LOG_ARGS="--log_interval 1 --save_interval 2500 --eval_interval 2500 --eval_iters 10" TRAIN_ARGS="--train_iters 50000 --lr_decay_style cosine --lr_warmup_iters 50 --lr 1e-5 --min_lr 1e-6 --use_flash_attn --attention_dropout 0.0 --adam_beta1 0.9 --adam_beta2 0.95 --adam_eps 1e-5" ### for one node, 8GPUs DISTRIBUTED_ARGS="--nproc_per_node 8 --nnodes 1 --node_rank 0 --master_addr localhost --master_port 8000" # ### for multi nodes, 8GPUs # DISTRIBUTED_ARGS="--nproc_per_node 8 --nnodes 2 --node_rank $RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" LLAMA2_ARGS=" --no_bias_gelu_fusion --no_bias_dropout_fusion --seq_length 4096 --max_position_embeddings 4096 --hidden_dropout 0.0 --rope_scaling_factor 1.0" CUDA_DEVICE_MAX_CONNECTIONS=1 \ torchrun $DISTRIBUTED_ARGS finetune.py \ --tensor_model_parallel_size 8 \ --pipeline_model_parallel_size 1 \ --load megatron_test/llama2-megatron-t8p1 \ --save megatron_test/model_test \ --tensorboard_dir megatron_test/model_test/logs/ \ --data_path megatron_test/indonesian_mix_data/indonesian_mix_data_text_document \ --model_name llama2 \ --tokenizer_type SentencePieceTokenizer \ --vocab_file megatron_test/llama2_tokenizer.model \ --bf16 \ --micro_batch_size 4 \ --global_batch_size 128 \ --sequence_parallel \ --recompute_granularity selective \ --use_checkpoint_args \ $COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA2_ARGS ### Increase the micro_batch_size, if you have 80G GPU ### Decrease the micro_batch_size, if you need to train larger model