import math import numbers from typing import Any, Callable, Dict, List, Optional, Union import torch import torch.nn.functional as F from torch import nn from diffusers.image_processor import PipelineImageInput from diffusers.models import AsymmetricAutoencoderKL, ImageProjection from diffusers.models.attention_processor import Attention, AttnProcessor from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import ( StableDiffusionInpaintPipeline, retrieve_timesteps, ) from diffusers.utils import deprecate class RASGAttnProcessor: def __init__(self, mask, token_idx, scale_factor): self.attention_scores = None # Stores the last output of the similarity matrix here. Each layer will get its own RASGAttnProcessor assigned self.mask = mask self.token_idx = token_idx self.scale_factor = scale_factor self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 if the image is 512x512 def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ) -> torch.Tensor: # Same as the default AttnProcessor up untill the part where similarity matrix gets saved downscale_factor = self.mask_resoltuion // hidden_states.shape[1] residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) # Automatically recognize the resolution and save the attention similarity values # We need to use the values before the softmax function, hence the rewritten get_attention_scores function. if downscale_factor == self.scale_factor**2: self.attention_scores = get_attention_scores(attn, query, key, attention_mask) attention_probs = self.attention_scores.softmax(dim=-1) attention_probs = attention_probs.to(query.dtype) else: attention_probs = attn.get_attention_scores(query, key, attention_mask) # Original code hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class PAIntAAttnProcessor: def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors): self.transformer_block = transformer_block # Stores the parent transformer block. self.mask = mask self.scale_factors = scale_factors self.do_classifier_free_guidance = do_classifier_free_guidance self.token_idx = token_idx self.shape = mask.shape[2:] self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 self.default_processor = AttnProcessor() def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ) -> torch.Tensor: # Automatically recognize the resolution of the current attention layer and resize the masks accordingly downscale_factor = self.mask_resoltuion // hidden_states.shape[1] mask = None for factor in self.scale_factors: if downscale_factor == factor**2: shape = (self.shape[0] // factor, self.shape[1] // factor) mask = F.interpolate(self.mask, shape, mode="bicubic") # B, 1, H, W break if mask is None: return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale) # STARTS HERE residual = hidden_states # Save the input hidden_states for later use input_hidden_states = hidden_states # ================================================== # # =============== SELF ATTENTION 1 ================= # # ================================================== # if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) # self_attention_probs = attn.get_attention_scores(query, key, attention_mask) # We can't use post-softmax attention scores in this case self_attention_scores = get_attention_scores( attn, query, key, attention_mask ) # The custom function returns pre-softmax probabilities self_attention_probs = self_attention_scores.softmax( dim=-1 ) # Manually compute the probabilities here, the scores will be reused in the second part of PAIntA self_attention_probs = self_attention_probs.to(query.dtype) hidden_states = torch.bmm(self_attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) # x = x + self.attn1(self.norm1(x)) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: # So many residuals everywhere hidden_states = hidden_states + residual self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor # ================================================== # # ============ BasicTransformerBlock =============== # # ================================================== # # We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here # The other option would've been modifying the BasicTransformerBlock and adding this functionality here. # I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead. # The SelfAttention block recieves the normalized latents from the BasicTransformerBlock, # But the residual of the output is the non-normalized version. # Therefore we unnormalize the input hidden state here unnormalized_input_hidden_states = ( input_hidden_states + self.transformer_block.norm1.bias ) * self.transformer_block.norm1.weight # TODO: return if neccessary # if self.use_ada_layer_norm_zero: # attn_output = gate_msa.unsqueeze(1) * attn_output # elif self.use_ada_layer_norm_single: # attn_output = gate_msa * attn_output transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states if transformer_hidden_states.ndim == 4: transformer_hidden_states = transformer_hidden_states.squeeze(1) # TODO: return if neccessary # 2.5 GLIGEN Control # if gligen_kwargs is not None: # transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"]) # NOTE: we experimented with using GLIGEN and HDPainter together, the results were not that great # 3. Cross-Attention if self.transformer_block.use_ada_layer_norm: # transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, timestep) raise NotImplementedError() elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm: transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states) elif self.transformer_block.use_ada_layer_norm_single: # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 transformer_norm_hidden_states = transformer_hidden_states elif self.transformer_block.use_ada_layer_norm_continuous: # transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, added_cond_kwargs["pooled_text_emb"]) raise NotImplementedError() else: raise ValueError("Incorrect norm") if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False: transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states) # ================================================== # # ================= CROSS ATTENTION ================ # # ================================================== # # We do an initial pass of the CrossAttention up to obtaining the similarity matrix here. # The similarity matrix is used to obtain scaling coefficients for the attention matrix of the self attention # We reuse the previously computed self-attention matrix, and only repeat the steps after the softmax cross_attention_input_hidden_states = ( transformer_norm_hidden_states # Renaming the variable for the sake of readability ) # TODO: check if classifier_free_guidance is being used before splitting here if self.do_classifier_free_guidance: # Our scaling coefficients depend only on the conditional part, so we split the inputs ( _cross_attention_input_hidden_states_unconditional, cross_attention_input_hidden_states_conditional, ) = cross_attention_input_hidden_states.chunk(2) # Same split for the encoder_hidden_states i.e. the tokens # Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining. _encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk( 2 ) else: cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2) # Rename the variables for the sake of readability # The part below is the beginning of the __call__ function of the following CrossAttention layer cross_attention_hidden_states = cross_attention_input_hidden_states_conditional cross_attention_encoder_hidden_states = encoder_hidden_states_conditional attn2 = self.transformer_block.attn2 if attn2.spatial_norm is not None: cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb) input_ndim = cross_attention_hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = cross_attention_hidden_states.shape cross_attention_hidden_states = cross_attention_hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) ( batch_size, sequence_length, _, ) = cross_attention_hidden_states.shape # It is definitely a cross attention, so no need for an if block # TODO: change the attention_mask here attention_mask = attn2.prepare_attention_mask( None, sequence_length, batch_size ) # I assume the attention mask is the same... if attn2.group_norm is not None: cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose( 1, 2 ) query2 = attn2.to_q(cross_attention_hidden_states) if attn2.norm_cross: cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states( cross_attention_encoder_hidden_states ) key2 = attn2.to_k(cross_attention_encoder_hidden_states) query2 = attn2.head_to_batch_dim(query2) key2 = attn2.head_to_batch_dim(key2) cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask) # CrossAttention ends here, the remaining part is not used # ================================================== # # ================ SELF ATTENTION 2 ================ # # ================================================== # # DEJA VU! mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype) m = mask.to(self_attention_output_hidden_states.device) # m = rearrange(m, 'b c h w -> b (h w) c').contiguous() m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous() # B HW 1 m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m) # # Compute scaling coefficients for the similarity matrix # # Select the cross attention values for the correct tokens only! # cross_attention_probs = cross_attention_probs.mean(dim = 0) # cross_attention_probs = cross_attention_probs[:, self.token_idx].sum(dim=1) # cross_attention_probs = cross_attention_probs.reshape(shape) # gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(self_attention_output_hidden_states.device) # cross_attention_probs = gaussian_smoothing(cross_attention_probs.unsqueeze(0))[0] # optional smoothing # cross_attention_probs = cross_attention_probs.reshape(-1) # cross_attention_probs = ((cross_attention_probs - torch.median(cross_attention_probs.ravel())) / torch.max(cross_attention_probs.ravel())).clip(0, 1) # c = (1 - m) * cross_attention_probs.reshape(1, 1, -1) + m # PAIntA scaling coefficients # Compute scaling coefficients for the similarity matrix # Select the cross attention values for the correct tokens only! batch_size, dims, channels = cross_attention_probs.shape batch_size = batch_size // attn.heads cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels)) # B, D, HW, T cross_attention_probs = cross_attention_probs.mean(dim=1) # B, HW, T cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1) # B, HW cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape) # , B, H, W gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to( self_attention_output_hidden_states.device ) cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0] # optional smoothing B, H, W # Median normalization cross_attention_probs = cross_attention_probs.reshape(batch_size, -1) # B, HW cross_attention_probs = ( cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values ) / cross_attention_probs.max(dim=-1, keepdim=True).values cross_attention_probs = cross_attention_probs.clip(0, 1) c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m c = c.repeat_interleave(attn.heads, 0) # BD, HW if self.do_classifier_free_guidance: c = torch.cat([c, c]) # 2BD, HW # Rescaling the original self-attention matrix self_attention_scores_rescaled = self_attention_scores * c self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1) # Continuing the self attention normally using the new matrix hidden_states = torch.bmm(self_attention_probs_rescaled, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + input_hidden_states hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline): def get_tokenized_prompt(self, prompt): out = self.tokenizer(prompt) return [self.tokenizer.decode(x) for x in out["input_ids"]] def init_attn_processors( self, mask, token_idx, use_painta=True, use_rasg=True, painta_scale_factors=[2, 4], # 64x64 -> [16x16, 32x32] rasg_scale_factor=4, # 64x64 -> 16x16 self_attention_layer_name="attn1", cross_attention_layer_name="attn2", list_of_painta_layer_names=None, list_of_rasg_layer_names=None, ): default_processor = AttnProcessor() width, height = mask.shape[-2:] width, height = width // self.vae_scale_factor, height // self.vae_scale_factor painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors] rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor attn_processors = {} for x in self.unet.attn_processors: if (list_of_painta_layer_names is None and self_attention_layer_name in x) or ( list_of_painta_layer_names is not None and x in list_of_painta_layer_names ): if use_painta: transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", "")) attn_processors[x] = PAIntAAttnProcessor( transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors ) else: attn_processors[x] = default_processor elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or ( list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names ): if use_rasg: attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor) else: attn_processors[x] = default_processor self.unet.set_attn_processor(attn_processors) # import json # with open('/home/hayk.manukyan/repos/diffusers/debug.txt', 'a') as f: # json.dump({x:str(y) for x,y in self.unet.attn_processors.items()}, f, indent=4) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, mask_image: PipelineImageInput = None, masked_image_latents: torch.Tensor = None, height: Optional[int] = None, width: Optional[int] = None, padding_mask_crop: Optional[int] = None, strength: float = 1.0, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.5, positive_prompt: Optional[str] = "", negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.01, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: int = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], use_painta=True, use_rasg=True, self_attention_layer_name=".attn1", cross_attention_layer_name=".attn2", painta_scale_factors=[2, 4], # 16 x 16 and 32 x 32 rasg_scale_factor=4, # 16x16 by default list_of_painta_layer_names=None, list_of_rasg_layer_names=None, **kwargs, ): callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # prompt_no_positives = prompt if isinstance(prompt, list): prompt = [x + positive_prompt for x in prompt] else: prompt = prompt + positive_prompt # 1. Check inputs self.check_inputs( prompt, image, mask_image, height, width, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, padding_mask_crop, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # assert batch_size == 1, "Does not work with batch size > 1 currently" device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None: output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True image_embeds, negative_image_embeds = self.encode_image( ip_adapter_image, device, num_images_per_prompt, output_hidden_state ) if self.do_classifier_free_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds]) # 4. set timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) timesteps, num_inference_steps = self.get_timesteps( num_inference_steps=num_inference_steps, strength=strength, device=device ) # check that number of inference steps is not < 1 - as this doesn't make sense if num_inference_steps < 1: raise ValueError( f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." ) # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise is_strength_max = strength == 1.0 # 5. Preprocess mask and image if padding_mask_crop is not None: crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) resize_mode = "fill" else: crops_coords = None resize_mode = "default" original_image = image init_image = self.image_processor.preprocess( image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode ) init_image = init_image.to(dtype=torch.float32) # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels num_channels_unet = self.unet.config.in_channels return_image_latents = num_channels_unet == 4 latents_outputs = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_image_latents=return_image_latents, ) if return_image_latents: latents, noise, image_latents = latents_outputs else: latents, noise = latents_outputs # 7. Prepare mask latent variables mask_condition = self.mask_processor.preprocess( mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords ) if masked_image_latents is None: masked_image = init_image * (mask_condition < 0.5) else: masked_image = masked_image_latents mask, masked_image_latents = self.prepare_mask_latents( mask_condition, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance, ) # 7.5 Setting up HD-Painter # Get the indices of the tokens to be modified by both RASG and PAIntA token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [ self.get_tokenized_prompt(prompt).index("<|endoftext|>") ] # Setting up the attention processors self.init_attn_processors( mask_condition, token_idx, use_painta, use_rasg, painta_scale_factors=painta_scale_factors, rasg_scale_factor=rasg_scale_factor, self_attention_layer_name=self_attention_layer_name, cross_attention_layer_name=cross_attention_layer_name, list_of_painta_layer_names=list_of_painta_layer_names, list_of_rasg_layer_names=list_of_rasg_layer_names, ) # 8. Check that sizes of mask, masked image and latents match if num_channels_unet == 9: # default case for runwayml/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) elif num_channels_unet != 4: raise ValueError( f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." ) # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) if use_rasg: extra_step_kwargs["generator"] = None # 9.1 Add image embeds for IP-Adapter added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None # 9.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 10. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) painta_active = True with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue if t < 500 and painta_active: self.init_attn_processors( mask_condition, token_idx, False, use_rasg, painta_scale_factors=painta_scale_factors, rasg_scale_factor=rasg_scale_factor, self_attention_layer_name=self_attention_layer_name, cross_attention_layer_name=cross_attention_layer_name, list_of_painta_layer_names=list_of_painta_layer_names, list_of_rasg_layer_names=list_of_rasg_layer_names, ) painta_active = False with torch.enable_grad(): self.unet.zero_grad() latents = latents.detach() latents.requires_grad = True # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # concat latents, mask, masked_image_latents in the channel dimension latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if num_channels_unet == 9: latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) self.scheduler.latents = latents self.encoder_hidden_states = prompt_embeds for attn_processor in self.unet.attn_processors.values(): attn_processor.encoder_hidden_states = prompt_embeds # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) if use_rasg: # Perform RASG _, _, height, width = mask_condition.shape # 512 x 512 scale_factor = self.vae_scale_factor * rasg_scale_factor # 8 * 4 = 32 # TODO: Fix for > 1 batch_size rasg_mask = F.interpolate( mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic" )[0, 0] # mode is nearest by default, B, H, W # Aggregate the saved attention maps attn_map = [] for processor in self.unet.attn_processors.values(): if hasattr(processor, "attention_scores") and processor.attention_scores is not None: if self.do_classifier_free_guidance: attn_map.append(processor.attention_scores.chunk(2)[1]) # (B/2) x H, 256, 77 else: attn_map.append(processor.attention_scores) # B x H, 256, 77 ? attn_map = ( torch.cat(attn_map) .mean(0) .permute(1, 0) .reshape((-1, height // scale_factor, width // scale_factor)) ) # 77, 16, 16 # Compute the attention score attn_score = -sum( [ F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device)) for x in attn_map[token_idx] ] ) # Backward the score and compute the gradients attn_score.backward() # Normalzie the gradients and compute the noise component variance_noise = latents.grad.detach() # print("VARIANCE SHAPE", variance_noise.shape) variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True) variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True) else: variance_noise = None # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise )[0] if num_channels_unet == 4: init_latents_proper = image_latents if self.do_classifier_free_guidance: init_mask, _ = mask.chunk(2) else: init_mask = mask if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]) ) latents = (1 - init_mask) * init_latents_proper + init_mask * latents if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) mask = callback_outputs.pop("mask", mask) masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": condition_kwargs = {} if isinstance(self.vae, AsymmetricAutoencoderKL): init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) init_image_condition = init_image.clone() init_image = self._encode_vae_image(init_image, generator=generator) mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) condition_kwargs = {"image": init_image_condition, "mask": mask_condition} image = self.vae.decode( latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs )[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if padding_mask_crop is not None: image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) # ============= Utility Functions ============== # class GaussianSmoothing(nn.Module): """ Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. Arguments: channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ def __init__(self, channels, kernel_size, sigma, dim=2): super(GaussianSmoothing, self).__init__() if isinstance(kernel_size, numbers.Number): kernel_size = [kernel_size] * dim if isinstance(sigma, numbers.Number): sigma = [sigma] * dim # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer("weight", kernel) self.groups = channels if dim == 1: self.conv = F.conv1d elif dim == 2: self.conv = F.conv2d elif dim == 3: self.conv = F.conv3d else: raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) def forward(self, input): """ Apply gaussian filter to input. Arguments: input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same") def get_attention_scores( self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None ) -> torch.Tensor: r""" Compute the attention scores. Args: query (`torch.Tensor`): The query tensor. key (`torch.Tensor`): The key tensor. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. Returns: `torch.Tensor`: The attention probabilities/scores. """ if self.upcast_attention: query = query.float() key = key.float() if attention_mask is None: baddbmm_input = torch.empty( query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device ) beta = 0 else: baddbmm_input = attention_mask beta = 1 attention_scores = torch.baddbmm( baddbmm_input, query, key.transpose(-1, -2), beta=beta, alpha=self.scale, ) del baddbmm_input if self.upcast_softmax: attention_scores = attention_scores.float() return attention_scores