|
import math |
|
import numbers |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.models import AsymmetricAutoencoderKL, ImageProjection |
|
from diffusers.models.attention_processor import Attention, AttnProcessor |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import ( |
|
StableDiffusionInpaintPipeline, |
|
retrieve_timesteps, |
|
) |
|
from diffusers.utils import deprecate |
|
|
|
|
|
class RASGAttnProcessor: |
|
def __init__(self, mask, token_idx, scale_factor): |
|
self.attention_scores = None |
|
self.mask = mask |
|
self.token_idx = token_idx |
|
self.scale_factor = scale_factor |
|
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
scale: float = 1.0, |
|
) -> torch.Tensor: |
|
|
|
downscale_factor = self.mask_resoltuion // hidden_states.shape[1] |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
|
|
if downscale_factor == self.scale_factor**2: |
|
self.attention_scores = get_attention_scores(attn, query, key, attention_mask) |
|
attention_probs = self.attention_scores.softmax(dim=-1) |
|
attention_probs = attention_probs.to(query.dtype) |
|
else: |
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PAIntAAttnProcessor: |
|
def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors): |
|
self.transformer_block = transformer_block |
|
self.mask = mask |
|
self.scale_factors = scale_factors |
|
self.do_classifier_free_guidance = do_classifier_free_guidance |
|
self.token_idx = token_idx |
|
self.shape = mask.shape[2:] |
|
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] |
|
self.default_processor = AttnProcessor() |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
scale: float = 1.0, |
|
) -> torch.Tensor: |
|
|
|
downscale_factor = self.mask_resoltuion // hidden_states.shape[1] |
|
|
|
mask = None |
|
for factor in self.scale_factors: |
|
if downscale_factor == factor**2: |
|
shape = (self.shape[0] // factor, self.shape[1] // factor) |
|
mask = F.interpolate(self.mask, shape, mode="bicubic") |
|
break |
|
if mask is None: |
|
return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale) |
|
|
|
|
|
residual = hidden_states |
|
|
|
input_hidden_states = hidden_states |
|
|
|
|
|
|
|
|
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
self_attention_scores = get_attention_scores( |
|
attn, query, key, attention_mask |
|
) |
|
self_attention_probs = self_attention_scores.softmax( |
|
dim=-1 |
|
) |
|
self_attention_probs = self_attention_probs.to(query.dtype) |
|
|
|
hidden_states = torch.bmm(self_attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unnormalized_input_hidden_states = ( |
|
input_hidden_states + self.transformer_block.norm1.bias |
|
) * self.transformer_block.norm1.weight |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states |
|
if transformer_hidden_states.ndim == 4: |
|
transformer_hidden_states = transformer_hidden_states.squeeze(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.transformer_block.use_ada_layer_norm: |
|
|
|
raise NotImplementedError() |
|
elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm: |
|
transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states) |
|
elif self.transformer_block.use_ada_layer_norm_single: |
|
|
|
|
|
transformer_norm_hidden_states = transformer_hidden_states |
|
elif self.transformer_block.use_ada_layer_norm_continuous: |
|
|
|
raise NotImplementedError() |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False: |
|
transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cross_attention_input_hidden_states = ( |
|
transformer_norm_hidden_states |
|
) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
|
( |
|
_cross_attention_input_hidden_states_unconditional, |
|
cross_attention_input_hidden_states_conditional, |
|
) = cross_attention_input_hidden_states.chunk(2) |
|
|
|
|
|
|
|
_encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk( |
|
2 |
|
) |
|
else: |
|
cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states |
|
encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2) |
|
|
|
|
|
|
|
cross_attention_hidden_states = cross_attention_input_hidden_states_conditional |
|
cross_attention_encoder_hidden_states = encoder_hidden_states_conditional |
|
|
|
attn2 = self.transformer_block.attn2 |
|
|
|
if attn2.spatial_norm is not None: |
|
cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb) |
|
|
|
input_ndim = cross_attention_hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = cross_attention_hidden_states.shape |
|
cross_attention_hidden_states = cross_attention_hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
( |
|
batch_size, |
|
sequence_length, |
|
_, |
|
) = cross_attention_hidden_states.shape |
|
|
|
attention_mask = attn2.prepare_attention_mask( |
|
None, sequence_length, batch_size |
|
) |
|
|
|
if attn2.group_norm is not None: |
|
cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query2 = attn2.to_q(cross_attention_hidden_states) |
|
|
|
if attn2.norm_cross: |
|
cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states( |
|
cross_attention_encoder_hidden_states |
|
) |
|
|
|
key2 = attn2.to_k(cross_attention_encoder_hidden_states) |
|
query2 = attn2.head_to_batch_dim(query2) |
|
key2 = attn2.head_to_batch_dim(key2) |
|
|
|
cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype) |
|
m = mask.to(self_attention_output_hidden_states.device) |
|
|
|
m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous() |
|
m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, dims, channels = cross_attention_probs.shape |
|
batch_size = batch_size // attn.heads |
|
cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels)) |
|
|
|
cross_attention_probs = cross_attention_probs.mean(dim=1) |
|
cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1) |
|
cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape) |
|
|
|
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to( |
|
self_attention_output_hidden_states.device |
|
) |
|
cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0] |
|
|
|
|
|
cross_attention_probs = cross_attention_probs.reshape(batch_size, -1) |
|
cross_attention_probs = ( |
|
cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values |
|
) / cross_attention_probs.max(dim=-1, keepdim=True).values |
|
cross_attention_probs = cross_attention_probs.clip(0, 1) |
|
|
|
c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m |
|
c = c.repeat_interleave(attn.heads, 0) |
|
if self.do_classifier_free_guidance: |
|
c = torch.cat([c, c]) |
|
|
|
|
|
self_attention_scores_rescaled = self_attention_scores * c |
|
self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1) |
|
|
|
|
|
hidden_states = torch.bmm(self_attention_probs_rescaled, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + input_hidden_states |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline): |
|
def get_tokenized_prompt(self, prompt): |
|
out = self.tokenizer(prompt) |
|
return [self.tokenizer.decode(x) for x in out["input_ids"]] |
|
|
|
def init_attn_processors( |
|
self, |
|
mask, |
|
token_idx, |
|
use_painta=True, |
|
use_rasg=True, |
|
painta_scale_factors=[2, 4], |
|
rasg_scale_factor=4, |
|
self_attention_layer_name="attn1", |
|
cross_attention_layer_name="attn2", |
|
list_of_painta_layer_names=None, |
|
list_of_rasg_layer_names=None, |
|
): |
|
default_processor = AttnProcessor() |
|
width, height = mask.shape[-2:] |
|
width, height = width // self.vae_scale_factor, height // self.vae_scale_factor |
|
|
|
painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors] |
|
rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor |
|
|
|
attn_processors = {} |
|
for x in self.unet.attn_processors: |
|
if (list_of_painta_layer_names is None and self_attention_layer_name in x) or ( |
|
list_of_painta_layer_names is not None and x in list_of_painta_layer_names |
|
): |
|
if use_painta: |
|
transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", "")) |
|
attn_processors[x] = PAIntAAttnProcessor( |
|
transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors |
|
) |
|
else: |
|
attn_processors[x] = default_processor |
|
elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or ( |
|
list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names |
|
): |
|
if use_rasg: |
|
attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor) |
|
else: |
|
attn_processors[x] = default_processor |
|
|
|
self.unet.set_attn_processor(attn_processors) |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
mask_image: PipelineImageInput = None, |
|
masked_image_latents: torch.Tensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
padding_mask_crop: Optional[int] = None, |
|
strength: float = 1.0, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.5, |
|
positive_prompt: Optional[str] = "", |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.01, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: int = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
use_painta=True, |
|
use_rasg=True, |
|
self_attention_layer_name=".attn1", |
|
cross_attention_layer_name=".attn2", |
|
painta_scale_factors=[2, 4], |
|
rasg_scale_factor=4, |
|
list_of_painta_layer_names=None, |
|
list_of_rasg_layer_names=None, |
|
**kwargs, |
|
): |
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
prompt_no_positives = prompt |
|
if isinstance(prompt, list): |
|
prompt = [x + positive_prompt for x in prompt] |
|
else: |
|
prompt = prompt + positive_prompt |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
mask_image, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
padding_mask_crop, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None: |
|
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True |
|
image_embeds, negative_image_embeds = self.encode_image( |
|
ip_adapter_image, device, num_images_per_prompt, output_hidden_state |
|
) |
|
if self.do_classifier_free_guidance: |
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps=num_inference_steps, strength=strength, device=device |
|
) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
|
|
if padding_mask_crop is not None: |
|
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) |
|
resize_mode = "fill" |
|
else: |
|
crops_coords = None |
|
resize_mode = "default" |
|
|
|
original_image = image |
|
init_image = self.image_processor.preprocess( |
|
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode |
|
) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
latents_outputs = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
image=init_image, |
|
timestep=latent_timestep, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
) |
|
|
|
if return_image_latents: |
|
latents, noise, image_latents = latents_outputs |
|
else: |
|
latents, noise = latents_outputs |
|
|
|
|
|
mask_condition = self.mask_processor.preprocess( |
|
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords |
|
) |
|
|
|
if masked_image_latents is None: |
|
masked_image = init_image * (mask_condition < 0.5) |
|
else: |
|
masked_image = masked_image_latents |
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask_condition, |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
|
|
|
|
token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [ |
|
self.get_tokenized_prompt(prompt).index("<|endoftext|>") |
|
] |
|
|
|
|
|
self.init_attn_processors( |
|
mask_condition, |
|
token_idx, |
|
use_painta, |
|
use_rasg, |
|
painta_scale_factors=painta_scale_factors, |
|
rasg_scale_factor=rasg_scale_factor, |
|
self_attention_layer_name=self_attention_layer_name, |
|
cross_attention_layer_name=cross_attention_layer_name, |
|
list_of_painta_layer_names=list_of_painta_layer_names, |
|
list_of_rasg_layer_names=list_of_rasg_layer_names, |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
if use_rasg: |
|
extra_step_kwargs["generator"] = None |
|
|
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
painta_active = True |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
if t < 500 and painta_active: |
|
self.init_attn_processors( |
|
mask_condition, |
|
token_idx, |
|
False, |
|
use_rasg, |
|
painta_scale_factors=painta_scale_factors, |
|
rasg_scale_factor=rasg_scale_factor, |
|
self_attention_layer_name=self_attention_layer_name, |
|
cross_attention_layer_name=cross_attention_layer_name, |
|
list_of_painta_layer_names=list_of_painta_layer_names, |
|
list_of_rasg_layer_names=list_of_rasg_layer_names, |
|
) |
|
painta_active = False |
|
|
|
with torch.enable_grad(): |
|
self.unet.zero_grad() |
|
latents = latents.detach() |
|
latents.requires_grad = True |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if num_channels_unet == 9: |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
self.scheduler.latents = latents |
|
self.encoder_hidden_states = prompt_embeds |
|
for attn_processor in self.unet.attn_processors.values(): |
|
attn_processor.encoder_hidden_states = prompt_embeds |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if use_rasg: |
|
|
|
_, _, height, width = mask_condition.shape |
|
scale_factor = self.vae_scale_factor * rasg_scale_factor |
|
|
|
|
|
rasg_mask = F.interpolate( |
|
mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic" |
|
)[0, 0] |
|
|
|
|
|
attn_map = [] |
|
for processor in self.unet.attn_processors.values(): |
|
if hasattr(processor, "attention_scores") and processor.attention_scores is not None: |
|
if self.do_classifier_free_guidance: |
|
attn_map.append(processor.attention_scores.chunk(2)[1]) |
|
else: |
|
attn_map.append(processor.attention_scores) |
|
|
|
attn_map = ( |
|
torch.cat(attn_map) |
|
.mean(0) |
|
.permute(1, 0) |
|
.reshape((-1, height // scale_factor, width // scale_factor)) |
|
) |
|
|
|
|
|
attn_score = -sum( |
|
[ |
|
F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device)) |
|
for x in attn_map[token_idx] |
|
] |
|
) |
|
|
|
|
|
attn_score.backward() |
|
|
|
|
|
variance_noise = latents.grad.detach() |
|
|
|
variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True) |
|
variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True) |
|
else: |
|
variance_noise = None |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise |
|
)[0] |
|
|
|
if num_channels_unet == 4: |
|
init_latents_proper = image_latents |
|
if self.do_classifier_free_guidance: |
|
init_mask, _ = mask.chunk(2) |
|
else: |
|
init_mask = mask |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
mask = callback_outputs.pop("mask", mask) |
|
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
condition_kwargs = {} |
|
if isinstance(self.vae, AsymmetricAutoencoderKL): |
|
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) |
|
init_image_condition = init_image.clone() |
|
init_image = self._encode_vae_image(init_image, generator=generator) |
|
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) |
|
condition_kwargs = {"image": init_image_condition, "mask": mask_condition} |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs |
|
)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
if padding_mask_crop is not None: |
|
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|
|
|
|
|
|
|
|
class GaussianSmoothing(nn.Module): |
|
""" |
|
Apply gaussian smoothing on a |
|
1d, 2d or 3d tensor. Filtering is performed seperately for each channel |
|
in the input using a depthwise convolution. |
|
Arguments: |
|
channels (int, sequence): Number of channels of the input tensors. Output will |
|
have this number of channels as well. |
|
kernel_size (int, sequence): Size of the gaussian kernel. |
|
sigma (float, sequence): Standard deviation of the gaussian kernel. |
|
dim (int, optional): The number of dimensions of the data. |
|
Default value is 2 (spatial). |
|
""" |
|
|
|
def __init__(self, channels, kernel_size, sigma, dim=2): |
|
super(GaussianSmoothing, self).__init__() |
|
if isinstance(kernel_size, numbers.Number): |
|
kernel_size = [kernel_size] * dim |
|
if isinstance(sigma, numbers.Number): |
|
sigma = [sigma] * dim |
|
|
|
|
|
|
|
kernel = 1 |
|
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) |
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): |
|
mean = (size - 1) / 2 |
|
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) |
|
|
|
|
|
kernel = kernel / torch.sum(kernel) |
|
|
|
|
|
kernel = kernel.view(1, 1, *kernel.size()) |
|
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) |
|
|
|
self.register_buffer("weight", kernel) |
|
self.groups = channels |
|
|
|
if dim == 1: |
|
self.conv = F.conv1d |
|
elif dim == 2: |
|
self.conv = F.conv2d |
|
elif dim == 3: |
|
self.conv = F.conv3d |
|
else: |
|
raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) |
|
|
|
def forward(self, input): |
|
""" |
|
Apply gaussian filter to input. |
|
Arguments: |
|
input (torch.Tensor): Input to apply gaussian filter on. |
|
Returns: |
|
filtered (torch.Tensor): Filtered output. |
|
""" |
|
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same") |
|
|
|
|
|
def get_attention_scores( |
|
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None |
|
) -> torch.Tensor: |
|
r""" |
|
Compute the attention scores. |
|
|
|
Args: |
|
query (`torch.Tensor`): The query tensor. |
|
key (`torch.Tensor`): The key tensor. |
|
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. |
|
|
|
Returns: |
|
`torch.Tensor`: The attention probabilities/scores. |
|
""" |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
return attention_scores |
|
|