import inspect from typing import List, Optional, Tuple, Union import torch from torch.nn import functional as F from transformers import CLIPTextModelWithProjection, CLIPTokenizer from transformers.models.clip.modeling_clip import CLIPTextModelOutput from diffusers import ( DiffusionPipeline, ImagePipelineOutput, PriorTransformer, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel, ) from diffusers.pipelines.unclip import UnCLIPTextProjModel from diffusers.utils import is_accelerate_available, logging from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name def slerp(val, low, high): """ Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. """ low_norm = low / torch.norm(low) high_norm = high / torch.norm(high) omega = torch.acos((low_norm * high_norm)) so = torch.sin(omega) res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high return res class UnCLIPTextInterpolationPipeline(DiffusionPipeline): """ Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). prior ([`PriorTransformer`]): The canonincal unCLIP prior to approximate the image embedding from the text embedding. text_proj ([`UnCLIPTextProjModel`]): Utility class to prepare and combine the embeddings before they are passed to the decoder. decoder ([`UNet2DConditionModel`]): The decoder to invert the image embedding into an image. super_res_first ([`UNet2DModel`]): Super resolution unet. Used in all but the last step of the super resolution diffusion process. super_res_last ([`UNet2DModel`]): Super resolution unet. Used in the last step of the super resolution diffusion process. prior_scheduler ([`UnCLIPScheduler`]): Scheduler used in the prior denoising process. Just a modified DDPMScheduler. decoder_scheduler ([`UnCLIPScheduler`]): Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. super_res_scheduler ([`UnCLIPScheduler`]): Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. """ prior: PriorTransformer decoder: UNet2DConditionModel text_proj: UnCLIPTextProjModel text_encoder: CLIPTextModelWithProjection tokenizer: CLIPTokenizer super_res_first: UNet2DModel super_res_last: UNet2DModel prior_scheduler: UnCLIPScheduler decoder_scheduler: UnCLIPScheduler super_res_scheduler: UnCLIPScheduler # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.__init__ def __init__( self, prior: PriorTransformer, decoder: UNet2DConditionModel, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_proj: UnCLIPTextProjModel, super_res_first: UNet2DModel, super_res_last: UNet2DModel, prior_scheduler: UnCLIPScheduler, decoder_scheduler: UnCLIPScheduler, super_res_scheduler: UnCLIPScheduler, ): super().__init__() self.register_modules( prior=prior, decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, text_proj=text_proj, super_res_first=super_res_first, super_res_last=super_res_last, prior_scheduler=prior_scheduler, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler, ) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, text_attention_mask: Optional[torch.Tensor] = None, ): if text_model_output is None: batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state else: batch_size = text_model_output[0].shape[0] prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1] text_mask = text_attention_mask prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens = [""] * batch_size uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.enable_sequential_cpu_offload def enable_sequential_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device(f"cuda:{gpu_id}") # TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list models = [ self.decoder, self.text_proj, self.text_encoder, self.super_res_first, self.super_res_last, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @property # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): return self.device for module in self.decoder.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self, start_prompt: str, end_prompt: str, steps: int = 5, prior_num_inference_steps: int = 25, decoder_num_inference_steps: int = 25, super_res_num_inference_steps: int = 7, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prior_guidance_scale: float = 4.0, decoder_guidance_scale: float = 8.0, enable_sequential_cpu_offload=True, gpu_id=0, output_type: Optional[str] = "pil", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: start_prompt (`str`): The prompt to start the image generation interpolation from. end_prompt (`str`): The prompt to end the image generation interpolation at. steps (`int`, *optional*, defaults to 5): The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns the same number of images as this value. prior_num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps for the prior. More denoising steps usually lead to a higher quality image at the expense of slower inference. decoder_num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality image at the expense of slower inference. super_res_num_inference_steps (`int`, *optional*, defaults to 7): The number of denoising steps for super resolution. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. decoder_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`): If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. gpu_id (`int`, *optional*, defaults to `0`): The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. """ if not isinstance(start_prompt, str) or not isinstance(end_prompt, str): raise ValueError( f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and" f" {type(end_prompt)} instead" ) if enable_sequential_cpu_offload: self.enable_sequential_cpu_offload(gpu_id=gpu_id) device = self._execution_device # Turn the prompts into embeddings. inputs = self.tokenizer( [start_prompt, end_prompt], padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", ) inputs.to(device) text_model_output = self.text_encoder(**inputs) text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1]) text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device) # Interpolate from the start to end prompt using slerp and add the generated images to an image output pipeline batch_text_embeds = [] batch_last_hidden_state = [] for interp_val in torch.linspace(0, 1, steps): text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1]) last_hidden_state = slerp( interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1] ) batch_text_embeds.append(text_embeds.unsqueeze(0)) batch_last_hidden_state.append(last_hidden_state.unsqueeze(0)) batch_text_embeds = torch.cat(batch_text_embeds) batch_last_hidden_state = torch.cat(batch_last_hidden_state) text_model_output = CLIPTextModelOutput( text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state ) batch_size = text_model_output[0].shape[0] do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt=None, device=device, num_images_per_prompt=1, do_classifier_free_guidance=do_classifier_free_guidance, text_model_output=text_model_output, text_attention_mask=text_attention_mask, ) # prior self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) prior_timesteps_tensor = self.prior_scheduler.timesteps embedding_dim = self.prior.config.embedding_dim prior_latents = self.prepare_latents( (batch_size, embedding_dim), prompt_embeds.dtype, device, generator, None, self.prior_scheduler, ) for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents predicted_image_embedding = self.prior( latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding if do_classifier_free_guidance: predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( predicted_image_embedding_text - predicted_image_embedding_uncond ) if i + 1 == prior_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = prior_timesteps_tensor[i + 1] prior_latents = self.prior_scheduler.step( predicted_image_embedding, timestep=t, sample=prior_latents, generator=generator, prev_timestep=prev_timestep, ).prev_sample prior_latents = self.prior.post_process_latents(prior_latents) image_embeddings = prior_latents # done prior # decoder text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( image_embeddings=image_embeddings, prompt_embeds=prompt_embeds, text_encoder_hidden_states=text_encoder_hidden_states, do_classifier_free_guidance=do_classifier_free_guidance, ) if device.type == "mps": # HACK: MPS: There is a panic when padding bool tensors, # so cast to int tensor for the pad and back to bool afterwards text_mask = text_mask.type(torch.int) decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) decoder_text_mask = decoder_text_mask.type(torch.bool) else: decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) decoder_timesteps_tensor = self.decoder_scheduler.timesteps num_channels_latents = self.decoder.config.in_channels height = self.decoder.config.sample_size width = self.decoder.config.sample_size decoder_latents = self.prepare_latents( (batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, None, self.decoder_scheduler, ) for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents noise_pred = self.decoder( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, class_labels=additive_clip_time_embeddings, attention_mask=decoder_text_mask, ).sample if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) if i + 1 == decoder_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = decoder_timesteps_tensor[i + 1] # compute the previous noisy sample x_t -> x_t-1 decoder_latents = self.decoder_scheduler.step( noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator ).prev_sample decoder_latents = decoder_latents.clamp(-1, 1) image_small = decoder_latents # done decoder # super res self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) super_res_timesteps_tensor = self.super_res_scheduler.timesteps channels = self.super_res_first.config.in_channels // 2 height = self.super_res_first.config.sample_size width = self.super_res_first.config.sample_size super_res_latents = self.prepare_latents( (batch_size, channels, height, width), image_small.dtype, device, generator, None, self.super_res_scheduler, ) if device.type == "mps": # MPS does not support many interpolations image_upscaled = F.interpolate(image_small, size=[height, width]) else: interpolate_antialias = {} if "antialias" in inspect.signature(F.interpolate).parameters: interpolate_antialias["antialias"] = True image_upscaled = F.interpolate( image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias ) for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): # no classifier free guidance if i == super_res_timesteps_tensor.shape[0] - 1: unet = self.super_res_last else: unet = self.super_res_first latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) noise_pred = unet( sample=latent_model_input, timestep=t, ).sample if i + 1 == super_res_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = super_res_timesteps_tensor[i + 1] # compute the previous noisy sample x_t -> x_t-1 super_res_latents = self.super_res_scheduler.step( noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator ).prev_sample image = super_res_latents # done super res # post processing image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)