donfu
commited on
Commit
•
ae54b00
1
Parent(s):
03e6e28
Implement review comments from OA
Browse files- README.md +30 -2
- combine.py +5 -10
- download.py +23 -22
- merge_parquets.py +2 -14
- process.py +10 -10
- stats.md +0 -186
- stats.py +3 -1
- upload.py +1 -1
README.md
CHANGED
@@ -37,8 +37,11 @@ pretty_name: Open-Assistant StackExchange Instruction
|
|
37 |
|
38 |
This dataset is taken from https://archive.org/details/stackexchange.
|
39 |
|
40 |
-
There's a single parquet file combining all stackexchange sites.
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
Each row consists of
|
44 |
|
@@ -49,6 +52,31 @@ Each row consists of
|
|
49 |
|
50 |
Original extraction code by https://github.com/b-mc2
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
## Statistics
|
53 |
|
54 |
- 3dprinting: 1,006
|
|
|
37 |
|
38 |
This dataset is taken from https://archive.org/details/stackexchange.
|
39 |
|
40 |
+
There's a single parquet file combining all stackexchange sites. The threads
|
41 |
+
have been filtered as follows: only threads with an accepted answer, for which
|
42 |
+
both the question and response is less than 1000 characters have been choosen.
|
43 |
+
Other answers, or questions without accepted answers, or long entries have been
|
44 |
+
droppped.
|
45 |
|
46 |
Each row consists of
|
47 |
|
|
|
52 |
|
53 |
Original extraction code by https://github.com/b-mc2
|
54 |
|
55 |
+
|
56 |
+
## How to Reproduce this Dataset
|
57 |
+
|
58 |
+
1. Download all XML files from the stackexchange archive into the xml/ folder
|
59 |
+
```
|
60 |
+
./download.py
|
61 |
+
```
|
62 |
+
2. Process the XML, filter conversations and convert to OA format into parquet/ folder
|
63 |
+
|
64 |
+
```
|
65 |
+
./process.py
|
66 |
+
```
|
67 |
+
3. Run stats on all files in the parquet/ folder
|
68 |
+
```
|
69 |
+
./stats.py
|
70 |
+
```
|
71 |
+
4. Combine all parquet files into one large stackexchange.parquet file
|
72 |
+
```
|
73 |
+
./combine.py
|
74 |
+
```
|
75 |
+
5. Upload to huggingface hub, you'll first need use huggingface-cli login
|
76 |
+
```
|
77 |
+
./upload.py
|
78 |
+
```
|
79 |
+
|
80 |
## Statistics
|
81 |
|
82 |
- 3dprinting: 1,006
|
combine.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# Combine (and shorten) parquet files into a single file
|
3 |
|
4 |
-
import
|
|
|
5 |
import pandas as pd
|
6 |
from merge_parquets import merge_parquet_dir
|
7 |
|
@@ -15,18 +16,12 @@ for file in glob.glob("full/*.parquet"):
|
|
15 |
df["METADATA"] = df["METADATA"].apply(
|
16 |
lambda meta: {
|
17 |
"tags": meta["tags"],
|
18 |
-
"answer_score": int(meta["answer_score"])
|
19 |
-
if "
|
20 |
-
else 0,
|
21 |
-
"question_score": int(meta["question_score"])
|
22 |
-
if "question_score" in meta and meta["question_score"]
|
23 |
-
else 0,
|
24 |
}
|
25 |
)
|
26 |
df.to_parquet(file)
|
27 |
after = len(df)
|
28 |
-
print(
|
29 |
-
f"Shortened {file} from {before} to {after} rows ({100 * after / before:.2f})"
|
30 |
-
)
|
31 |
|
32 |
merge_parquet_dir("full", "stackexchange.parquet")
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# Combine (and shorten) parquet files into a single file
|
3 |
|
4 |
+
import glob
|
5 |
+
|
6 |
import pandas as pd
|
7 |
from merge_parquets import merge_parquet_dir
|
8 |
|
|
|
16 |
df["METADATA"] = df["METADATA"].apply(
|
17 |
lambda meta: {
|
18 |
"tags": meta["tags"],
|
19 |
+
"answer_score": int(meta["answer_score"]) if "answer_score" in meta and meta["answer_score"] else 0,
|
20 |
+
"question_score": int(meta["question_score"]) if "question_score" in meta and meta["question_score"] else 0,
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
)
|
23 |
df.to_parquet(file)
|
24 |
after = len(df)
|
25 |
+
print(f"Shortened {file} from {before} to {after} rows ({100 * after / before:.2f})")
|
|
|
|
|
26 |
|
27 |
merge_parquet_dir("full", "stackexchange.parquet")
|
download.py
CHANGED
@@ -3,19 +3,19 @@
|
|
3 |
# Simple script to download StackExchange archive XML files with posts (threaded version)
|
4 |
#
|
5 |
# Note: you probably want to download stackoverflow.com-Posts.7z manually, as it is 18GB
|
6 |
-
# and takes a
|
7 |
#
|
8 |
# webtorrent https://archive.org/download/stackexchange/stackexchange_archive.torrent --select 658
|
9 |
#
|
10 |
|
11 |
-
import requests
|
12 |
import concurrent.futures
|
13 |
import os
|
14 |
-
from bs4 import BeautifulSoup as bs
|
15 |
-
import pandas as pd
|
16 |
import re
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
DOWNLOAD_DIR = "xml/"
|
20 |
NUM_PARALLEL = 20
|
21 |
RE_IGNORE = r"_meta|stackoverflow\.com\-"
|
@@ -24,31 +24,26 @@ RE_IGNORE = r"_meta|stackoverflow\.com\-"
|
|
24 |
def get_all_filenames():
|
25 |
"""
|
26 |
Retrieve all urls from stackexchange archive.
|
27 |
-
This needs quite some mangling because of special cases.
|
|
|
28 |
"""
|
29 |
response = requests.get("https://archive.org/download/stackexchange")
|
30 |
if response.ok:
|
31 |
soup = bs(response.content, "html.parser")
|
32 |
table = soup.find("table")
|
33 |
link_tags = table.find_all("a")
|
34 |
-
urls = {
|
35 |
-
"stackoverflow": "https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z"
|
36 |
-
}
|
37 |
for link in link_tags:
|
38 |
url = link["href"]
|
39 |
name = url.split(".stackexchange")[0].replace(".", "_").replace("-", "_")
|
40 |
name = name.replace("_com_7z", "")
|
41 |
if url.endswith("7z") and not re.search(RE_IGNORE, url):
|
42 |
-
urls[name] =
|
43 |
return urls
|
44 |
|
45 |
|
46 |
-
urls = get_all_filenames()
|
47 |
-
|
48 |
-
|
49 |
def download_url(dataset_name: str, url: str):
|
50 |
-
|
51 |
-
os.mkdir(DOWNLOAD_DIR)
|
52 |
cache_path = os.path.join(DOWNLOAD_DIR, dataset_name + ".xml")
|
53 |
if os.path.exists(cache_path):
|
54 |
print("Using cached: ", cache_path)
|
@@ -62,12 +57,18 @@ def download_url(dataset_name: str, url: str):
|
|
62 |
return cache_path
|
63 |
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
# Wait for all downloads to complete
|
71 |
-
concurrent.futures.wait(futures)
|
72 |
|
73 |
-
|
|
|
|
3 |
# Simple script to download StackExchange archive XML files with posts (threaded version)
|
4 |
#
|
5 |
# Note: you probably want to download stackoverflow.com-Posts.7z manually, as it is 18GB
|
6 |
+
# and takes a days to download otherwise. You can try using the torrent:
|
7 |
#
|
8 |
# webtorrent https://archive.org/download/stackexchange/stackexchange_archive.torrent --select 658
|
9 |
#
|
10 |
|
|
|
11 |
import concurrent.futures
|
12 |
import os
|
|
|
|
|
13 |
import re
|
14 |
|
15 |
+
import requests
|
16 |
+
from bs4 import BeautifulSoup as bs
|
17 |
+
|
18 |
+
BASE_URL = "https://ia600107.us.archive.org/view_archive.php?archive=/27/items/stackexchange/{0}&file=Posts.xml"
|
19 |
DOWNLOAD_DIR = "xml/"
|
20 |
NUM_PARALLEL = 20
|
21 |
RE_IGNORE = r"_meta|stackoverflow\.com\-"
|
|
|
24 |
def get_all_filenames():
|
25 |
"""
|
26 |
Retrieve all urls from stackexchange archive.
|
27 |
+
This needs quite some mangling because of special cases (i.e. stackoverflow is not in one 7z archive).
|
28 |
+
Ignore meta files.
|
29 |
"""
|
30 |
response = requests.get("https://archive.org/download/stackexchange")
|
31 |
if response.ok:
|
32 |
soup = bs(response.content, "html.parser")
|
33 |
table = soup.find("table")
|
34 |
link_tags = table.find_all("a")
|
35 |
+
urls = {"stackoverflow": "https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z"}
|
|
|
|
|
36 |
for link in link_tags:
|
37 |
url = link["href"]
|
38 |
name = url.split(".stackexchange")[0].replace(".", "_").replace("-", "_")
|
39 |
name = name.replace("_com_7z", "")
|
40 |
if url.endswith("7z") and not re.search(RE_IGNORE, url):
|
41 |
+
urls[name] = BASE_URL.format(url)
|
42 |
return urls
|
43 |
|
44 |
|
|
|
|
|
|
|
45 |
def download_url(dataset_name: str, url: str):
|
46 |
+
os.makedirs(DOWNLOAD_DIR, exist_ok=True)
|
|
|
47 |
cache_path = os.path.join(DOWNLOAD_DIR, dataset_name + ".xml")
|
48 |
if os.path.exists(cache_path):
|
49 |
print("Using cached: ", cache_path)
|
|
|
57 |
return cache_path
|
58 |
|
59 |
|
60 |
+
def download_all():
|
61 |
+
urls = get_all_filenames()
|
62 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=NUM_PARALLEL) as executor:
|
63 |
+
futures = [executor.submit(download_url, dataset, url) for dataset, url in urls.items()]
|
64 |
+
|
65 |
+
# Wait for all downloads to complete
|
66 |
+
concurrent.futures.wait(futures)
|
67 |
+
print("All downloads complete, except for the large stackoverflow XML file")
|
68 |
+
print("Use torrent to download this one much quicker, then uncompress the 7z file")
|
69 |
+
print("and move the extracted stackoverflow.com-Posts.xml to xml/stackoverflow.xml")
|
70 |
+
print("webtorrent https://archive.org/download/stackexchange/stackexchange_archive.torrent --select 658")
|
71 |
|
|
|
|
|
72 |
|
73 |
+
if __name__ == "__main__":
|
74 |
+
download_all()
|
merge_parquets.py
CHANGED
@@ -34,17 +34,7 @@ def stream_from_parquets(paths: Iterable[Path]) -> Iterable[pa.Table]:
|
|
34 |
T = TypeVar("T")
|
35 |
|
36 |
|
37 |
-
def coalesce(
|
38 |
-
items: Iterable[T], max_size: int, sizer: Callable[[T], int] = len
|
39 |
-
) -> Iterable[list[T]]:
|
40 |
-
"""Coalesce items into chunks. Tries to maximize chunk size and not exceed max_size.
|
41 |
-
If an item is larger than max_size, we will always exceed max_size, so make a
|
42 |
-
best effort and place it in its own chunk.
|
43 |
-
You can supply a custom sizer function to determine the size of an item.
|
44 |
-
Default is len.
|
45 |
-
>>> list(coalesce([1, 2, 11, 4, 4, 1, 2], 10, lambda x: x))
|
46 |
-
[[1, 2], [11], [4, 4, 1], [2]]
|
47 |
-
"""
|
48 |
batch = []
|
49 |
current_size = 0
|
50 |
for item in items:
|
@@ -59,9 +49,7 @@ def coalesce(
|
|
59 |
yield batch
|
60 |
|
61 |
|
62 |
-
def coalesce_parquets(
|
63 |
-
paths: Iterable[Path], outpath: Path, max_size: int = 2**20
|
64 |
-
) -> None:
|
65 |
tables = stream_from_parquets(paths)
|
66 |
# Instead of coalescing using number of rows as your metric, you could
|
67 |
# use pa.Table.nbytes or something.
|
|
|
34 |
T = TypeVar("T")
|
35 |
|
36 |
|
37 |
+
def coalesce(items: Iterable[T], max_size: int, sizer: Callable[[T], int] = len) -> Iterable[list[T]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
batch = []
|
39 |
current_size = 0
|
40 |
for item in items:
|
|
|
49 |
yield batch
|
50 |
|
51 |
|
52 |
+
def coalesce_parquets(paths: Iterable[Path], outpath: Path, max_size: int = 2**20) -> None:
|
|
|
|
|
53 |
tables = stream_from_parquets(paths)
|
54 |
# Instead of coalescing using number of rows as your metric, you could
|
55 |
# use pa.Table.nbytes or something.
|
process.py
CHANGED
@@ -2,23 +2,24 @@
|
|
2 |
# Simple script to convert StackExchange XML to Open Assistant format
|
3 |
# Original code by https://github.com/b-mc2
|
4 |
|
5 |
-
import
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
7 |
import pandas as pd
|
8 |
from html2text import html2text
|
9 |
-
from datasets import load_dataset
|
10 |
from lxml import etree
|
11 |
from tqdm import tqdm
|
12 |
-
import subprocess
|
13 |
-
from merge_parquets import merge_parquet_dir
|
14 |
-
|
15 |
|
16 |
XML_DIR = "./xml"
|
17 |
SOURCE = "stackexchange-{0}"
|
18 |
MAX_ANSWERS = 10
|
19 |
QUESTION_SCORE_TRESHOLD = 0
|
20 |
ANSWER_SCORE_TRESHOLD = 0
|
21 |
-
PARQUET_FILE = "{0}.parquet"
|
22 |
MAX_LENGTH = 1000 # max length of question or answer
|
23 |
|
24 |
|
@@ -115,9 +116,7 @@ def convert_to_oa(all, source):
|
|
115 |
|
116 |
del all
|
117 |
|
118 |
-
merged["INSTRUCTION"] = (
|
119 |
-
merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
|
120 |
-
)
|
121 |
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
|
122 |
merged["SOURCE"] = source
|
123 |
merged["METADATA"] = merged.apply(create_metadata, axis=1)
|
@@ -142,6 +141,7 @@ def save_parquet(df, dataset):
|
|
142 |
Save Dataframe to Parquet. See here for specs:
|
143 |
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
|
144 |
"""
|
|
|
145 |
parquet_file = PARQUET_FILE.format(dataset)
|
146 |
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
|
147 |
print(f"Converted {len(df)} instructions into {parquet_file}")
|
|
|
2 |
# Simple script to convert StackExchange XML to Open Assistant format
|
3 |
# Original code by https://github.com/b-mc2
|
4 |
|
5 |
+
import gc
|
6 |
+
import glob
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
|
12 |
import pandas as pd
|
13 |
from html2text import html2text
|
|
|
14 |
from lxml import etree
|
15 |
from tqdm import tqdm
|
|
|
|
|
|
|
16 |
|
17 |
XML_DIR = "./xml"
|
18 |
SOURCE = "stackexchange-{0}"
|
19 |
MAX_ANSWERS = 10
|
20 |
QUESTION_SCORE_TRESHOLD = 0
|
21 |
ANSWER_SCORE_TRESHOLD = 0
|
22 |
+
PARQUET_FILE = "parquet/{0}.parquet"
|
23 |
MAX_LENGTH = 1000 # max length of question or answer
|
24 |
|
25 |
|
|
|
116 |
|
117 |
del all
|
118 |
|
119 |
+
merged["INSTRUCTION"] = merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
|
|
|
|
|
120 |
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
|
121 |
merged["SOURCE"] = source
|
122 |
merged["METADATA"] = merged.apply(create_metadata, axis=1)
|
|
|
141 |
Save Dataframe to Parquet. See here for specs:
|
142 |
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
|
143 |
"""
|
144 |
+
os.makedirs("parquet", exist_ok=True)
|
145 |
parquet_file = PARQUET_FILE.format(dataset)
|
146 |
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
|
147 |
print(f"Converted {len(df)} instructions into {parquet_file}")
|
stats.md
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
- 3dprinting: 1,006
|
2 |
-
- academia: 6,956
|
3 |
-
- ai: 1,169
|
4 |
-
- android: 11,591
|
5 |
-
- anime: 3,688
|
6 |
-
- apple: 32,603
|
7 |
-
- arduino: 3,725
|
8 |
-
- askubuntu: 78,472
|
9 |
-
- astronomy: 2,425
|
10 |
-
- aviation: 4,945
|
11 |
-
- avp: 1,949
|
12 |
-
- beer: 387
|
13 |
-
- bicycles: 4,835
|
14 |
-
- bioacoustics: 70
|
15 |
-
- bioinformatics: 903
|
16 |
-
- biology: 5,344
|
17 |
-
- bitcoin: 7,456
|
18 |
-
- blender: 25,527
|
19 |
-
- boardgames: 4,538
|
20 |
-
- bricks: 1,457
|
21 |
-
- buddhism: 911
|
22 |
-
- cardano: 670
|
23 |
-
- chemistry: 7,430
|
24 |
-
- chess: 2,185
|
25 |
-
- chinese: 4,897
|
26 |
-
- christianity: 1,248
|
27 |
-
- civicrm: 3,221
|
28 |
-
- codegolf: 943
|
29 |
-
- codereview: 2,171
|
30 |
-
- coffee: 350
|
31 |
-
- cogsci: 645
|
32 |
-
- computergraphics: 540
|
33 |
-
- conlang: 101
|
34 |
-
- cooking: 7,951
|
35 |
-
- craftcms: 4,533
|
36 |
-
- crafts: 438
|
37 |
-
- crypto: 4,425
|
38 |
-
- cs: 9,478
|
39 |
-
- cseducators: 71
|
40 |
-
- cstheory: 2,196
|
41 |
-
- datascience: 5,045
|
42 |
-
- dba: 16,850
|
43 |
-
- devops: 961
|
44 |
-
- diy: 14,400
|
45 |
-
- drones: 190
|
46 |
-
- drupal: 24,090
|
47 |
-
- dsp: 4,470
|
48 |
-
- earthscience: 922
|
49 |
-
- ebooks: 323
|
50 |
-
- economics: 2,120
|
51 |
-
- electronics: 41,717
|
52 |
-
- elementaryos: 1,769
|
53 |
-
- ell: 30,428
|
54 |
-
- emacs: 7,140
|
55 |
-
- engineering: 2,314
|
56 |
-
- english: 42,415
|
57 |
-
- eosio: 626
|
58 |
-
- es_stackoverflow: 21,475
|
59 |
-
- esperanto: 617
|
60 |
-
- ethereum: 9,603
|
61 |
-
- expatriates: 973
|
62 |
-
- expressionengine: 3,638
|
63 |
-
- fitness: 1,833
|
64 |
-
- freelancing: 338
|
65 |
-
- french: 5,193
|
66 |
-
- gamedev: 9,678
|
67 |
-
- gaming: 44,899
|
68 |
-
- gardening: 4,492
|
69 |
-
- genealogy: 487
|
70 |
-
- german: 6,715
|
71 |
-
- gis: 30,249
|
72 |
-
- graphicdesign: 10,563
|
73 |
-
- ham: 790
|
74 |
-
- hardwarerecs: 647
|
75 |
-
- health: 804
|
76 |
-
- hermeneutics: 782
|
77 |
-
- hinduism: 1,036
|
78 |
-
- history: 1,776
|
79 |
-
- homebrew: 2,357
|
80 |
-
- hsm: 484
|
81 |
-
- interpersonal: 199
|
82 |
-
- iot: 331
|
83 |
-
- iota: 292
|
84 |
-
- islam: 1,496
|
85 |
-
- italian: 1,356
|
86 |
-
- ja_stackoverflow: 9,734
|
87 |
-
- japanese: 13,862
|
88 |
-
- joomla: 1,875
|
89 |
-
- judaism: 6,156
|
90 |
-
- korean: 754
|
91 |
-
- languagelearning: 135
|
92 |
-
- latin: 1,387
|
93 |
-
- law: 3,475
|
94 |
-
- lifehacks: 934
|
95 |
-
- linguistics: 1,507
|
96 |
-
- literature: 582
|
97 |
-
- magento: 20,537
|
98 |
-
- martialarts: 364
|
99 |
-
- materials: 338
|
100 |
-
- math: 501,019
|
101 |
-
- matheducators: 316
|
102 |
-
- mathematica: 19,529
|
103 |
-
- mathoverflow_net_7z: 23,803
|
104 |
-
- mechanics: 4,735
|
105 |
-
- meta: 34,161
|
106 |
-
- meta_askubuntu: 2,076
|
107 |
-
- meta_mathoverflow_net_7z: 333
|
108 |
-
- meta_serverfault: 823
|
109 |
-
- meta_stackoverflow: 12,641
|
110 |
-
- meta_superuser: 1,748
|
111 |
-
- moderators: 39
|
112 |
-
- monero: 1,443
|
113 |
-
- money: 7,996
|
114 |
-
- movies: 6,789
|
115 |
-
- music: 5,740
|
116 |
-
- musicfans: 781
|
117 |
-
- mythology: 271
|
118 |
-
- networkengineering: 4,637
|
119 |
-
- opendata: 1,117
|
120 |
-
- opensource: 805
|
121 |
-
- or: 586
|
122 |
-
- outdoors: 1,503
|
123 |
-
- parenting: 815
|
124 |
-
- patents: 582
|
125 |
-
- pets: 1,081
|
126 |
-
- philosophy: 1,505
|
127 |
-
- photo: 6,386
|
128 |
-
- physics: 35,386
|
129 |
-
- pm: 982
|
130 |
-
- poker: 431
|
131 |
-
- politics: 1,903
|
132 |
-
- portuguese: 658
|
133 |
-
- proofassistants: 87
|
134 |
-
- pt_stackoverflow: 27,650
|
135 |
-
- puzzling: 11,959
|
136 |
-
- quant: 3,303
|
137 |
-
- quantumcomputing: 1,604
|
138 |
-
- raspberrypi: 6,794
|
139 |
-
- retrocomputing: 1,016
|
140 |
-
- reverseengineering: 1,606
|
141 |
-
- robotics: 1,020
|
142 |
-
- rpg: 9,517
|
143 |
-
- ru_stackoverflow: 106,714
|
144 |
-
- rus: 8,210
|
145 |
-
- russian: 1,960
|
146 |
-
- salesforce: 27,962
|
147 |
-
- scicomp: 1,403
|
148 |
-
- scifi: 15,174
|
149 |
-
- security: 11,733
|
150 |
-
- serverfault: 81,229
|
151 |
-
- sharepoint: 24,934
|
152 |
-
- sitecore: 2,691
|
153 |
-
- skeptics: 1,043
|
154 |
-
- softwareengineering: 10,526
|
155 |
-
- softwarerecs: 3,032
|
156 |
-
- solana: 602
|
157 |
-
- sound: 2,031
|
158 |
-
- space: 3,145
|
159 |
-
- spanish: 3,049
|
160 |
-
- sports: 1,715
|
161 |
-
- sqa: 1,944
|
162 |
-
- stackapps: 702
|
163 |
-
- stackoverflow: 4,269,779
|
164 |
-
- stats: 23,102
|
165 |
-
- stellar: 373
|
166 |
-
- substrate: 812
|
167 |
-
- superuser: 128,488
|
168 |
-
- sustainability: 240
|
169 |
-
- tex: 42,808
|
170 |
-
- tezos: 635
|
171 |
-
- tor: 887
|
172 |
-
- travel: 9,957
|
173 |
-
- tridion: 1,769
|
174 |
-
- ukrainian: 577
|
175 |
-
- unix: 54,338
|
176 |
-
- ux: 7,403
|
177 |
-
- vegetarianism: 151
|
178 |
-
- vi: 4,360
|
179 |
-
- webapps: 10,159
|
180 |
-
- webmasters: 9,413
|
181 |
-
- windowsphone: 1,110
|
182 |
-
- woodworking: 677
|
183 |
-
- wordpress: 24,270
|
184 |
-
- workplace: 4,104
|
185 |
-
- worldbuilding: 2,766
|
186 |
-
- writers: 1,957
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stats.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
from pyarrow.parquet import ParquetDataset
|
3 |
|
4 |
|
|
|
1 |
+
import glob
|
2 |
+
import re
|
3 |
+
|
4 |
from pyarrow.parquet import ParquetDataset
|
5 |
|
6 |
|
upload.py
CHANGED
@@ -10,7 +10,7 @@ HF_DATASET = "donfu/oa-stackexchange"
|
|
10 |
|
11 |
def upload_hf():
|
12 |
"""
|
13 |
-
Upload to Hugging Face
|
14 |
"""
|
15 |
parquet_file = PARQUET_FILE
|
16 |
dataset = load_dataset("parquet", data_files=parquet_file, name="oa-stackexchange")
|
|
|
10 |
|
11 |
def upload_hf():
|
12 |
"""
|
13 |
+
Upload to Hugging Face. Make sure you are logged in beforehand with `huggingface-cli login`
|
14 |
"""
|
15 |
parquet_file = PARQUET_FILE
|
16 |
dataset = load_dataset("parquet", data_files=parquet_file, name="oa-stackexchange")
|