|
|
|
import inspect |
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from torch.nn import functional as F |
|
from torchvision import transforms |
|
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.utils import ( |
|
PIL_INTERPOLATION, |
|
randn_tensor, |
|
) |
|
|
|
|
|
def preprocess(image, w, h): |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): |
|
if not isinstance(v0, np.ndarray): |
|
inputs_are_torch = True |
|
input_device = v0.device |
|
v0 = v0.cpu().numpy() |
|
v1 = v1.cpu().numpy() |
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) |
|
if np.abs(dot) > DOT_THRESHOLD: |
|
v2 = (1 - t) * v0 + t * v1 |
|
else: |
|
theta_0 = np.arccos(dot) |
|
sin_theta_0 = np.sin(theta_0) |
|
theta_t = theta_0 * t |
|
sin_theta_t = np.sin(theta_t) |
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 |
|
s1 = sin_theta_t / sin_theta_0 |
|
v2 = s0 * v0 + s1 * v1 |
|
|
|
if inputs_are_torch: |
|
v2 = torch.from_numpy(v2).to(input_device) |
|
|
|
return v2 |
|
|
|
|
|
def spherical_dist_loss(x, y): |
|
x = F.normalize(x, dim=-1) |
|
y = F.normalize(y, dim=-1) |
|
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) |
|
|
|
|
|
def set_requires_grad(model, value): |
|
for param in model.parameters(): |
|
param.requires_grad = value |
|
|
|
|
|
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
clip_model: CLIPModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], |
|
feature_extractor: CLIPFeatureExtractor, |
|
coca_model=None, |
|
coca_tokenizer=None, |
|
coca_transform=None, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
clip_model=clip_model, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
coca_model=coca_model, |
|
coca_tokenizer=coca_tokenizer, |
|
coca_transform=coca_transform, |
|
) |
|
self.feature_extractor_size = ( |
|
feature_extractor.size |
|
if isinstance(feature_extractor.size, int) |
|
else feature_extractor.size["shortest_edge"] |
|
) |
|
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) |
|
set_requires_grad(self.text_encoder, False) |
|
set_requires_grad(self.clip_model, False) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
self.enable_attention_slicing(None) |
|
|
|
def freeze_vae(self): |
|
set_requires_grad(self.vae, False) |
|
|
|
def unfreeze_vae(self): |
|
set_requires_grad(self.vae, True) |
|
|
|
def freeze_unet(self): |
|
set_requires_grad(self.unet, False) |
|
|
|
def unfreeze_unet(self): |
|
set_requires_grad(self.unet, True) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None): |
|
if not isinstance(image, torch.Tensor): |
|
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}") |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if isinstance(generator, list): |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
|
|
init_latents = 0.18215 * init_latents |
|
init_latents = init_latents.repeat_interleave(batch_size, dim=0) |
|
|
|
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
def get_image_description(self, image): |
|
transformed_image = self.coca_transform(image).unsqueeze(0) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) |
|
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy()) |
|
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,") |
|
|
|
def get_clip_image_embeddings(self, image, batch_size): |
|
clip_image_input = self.feature_extractor.preprocess(image) |
|
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() |
|
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features) |
|
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) |
|
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0) |
|
return image_embeddings_clip |
|
|
|
@torch.enable_grad() |
|
def cond_fn( |
|
self, |
|
latents, |
|
timestep, |
|
index, |
|
text_embeddings, |
|
noise_pred_original, |
|
original_image_embeddings_clip, |
|
clip_guidance_scale, |
|
): |
|
latents = latents.detach().requires_grad_() |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample |
|
|
|
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): |
|
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
fac = torch.sqrt(beta_prod_t) |
|
sample = pred_original_sample * (fac) + latents * (1 - fac) |
|
elif isinstance(self.scheduler, LMSDiscreteScheduler): |
|
sigma = self.scheduler.sigmas[index] |
|
sample = latents - sigma * noise_pred |
|
else: |
|
raise ValueError(f"scheduler type {type(self.scheduler)} not supported") |
|
|
|
|
|
sample = 1 / 0.18215 * sample |
|
image = self.vae.decode(sample).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = transforms.Resize(self.feature_extractor_size)(image) |
|
image = self.normalize(image).to(latents.dtype) |
|
|
|
image_embeddings_clip = self.clip_model.get_image_features(image) |
|
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) |
|
|
|
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale |
|
|
|
grads = -torch.autograd.grad(loss, latents)[0] |
|
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
latents = latents.detach() + grads * (sigma**2) |
|
noise_pred = noise_pred_original |
|
else: |
|
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads |
|
return noise_pred, latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
style_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
content_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
style_prompt: Optional[str] = None, |
|
content_prompt: Optional[str] = None, |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
noise_strength: float = 0.6, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
batch_size: Optional[int] = 1, |
|
eta: float = 0.0, |
|
clip_guidance_scale: Optional[float] = 100, |
|
generator: Optional[torch.Generator] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
slerp_latent_style_strength: float = 0.8, |
|
slerp_prompt_style_strength: float = 0.1, |
|
slerp_clip_image_style_strength: float = 0.1, |
|
): |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if isinstance(generator, torch.Generator) and batch_size > 1: |
|
generator = [generator] + [None] * (batch_size - 1) |
|
|
|
coca_is_none = [ |
|
("model", self.coca_model is None), |
|
("tokenizer", self.coca_tokenizer is None), |
|
("transform", self.coca_transform is None), |
|
] |
|
coca_is_none = [x[0] for x in coca_is_none if x[1]] |
|
coca_is_none_str = ", ".join(coca_is_none) |
|
|
|
if content_prompt is None: |
|
if len(coca_is_none): |
|
raise ValueError( |
|
f"Content prompt is None and CoCa [{coca_is_none_str}] is None." |
|
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." |
|
) |
|
content_prompt = self.get_image_description(content_image) |
|
if style_prompt is None: |
|
if len(coca_is_none): |
|
raise ValueError( |
|
f"Style prompt is None and CoCa [{coca_is_none_str}] is None." |
|
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." |
|
) |
|
style_prompt = self.get_image_description(style_image) |
|
|
|
|
|
content_text_input = self.tokenizer( |
|
content_prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0] |
|
|
|
style_text_input = self.tokenizer( |
|
style_prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0] |
|
|
|
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings) |
|
|
|
|
|
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
|
|
self.scheduler.timesteps.to(self.device) |
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device) |
|
latent_timestep = timesteps[:1].repeat(batch_size) |
|
|
|
|
|
preprocessed_content_image = preprocess(content_image, width, height) |
|
content_latents = self.prepare_latents( |
|
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator |
|
) |
|
|
|
preprocessed_style_image = preprocess(style_image, width, height) |
|
style_latents = self.prepare_latents( |
|
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator |
|
) |
|
|
|
latents = slerp(slerp_latent_style_strength, content_latents, style_latents) |
|
|
|
if clip_guidance_scale > 0: |
|
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size) |
|
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size) |
|
clip_image_embeddings = slerp( |
|
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding |
|
) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
max_length = content_text_input.input_ids.shape[-1] |
|
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) |
|
latents_dtype = text_embeddings.dtype |
|
if latents is None: |
|
if self.device.type == "mps": |
|
|
|
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( |
|
self.device |
|
) |
|
else: |
|
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(self.device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
|
|
with self.progress_bar(total=num_inference_steps): |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if clip_guidance_scale > 0: |
|
text_embeddings_for_guidance = ( |
|
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings |
|
) |
|
noise_pred, latents = self.cond_fn( |
|
latents, |
|
t, |
|
i, |
|
text_embeddings_for_guidance, |
|
noise_pred, |
|
clip_image_embeddings, |
|
clip_guidance_scale, |
|
) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, None) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) |
|
|