import json import os import datasets # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @article{seker2022generalized, title={A generalized framework for recognition of expiration dates on product packages using fully convolutional networks}, author={Seker, Ahmet Cagatay and Ahn, Sang Chul}, journal={Expert Systems with Applications}, pages={117310}, year={2022}, publisher={Elsevier} } """ _DESCRIPTION = """\ The dataset for Date detection in the proposed framework aims to provide annotated images that are relevant for training and evaluating models tasked with detecting dates within product labels or similar contexts. """ _HOMEPAGE = "https://acseker.github.io/ExpDateWebsite/" _LICENSE = "https://licenses.nuget.org/AFL-3.0" _URLs = { "products_synth": "https://huggingface.co/datasets/dimun/ExpirationDate/resolve/main/Products-Synth.zip?download=true", "products_real": "https://huggingface.co/datasets/dimun/ExpirationDate/resolve/main/Products-Real.zip?download=true", } def has_extension(file_path, extensions): _, file_extension = os.path.splitext(file_path) return file_extension.lower() in extensions logger = datasets.logging.get_logger(__name__) class ExpirationDate(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") CATEGORIES = ["prod", "date", "due", "code"] def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "transcriptions": datasets.Sequence(datasets.Value("string")), "bboxes_block": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "categories": datasets.Sequence(datasets.features.ClassLabel(names=self.CATEGORIES)), "image_path": datasets.Value("string"), "width": datasets.Value("int32"), "height": datasets.Value("int32") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # Features/targets of the dataset features=features, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # dl_manager is a datasets.download.DownloadManager that can be used to download and extract files # based on the provided URLs archive_path = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(archive_path["products_synth"], "Products-Synth/"), "split": "", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(archive_path["products_real"], "Products-Real/"), "split": "evaluation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(archive_path["products_real"], "Products-Real/"), # Using train of products real as test "split": "train", }, ), ] def _generate_examples(self, filepath, split): logger.info( f"⏳ Generating examples from = {filepath} to the split {split}") ann_file = os.path.join(filepath, split, "annotations.json") # get json with open(ann_file, "r", encoding="utf8") as f: features_map = json.load(f) img_dir = os.path.join(filepath, split, "images") img_listdir = os.listdir(img_dir) for guid, filename in enumerate(img_listdir): if filename.endswith(".jpg"): image_features = features_map[filename] image_ann = image_features.get("ann") transcriptions = [box.get("transcription", "") for box in image_ann] bboxes_block = [box.get("bbox") for box in image_ann] categories = [box.get("cls") if box.get( "cls") in self.CATEGORIES else "date" for box in image_ann] # get image image_path = os.path.join(img_dir, filename) yield guid, { "id": filename, "transcriptions": transcriptions, "bboxes_block": bboxes_block, "categories": categories, "image_path": image_path, "width": image_features.get("width"), "height": image_features.get("height"), }