|
import glob |
|
import os |
|
from typing import Dict, List, Union |
|
|
|
import safetensors.torch |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from diffusers import DiffusionPipeline, __version__ |
|
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME |
|
from diffusers.utils import CONFIG_NAME, ONNX_WEIGHTS_NAME, WEIGHTS_NAME |
|
|
|
|
|
class CheckpointMergerPipeline(DiffusionPipeline): |
|
""" |
|
A class that supports merging diffusion models based on the discussion here: |
|
https://github.com/huggingface/diffusers/issues/877 |
|
|
|
Example usage:- |
|
|
|
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py") |
|
|
|
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True) |
|
|
|
merged_pipe.to('cuda') |
|
|
|
prompt = "An astronaut riding a unicycle on Mars" |
|
|
|
results = merged_pipe(prompt) |
|
|
|
## For more details, see the docstring for the merge method. |
|
|
|
""" |
|
|
|
def __init__(self): |
|
self.register_to_config() |
|
super().__init__() |
|
|
|
def _compare_model_configs(self, dict0, dict1): |
|
if dict0 == dict1: |
|
return True |
|
else: |
|
config0, meta_keys0 = self._remove_meta_keys(dict0) |
|
config1, meta_keys1 = self._remove_meta_keys(dict1) |
|
if config0 == config1: |
|
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.") |
|
return True |
|
return False |
|
|
|
def _remove_meta_keys(self, config_dict: Dict): |
|
meta_keys = [] |
|
temp_dict = config_dict.copy() |
|
for key in config_dict.keys(): |
|
if key.startswith("_"): |
|
temp_dict.pop(key) |
|
meta_keys.append(key) |
|
return (temp_dict, meta_keys) |
|
|
|
@torch.no_grad() |
|
@validate_hf_hub_args |
|
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs): |
|
""" |
|
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed |
|
in the argument 'pretrained_model_name_or_path_list' as a list. |
|
|
|
Parameters: |
|
----------- |
|
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format. |
|
|
|
**kwargs: |
|
Supports all the default DiffusionPipeline.get_config_dict kwargs viz.. |
|
|
|
cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, torch_dtype, device_map. |
|
|
|
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha |
|
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 |
|
|
|
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None. |
|
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported. |
|
|
|
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False. |
|
|
|
variant - which variant of a pretrained model to load, e.g. "fp16" (None) |
|
|
|
""" |
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
token = kwargs.pop("token", None) |
|
variant = kwargs.pop("variant", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
device_map = kwargs.pop("device_map", None) |
|
|
|
alpha = kwargs.pop("alpha", 0.5) |
|
interp = kwargs.pop("interp", None) |
|
|
|
print("Received list", pretrained_model_name_or_path_list) |
|
print(f"Combining with alpha={alpha}, interpolation mode={interp}") |
|
|
|
checkpoint_count = len(pretrained_model_name_or_path_list) |
|
|
|
force = kwargs.pop("force", False) |
|
|
|
|
|
if checkpoint_count > 3 or checkpoint_count < 2: |
|
raise ValueError( |
|
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being" |
|
" passed." |
|
) |
|
|
|
print("Received the right number of checkpoints") |
|
|
|
|
|
|
|
|
|
|
|
config_dicts = [] |
|
for pretrained_model_name_or_path in pretrained_model_name_or_path_list: |
|
config_dict = DiffusionPipeline.load_config( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
force_download=force_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
) |
|
config_dicts.append(config_dict) |
|
|
|
comparison_result = True |
|
for idx in range(1, len(config_dicts)): |
|
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx]) |
|
if not force and comparison_result is False: |
|
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.") |
|
print("Compatible model_index.json files found") |
|
|
|
cached_folders = [] |
|
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts): |
|
folder_names = [k for k in config_dict.keys() if not k.startswith("_")] |
|
allow_patterns = [os.path.join(k, "*") for k in folder_names] |
|
allow_patterns += [ |
|
WEIGHTS_NAME, |
|
SCHEDULER_CONFIG_NAME, |
|
CONFIG_NAME, |
|
ONNX_WEIGHTS_NAME, |
|
DiffusionPipeline.config_name, |
|
] |
|
requested_pipeline_class = config_dict.get("_class_name") |
|
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class} |
|
|
|
cached_folder = ( |
|
pretrained_model_name_or_path |
|
if os.path.isdir(pretrained_model_name_or_path) |
|
else snapshot_download( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
allow_patterns=allow_patterns, |
|
user_agent=user_agent, |
|
) |
|
) |
|
print("Cached Folder", cached_folder) |
|
cached_folders.append(cached_folder) |
|
|
|
|
|
|
|
final_pipe = DiffusionPipeline.from_pretrained( |
|
cached_folders[0], |
|
torch_dtype=torch_dtype, |
|
device_map=device_map, |
|
variant=variant, |
|
) |
|
final_pipe.to(self.device) |
|
|
|
checkpoint_path_2 = None |
|
if len(cached_folders) > 2: |
|
checkpoint_path_2 = os.path.join(cached_folders[2]) |
|
|
|
if interp == "sigmoid": |
|
theta_func = CheckpointMergerPipeline.sigmoid |
|
elif interp == "inv_sigmoid": |
|
theta_func = CheckpointMergerPipeline.inv_sigmoid |
|
elif interp == "add_diff": |
|
theta_func = CheckpointMergerPipeline.add_difference |
|
else: |
|
theta_func = CheckpointMergerPipeline.weighted_sum |
|
|
|
|
|
for attr in final_pipe.config.keys(): |
|
if not attr.startswith("_"): |
|
checkpoint_path_1 = os.path.join(cached_folders[1], attr) |
|
if os.path.exists(checkpoint_path_1): |
|
files = [ |
|
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")), |
|
*glob.glob(os.path.join(checkpoint_path_1, "*.bin")), |
|
] |
|
checkpoint_path_1 = files[0] if len(files) > 0 else None |
|
if len(cached_folders) < 3: |
|
checkpoint_path_2 = None |
|
else: |
|
checkpoint_path_2 = os.path.join(cached_folders[2], attr) |
|
if os.path.exists(checkpoint_path_2): |
|
files = [ |
|
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")), |
|
*glob.glob(os.path.join(checkpoint_path_2, "*.bin")), |
|
] |
|
checkpoint_path_2 = files[0] if len(files) > 0 else None |
|
|
|
|
|
if checkpoint_path_1 is None and checkpoint_path_2 is None: |
|
print(f"Skipping {attr}: not present in 2nd or 3d model") |
|
continue |
|
try: |
|
module = getattr(final_pipe, attr) |
|
if isinstance(module, bool): |
|
continue |
|
theta_0 = getattr(module, "state_dict") |
|
theta_0 = theta_0() |
|
|
|
update_theta_0 = getattr(module, "load_state_dict") |
|
theta_1 = ( |
|
safetensors.torch.load_file(checkpoint_path_1) |
|
if (checkpoint_path_1.endswith(".safetensors")) |
|
else torch.load(checkpoint_path_1, map_location="cpu") |
|
) |
|
theta_2 = None |
|
if checkpoint_path_2: |
|
theta_2 = ( |
|
safetensors.torch.load_file(checkpoint_path_2) |
|
if (checkpoint_path_2.endswith(".safetensors")) |
|
else torch.load(checkpoint_path_2, map_location="cpu") |
|
) |
|
|
|
if not theta_0.keys() == theta_1.keys(): |
|
print(f"Skipping {attr}: key mismatch") |
|
continue |
|
if theta_2 and not theta_1.keys() == theta_2.keys(): |
|
print(f"Skipping {attr}:y mismatch") |
|
except Exception as e: |
|
print(f"Skipping {attr} do to an unexpected error: {str(e)}") |
|
continue |
|
print(f"MERGING {attr}") |
|
|
|
for key in theta_0.keys(): |
|
if theta_2: |
|
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha) |
|
else: |
|
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha) |
|
|
|
del theta_1 |
|
del theta_2 |
|
update_theta_0(theta_0) |
|
|
|
del theta_0 |
|
return final_pipe |
|
|
|
@staticmethod |
|
def weighted_sum(theta0, theta1, theta2, alpha): |
|
return ((1 - alpha) * theta0) + (alpha * theta1) |
|
|
|
|
|
@staticmethod |
|
def sigmoid(theta0, theta1, theta2, alpha): |
|
alpha = alpha * alpha * (3 - (2 * alpha)) |
|
return theta0 + ((theta1 - theta0) * alpha) |
|
|
|
|
|
@staticmethod |
|
def inv_sigmoid(theta0, theta1, theta2, alpha): |
|
import math |
|
|
|
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) |
|
return theta0 + ((theta1 - theta0) * alpha) |
|
|
|
@staticmethod |
|
def add_difference(theta0, theta1, theta2, alpha): |
|
return theta0 + (theta1 - theta2) * (1.0 - alpha) |
|
|