Datasets:
File size: 8,998 Bytes
ffaf4f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor
import warnings
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
from Bio.PDB.NeighborSearch import NeighborSearch
from Bio.PDB.Selection import unfold_entities
import numpy as np
import dask.array as da
from rdkit import Chem
from functools import partial
import os
import re
import sys
import io
import random
import gzip
import copy
from atomic_renamer import AtomicNamer
from prody import *
import webdataset as wd
amino_acids = {'L': 'LEU', 'A': 'ALA', 'G': 'GLY', 'V': 'VAL', 'E': 'GLU', 'S': 'SER', 'I': 'ILE', 'K': 'LYS',
'R': 'ARG', 'D': 'ASP', 'T': 'THR', 'P': 'PRO', 'N': 'ASN', 'Q': 'GLN', 'F': 'PHE', 'Y': 'TYR',
'M': 'MET', 'H': 'HIS', 'C': 'CYS', 'W': 'TRP'}
nfeat = 15 # number of heavy atom coordinates
# all punctuation
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
# tokenization regex (Schwaller)
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
def get_protein_sequence_and_coords(structure):
hv = structure.getHierView()
seq = ''
xyz = []
resindex = []
for chain in hv:
cid = chain.getChid()
calpha = structure.select(f'calpha chain {cid} icode _')
N = structure.select(f'name N chain {cid} icode _')
C = structure.select(f'name C chain {cid} icode _')
xyz += [(ca,n,c) for ca,n,c in zip(calpha.getCoords(), N.getCoords(), C.getCoords())]
seq += calpha.getSequence()
resindex += [ca.getResindex() for ca in calpha]
return seq, xyz, resindex
def get_pdb_components(pdb_id):
"""
Split a protein-ligand pdb into protein and ligand components
:param pdb_id:
:return:
"""
with open(pdb_id,'r') as f:
pdb = parsePDBStream(f,model=1)
protein = pdb.select('protein')
return protein
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized):
"""Create rotation matrices from unnormalized vectors for the x and y-axes.
This creates a rotation matrix from two vectors using Gram-Schmidt
orthogonalization.
Args:
e0_unnormalized: vectors lying along x-axis of resulting rotation
e1_unnormalized: vectors lying in xy-plane of resulting rotation
Returns:
Rotations resulting from Gram-Schmidt procedure.
"""
# Normalize the unit vector for the x-axis, e0.
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized)
# make e1 perpendicular to e0.
c = np.dot(e1_unnormalized, e0)
e1 = e1_unnormalized - c * e0
e1 = e1 / np.linalg.norm(e1)
# Compute e2 as cross product of e0 and e1.
e2 = np.cross(e0, e1)
# local to space frame
return np.stack([e0,e1,e2]).T
def parse_complex(aa, data_dir, i_pdb_fns):
shard_idx, pdb_fns = i_pdb_fns
chunk_name = []
chunk_smiles = []
chunk_lig_xyz = []
chunk_seq = []
chunk_rec_xyz = []
chunk_rec_R = []
chunk_rec_feat = []
for pdb_fn in pdb_fns:
try:
name = os.path.basename(pdb_fn)
protein = get_pdb_components(pdb_fn+'/'+name+'_protein.pdb')
seq, xyz, resindex = get_protein_sequence_and_coords(protein)
if len(seq) < 3:
raise ValueError
assert len(xyz) == len(seq), "sequence and coord mismatch"
R_receptor = []
for t in xyz:
CA = np.array(t[0])
N = np.array(t[1])
C = np.array(t[2])
R_receptor.append(rot_from_two_vecs(N-CA,C-CA).flatten().tolist())
# atom features
feat = np.zeros((len(resindex),nfeat,3),dtype=np.float32)
feat[:] = np.nan
for i,(n, res) in enumerate(zip(resindex, seq)):
atoms = protein.select(f'resindex {n}')
ss = io.StringIO()
prody.writePDBStream(ss, atoms)
try:
mol = Chem.MolFromPDBBlock(ss.getvalue())
ref_aa = copy.deepcopy(aa[res])
reflabels = [l.split()[0] for l in ref_aa.reflabels]
labels = [l.split()[0] for l in ref_aa.name(mol)]
pos = mol.GetConformer().GetPositions()
xyz_labels = sorted([(xyz, reflabels.index(l)) for xyz,l in zip(pos,labels)
if l in reflabels], key=lambda t: t[1])
for r, j in xyz_labels:
feat[i,j,:] = r
except Exception as e:
print('Unsuccesful in assigning atoms to amino acid letter {}'.format(res),ss.getvalue(),e)
raise
# parse ligand, convert to SMILES and map atoms
suppl = Chem.SDMolSupplier(pdb_fn+'/'+name+'_ligand.sdf')
mol = next(suppl)
# position of atoms in SMILES (not counting punctuation)
smi = Chem.MolToSmiles(mol)
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]
# tokenize the SMILES
tokens = list(filter(None, re.split(molecule_regex, smi)))
# remove punctuation
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]
k = 0
token_pos = []
for i,token in enumerate(masked_tokens):
if token != '':
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
k += 1
else:
token_pos.append((np.nan, np.nan, np.nan))
chunk_name.append(name)
chunk_seq.append(seq)
chunk_rec_xyz.append(np.array([np.array(t[0]).tolist() for t in xyz]))
chunk_rec_R.append(np.array(R_receptor))
chunk_rec_feat.append(feat)
chunk_smiles.append(smi)
chunk_lig_xyz.append(token_pos)
except Exception as e:
print(e)
pass
try:
shard_idx = str(shard_idx)
with wd.TarWriter(f'{data_dir}/part-' + shard_idx + '.tar', compress=True) as sink:
for index in range(len(chunk_name)):
sink.write({
'__key__': "%s_%06d" % (shard_idx, index),
'name.txt': chunk_name[index],
'seq.txt': chunk_seq[index],
'smiles.txt': chunk_smiles[index],
'rec_xyz.pyd': chunk_rec_xyz[index],
'rec_R.pyd': chunk_rec_R[index],
'rec_feat.pyd': chunk_rec_feat[index],
'lig_xyz.pyd': chunk_lig_xyz[index],
})
return len(chunk_name)
except Exception as e:
print('Exception while writing', repr(e))
if __name__ == '__main__':
import glob
filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
filenames = sorted(filenames)
with open('split_direction/timesplit_no_lig_overlap_train','r') as f:
train_rec = f.read().split()
with open('split_direction/timesplit_no_lig_overlap_val','r') as f:
val_rec = f.read().split()
with open('split_direction/timesplit_test','r') as f:
test_rec = f.read().split()
train = [x for x in filenames if x.split('/')[-1] in train_rec]
val = [x for x in filenames if x.split('/')[-1] in val_rec]
test = [x for x in filenames if x.split('/')[-1] in test_rec]
print(f'Train has {len(train)} items and first 5 are {train[:5]}')
print(f'Val has {len(val)} items and first 5 are {val[:5]}')
print(f'Test has {len(test)} items and first 5 are {test[:5]}')
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
comm = MPI.COMM_WORLD
with MPICommExecutor(comm, root=0) as executor:
if executor is not None:
aa = {k: AtomicNamer(v) for k,v in amino_acids.items()}
chunk_sizes = executor.map(partial(parse_complex, aa, 'train'), enumerate(chunks(train, 512)))
total_train_rows = 0
for s in chunk_sizes:
total_train_rows += s
chunk_sizes = executor.map(partial(parse_complex, aa, 'val'), enumerate(chunks(val, 512)))
total_val_rows = 0
for s in chunk_sizes:
total_val_rows += s
chunk_sizes = executor.map(partial(parse_complex, aa, 'test'), enumerate(chunks(test, 512)))
total_test_rows = 0
for s in chunk_sizes:
total_test_rows += s
print('Total number of train rows {}'.format(total_train_rows))
print('Total number of val rows {}'.format(total_val_rows))
print('Total number of test rows {}'.format(total_test_rows))
|