#!/usr/bin/env python3 | |
import torch | |
from diffusers import DiffusionPipeline | |
class UnetSchedulerOneForwardPipeline(DiffusionPipeline): | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__(self): | |
image = torch.randn( | |
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), | |
) | |
timestep = 1 | |
model_output = self.unet(image, timestep).sample | |
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample | |
result = scheduler_output - scheduler_output + torch.ones_like(scheduler_output) | |
return result | |