|
results_dict = flow_model( |
|
images, |
|
images[reshuffle_list], |
|
attn_splits_list=[2], |
|
corr_radius_list=[-1], |
|
prop_radius_list=[-1], |
|
pred_bidir_flow=True, |
|
) |
|
flow_pr = results_dict["flow_preds"][-1] |
|
fwd_flows, bwd_flows = flow_pr.chunk(2) |
|
fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) |
|
|
|
warped_image1 = flow_warp(images, bwd_flows) |
|
bwd_occs = torch.clamp( |
|
bwd_occs + (abs(images[reshuffle_list] - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1 |
|
) |
|
|
|
warped_image2 = flow_warp(images[reshuffle_list], fwd_flows) |
|
fwd_occs = torch.clamp(fwd_occs + (abs(images - warped_image2).mean(dim=1) > 255 * 0.25).float(), 0, 1) |
|
|
|
attn_mask = [] |
|
for scale in [8.0, 16.0, 32.0]: |
|
bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1.0 / scale, mode="bilinear") |
|
attn_mask += [ |
|
torch.cat((bwd_occs_[0:1].reshape(1, -1) > -1, bwd_occs_.reshape(bwd_occs_.shape[0], -1) > 0.5), dim=0) |
|
] |
|
|
|
fwd_mappings = [] |
|
bwd_mappings = [] |
|
interattn_masks = [] |
|
for scale in [8.0, 16.0]: |
|
fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale) |
|
fwd_mappings += [fwd_mapping] |
|
bwd_mappings += [bwd_mapping] |
|
interattn_masks += [interattn_mask] |
|
|
|
interattn_paras = {} |
|
interattn_paras["fwd_mappings"] = fwd_mappings |
|
interattn_paras["bwd_mappings"] = bwd_mappings |
|
interattn_paras["interattn_masks"] = interattn_masks |
|
|
|
clear_cache() |
|
|
|
return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras |
|
|
|
|
|
class AttentionControl: |
|
""" |
|
Control FRESCO-based attention |
|
* enable/diable spatial-guided attention |
|
* enable/diable temporal-guided attention |
|
* enable/diable cross-frame attention |
|
* collect intermediate attention feature (for spatial-guided attention) |
|
""" |
|
|
|
def __init__(self): |
|
self.stored_attn = self.get_empty_store() |
|
self.store = False |
|
self.index = 0 |
|
self.attn_mask = None |
|
self.interattn_paras = None |
|
self.use_interattn = False |
|
self.use_cfattn = False |
|
self.use_intraattn = False |
|
self.intraattn_bias = 0 |
|
self.intraattn_scale_factor = 0.2 |
|
self.interattn_scale_factor = 0.2 |
|
|
|
@staticmethod |
|
def get_empty_store(): |
|
return { |
|
"decoder_attn": [], |
|
} |
|
|
|
def clear_store(self): |
|
del self.stored_attn |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.stored_attn = self.get_empty_store() |
|
self.disable_intraattn() |
|
|
|
|
|
def enable_store(self): |
|
self.store = True |
|
|
|
def disable_store(self): |
|
self.store = False |
|
|
|
|
|
def enable_intraattn(self): |
|
self.index = 0 |
|
self.use_intraattn = True |
|
self.disable_store() |
|
if len(self.stored_attn["decoder_attn"]) == 0: |
|
self.use_intraattn = False |
|
|
|
def disable_intraattn(self): |
|
self.index = 0 |
|
self.use_intraattn = False |
|
self.disable_store() |
|
|
|
def disable_cfattn(self): |
|
self.use_cfattn = False |
|
|
|
|
|
def enable_cfattn(self, attn_mask=None): |
|
if attn_mask: |
|
if self.attn_mask: |
|
del self.attn_mask |
|
torch.cuda.empty_cache() |
|
self.attn_mask = attn_mask |
|
self.use_cfattn = True |
|
else: |
|
if self.attn_mask: |
|
self.use_cfattn = True |
|
else: |
|
print("Warning: no valid cross-frame attention parameters available!") |
|
self.disable_cfattn() |
|
|
|
def disable_interattn(self): |
|
self.use_interattn = False |
|
|
|
|
|
def enable_interattn(self, interattn_paras=None): |
|
if interattn_paras: |
|
if self.interattn_paras: |
|
del self.interattn_paras |
|
torch.cuda.empty_cache() |
|
self.interattn_paras = interattn_paras |
|
self.use_interattn = True |
|
else: |
|
if self.interattn_paras: |
|
self.use_interattn = True |
|
else: |
|
print("Warning: no valid temporal-guided attention parameters available!") |
|
self.disable_interattn() |
|
|
|
def disable_controller(self): |
|
self.disable_intraattn() |
|
self.disable_interattn() |
|
self.disable_cfattn() |
|
|
|
def enable_controller(self, interattn_paras=None, attn_mask=None): |
|
self.enable_intraattn() |
|
self.enable_interattn(interattn_paras) |
|
self.enable_cfattn(attn_mask) |
|
|
|
def forward(self, context): |
|
if self.store: |
|
self.stored_attn["decoder_attn"].append(context.detach()) |
|
if self.use_intraattn and len(self.stored_attn["decoder_attn"]) > 0: |
|
tmp = self.stored_attn["decoder_attn"][self.index] |
|
self.index = self.index + 1 |
|
if self.index >= len(self.stored_attn["decoder_attn"]): |
|
self.index = 0 |
|
self.disable_store() |
|
return tmp |
|
return context |
|
|
|
def __call__(self, context): |
|
context = self.forward(context) |
|
return context |
|
|
|
|
|
class FRESCOAttnProcessor2_0: |
|
""" |
|
Hack self attention to FRESCO-based attention |
|
* adding spatial-guided attention |
|
* adding temporal-guided attention |
|
* adding cross-frame attention |
|
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
Usage |
|
frescoProc = FRESCOAttnProcessor2_0(2, attn_mask) |
|
attnProc = AttnProcessor2_0() |
|
|
|
attn_processor_dict = {} |
|
for k in pipe.unet.attn_processors.keys(): |
|
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): |
|
attn_processor_dict[k] = frescoProc |
|
else: |
|
attn_processor_dict[k] = attnProc |
|
pipe.unet.set_attn_processor(attn_processor_dict) |
|
""" |
|
|
|
def __init__(self, unet_chunk_size=2, controller=None): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
self.unet_chunk_size = unet_chunk_size |
|
self.controller = controller |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
crossattn = False |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
if self.controller and self.controller.store: |
|
self.controller(hidden_states.detach().clone()) |
|
else: |
|
crossattn = True |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query_raw, key_raw = None, None |
|
if self.controller and self.controller.use_interattn and (not crossattn): |
|
query_raw, key_raw = query.clone(), key.clone() |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
"""for efficient cross-frame attention""" |
|
if self.controller and self.controller.use_cfattn and (not crossattn): |
|
video_length = key.size()[0] // self.unet_chunk_size |
|
former_frame_index = [0] * video_length |
|
attn_mask = None |
|
if self.controller.attn_mask is not None: |
|
for m in self.controller.attn_mask: |
|
if m.shape[1] == key.shape[1]: |
|
attn_mask = m |
|
|
|
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) |
|
|
|
if attn_mask is None: |
|
key = key[:, former_frame_index] |
|
else: |
|
key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length) |
|
|
|
key = rearrange(key, "b f d c -> (b f) d c").detach() |
|
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) |
|
if attn_mask is None: |
|
value = value[:, former_frame_index] |
|
else: |
|
value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length) |
|
value = rearrange(value, "b f d c -> (b f) d c").detach() |
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
"""for spatial-guided intra-frame attention""" |
|
if self.controller and self.controller.use_intraattn and (not crossattn): |
|
ref_hidden_states = self.controller(None) |
|
assert ref_hidden_states.shape == encoder_hidden_states.shape |
|
query_ = attn.to_q(ref_hidden_states) |
|
key_ = attn.to_k(ref_hidden_states) |
|
|
|
|
|
query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
query = F.scaled_dot_product_attention( |
|
query_, |
|
key_ * self.controller.intraattn_scale_factor, |
|
query, |
|
attn_mask=torch.eye(query_.size(-2), key_.size(-2), dtype=query.dtype, device=query.device) |
|
* self.controller.intraattn_bias, |
|
).detach() |
|
|
|
del query_, key_ |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
"""for temporal-guided inter-frame attention (FLATTEN)""" |
|
if self.controller and self.controller.use_interattn and (not crossattn): |
|
del query, key, value |
|
torch.cuda.empty_cache() |
|
bwd_mapping = None |
|
fwd_mapping = None |
|
for i, f in enumerate(self.controller.interattn_paras["fwd_mappings"]): |
|
if f.shape[2] == hidden_states.shape[2]: |
|
fwd_mapping = f |
|
bwd_mapping = self.controller.interattn_paras["bwd_mappings"][i] |
|
interattn_mask = self.controller.interattn_paras["interattn_masks"][i] |
|
video_length = key_raw.size()[0] // self.unet_chunk_size |
|
|
|
key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length) |
|
query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length) |
|
|
|
|
|
|
|
|
|
value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) |
|
key = torch.gather(key, 2, fwd_mapping.expand(-1, key.shape[1], -1)) |
|
query = torch.gather(query, 2, fwd_mapping.expand(-1, query.shape[1], -1)) |
|
value = torch.gather(value, 2, fwd_mapping.expand(-1, value.shape[1], -1)) |
|
|
|
key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) |
|
query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) |
|
value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) |
|
|
|
query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() |
|
key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() |
|
value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() |
|
hidden_states_ = F.scaled_dot_product_attention( |
|
query, |
|
key * self.controller.interattn_scale_factor, |
|
value, |
|
|
|
attn_mask=(interattn_mask.repeat(self.unet_chunk_size, 1, 1, 1)), |
|
|
|
) |
|
|
|
|
|
hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size) |
|
hidden_states_ = torch.gather( |
|
hidden_states_, 2, bwd_mapping.expand(-1, hidden_states_.shape[1], -1) |
|
).detach() |
|
|
|
hidden_states = rearrange( |
|
hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads |
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
def apply_FRESCO_attn(pipe): |
|
""" |
|
Apply FRESCO-guided attention to a StableDiffusionPipeline |
|
""" |
|
frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) |
|
attnProc = AttnProcessor2_0() |
|
attn_processor_dict = {} |
|
for k in pipe.unet.attn_processors.keys(): |
|
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): |
|
attn_processor_dict[k] = frescoProc |
|
else: |
|
attn_processor_dict[k] = attnProc |
|
pipe.unet.set_attn_processor(attn_processor_dict) |
|
return frescoProc |
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
def prepare_image(image): |
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.ndim == 3: |
|
image = image.unsqueeze(0) |
|
|
|
image = image.to(dtype=torch.float32) |
|
else: |
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)): |
|
image = [image] |
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
|
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
return image |
|
|
|
|
|
class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline): |
|
r""" |
|
Pipeline for video-to-video translation using Stable Diffusion with FRESCO Algorithm. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): |
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple |
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined |
|
additional conditioning. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
controlnet, |
|
scheduler, |
|
safety_checker, |
|
feature_extractor, |
|
image_encoder, |
|
requires_safety_checker, |
|
) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
if isinstance(controlnet, (list, tuple)): |
|
controlnet = MultiControlNetModel(controlnet) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) |
|
attnProc = AttnProcessor2_0() |
|
attn_processor_dict = {} |
|
for k in self.unet.attn_processors.keys(): |
|
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): |
|
attn_processor_dict[k] = frescoProc |
|
else: |
|
attn_processor_dict[k] = attnProc |
|
self.unet.set_attn_processor(attn_processor_dict) |
|
self.frescoProc = frescoProc |
|
|
|
flow_model = GMFlow( |
|
feature_channels=128, |
|
num_scales=1, |
|
upsample_factor=8, |
|
num_head=1, |
|
attention_type="swin", |
|
ffn_dim_expansion=4, |
|
num_transformer_layers=6, |
|
).to(self.device) |
|
|
|
checkpoint = torch.utils.model_zoo.load_url( |
|
"https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth", |
|
map_location=lambda storage, loc: storage, |
|
) |
|
weights = checkpoint["model"] if "model" in checkpoint else checkpoint |
|
flow_model.load_state_dict(weights, strict=False) |
|
flow_model.eval() |
|
self.flow_model = flow_model |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_negative_image_embeds = torch.stack( |
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
image_embeds.append(single_image_embeds) |
|
else: |
|
repeat_dims = [1] |
|
image_embeds = [] |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
else: |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
controlnet_conditioning_scale=1.0, |
|
control_guidance_start=0.0, |
|
control_guidance_end=1.0, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if isinstance(prompt, list): |
|
logger.warning( |
|
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" |
|
" prompts. The conditionings will be fixed across the prompts." |
|
) |
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
self.check_image(image, prompt, prompt_embeds) |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if not isinstance(image, list): |
|
raise TypeError("For multiple controlnets: `image` must be type `list`") |
|
|
|
|
|
|
|
elif any(isinstance(i, list) for i in image): |
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.") |
|
elif len(image) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." |
|
) |
|
|
|
for image_ in image: |
|
self.check_image(image_, prompt, prompt_embeds) |
|
else: |
|
assert False |
|
|
|
|
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
if not isinstance(controlnet_conditioning_scale, float): |
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if isinstance(controlnet_conditioning_scale, list): |
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale): |
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.") |
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( |
|
self.controlnet.nets |
|
): |
|
raise ValueError( |
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" |
|
" the same length as the number of controlnets" |
|
) |
|
else: |
|
assert False |
|
|
|
if len(control_guidance_start) != len(control_guidance_end): |
|
raise ValueError( |
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." |
|
) |
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if len(control_guidance_start) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." |
|
) |
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end): |
|
if start >= end: |
|
raise ValueError( |
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." |
|
) |
|
if start < 0.0: |
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") |
|
if end > 1.0: |
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
|
|
def check_image(self, image, prompt, prompt_embeds): |
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
image_is_tensor = isinstance(image, torch.Tensor) |
|
image_is_np = isinstance(image, np.ndarray) |
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) |
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) |
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) |
|
|
|
if ( |
|
not image_is_pil |
|
and not image_is_tensor |
|
and not image_is_np |
|
and not image_is_pil_list |
|
and not image_is_tensor_list |
|
and not image_is_np_list |
|
): |
|
raise TypeError( |
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" |
|
) |
|
|
|
if image_is_pil: |
|
image_batch_size = 1 |
|
else: |
|
image_batch_size = len(image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
elif prompt_embeds is not None: |
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
|
|
def prepare_control_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents( |
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, repeat_noise, generator=None |
|
): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) |
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
if repeat_noise: |
|
noise = randn_tensor((1, *shape[1:]), generator=generator, device=device, dtype=dtype) |
|
one_tuple = (1,) * (len(shape) - 1) |
|
noise = noise.repeat(batch_size, *one_tuple) |
|
else: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
frames: Union[List[np.ndarray], torch.FloatTensor] = None, |
|
control_frames: Union[List[np.ndarray], torch.FloatTensor] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
end_opt_step=15, |
|
num_intraattn_steps=1, |
|
step_interattn_end=350, |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process. |
|
control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends |
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising |
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 |
|
essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
end_opt_step: |
|
The feature optimization is activated from strength * num_inference_step to end_opt_step. |
|
num_intraattn_steps: |
|
Apply num_interattn_steps steps of spatial-guided attention. |
|
step_interattn_end: |
|
Apply temporal-guided attention in [step_interattn_end, 1000] steps |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
control_frames[0], |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
batch_size = len(frames) |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1) |
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
imgs_np = [] |
|
for frame in frames: |
|
if isinstance(frame, PIL.Image.Image): |
|
imgs_np.append(np.asarray(frame)) |
|
else: |
|
|
|
imgs_np.append(frame) |
|
images_pt = self.image_processor.preprocess(frames).to(dtype=torch.float32) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
control_image = self.prepare_control_image( |
|
image=control_frames, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
elif isinstance(controlnet, MultiControlNetModel): |
|
control_images = [] |
|
|
|
for control_image_ in control_frames: |
|
control_image_ = self.prepare_control_image( |
|
image=control_image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
control_images.append(control_image_) |
|
|
|
control_image = control_images |
|
else: |
|
assert False |
|
|
|
self.flow_model.to(device) |
|
|
|
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(self.flow_model, imgs_np) |
|
correlation_matrix = get_intraframe_paras(self, images_pt, self.frescoProc, prompt_embeds, generator) |
|
|
|
""" |
|
Flexible settings for attention: |
|
* Turn off FRESCO-guided attention: frescoProc.controller.disable_controller() |
|
Then you can turn on one specific attention submodule |
|
* Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask) |
|
* Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn() |
|
* Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras) |
|
|
|
Flexible settings for optimization: |
|
* Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt() |
|
* Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt() |
|
* Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe) |
|
|
|
Flexible settings for background smoothing: |
|
* Turn off background smoothing: set saliency = None in apply_FRESCO_opt() |
|
""" |
|
|
|
self.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) |
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
apply_FRESCO_opt( |
|
self, |
|
steps=timesteps[:end_opt_step], |
|
flows=flows, |
|
occs=occs, |
|
correlation_matrix=correlation_matrix, |
|
saliency=None, |
|
optimize_temporal=True, |
|
) |
|
|
|
clear_cache() |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latents = self.prepare_latents( |
|
images_pt, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator=generator, |
|
repeat_noise=True, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
else None |
|
) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if i >= num_intraattn_steps: |
|
self.frescoProc.controller.disable_intraattn() |
|
if t < step_interattn_end: |
|
self.frescoProc.controller.disable_interattn() |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=control_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|