asnassar commited on
Commit
022e813
1 Parent(s): 0e43bf7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -70
README.md CHANGED
@@ -1,73 +1,153 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image
5
- dtype: image
6
- - name: bbox
7
- sequence:
8
- sequence: float64
9
- - name: category_id
10
- sequence: int64
11
- - name: segmentation
12
- sequence:
13
- sequence:
14
- sequence: float64
15
- - name: area
16
- sequence: float64
17
- - name: iscrowd
18
- sequence: int64
19
- - name: pdf_cells
20
- list:
21
- list:
22
- - name: bbox
23
- sequence: float64
24
- - name: font
25
- struct:
26
- - name: color
27
- sequence: int64
28
- - name: name
29
- dtype: string
30
- - name: size
31
- dtype: float64
32
- - name: text
33
- dtype: string
34
- - name: metadata
35
- struct:
36
- - name: coco_height
37
- dtype: int64
38
- - name: coco_width
39
- dtype: int64
40
- - name: collection
41
- dtype: string
42
- - name: doc_category
43
- dtype: string
44
- - name: image_id
45
- dtype: int64
46
- - name: num_pages
47
- dtype: int64
48
- - name: original_filename
49
- dtype: string
50
- - name: original_height
51
- dtype: float64
52
- - name: original_width
53
- dtype: float64
54
- - name: page_hash
55
- dtype: string
56
- - name: page_no
57
- dtype: int64
58
- splits:
59
- - name: test
60
- num_bytes: 1996722627.125
61
- num_examples: 4999
62
- - name: val
63
- num_bytes: 2494706174.875
64
- num_examples: 6489
65
- - name: train
66
- num_bytes: 28179797029.125
67
- num_examples: 69375
68
- download_size: 31783096529
69
- dataset_size: 32671225831.125
70
  ---
71
- # Dataset Card for "DocLayNet-v1.1"
72
 
73
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ license: other
5
+ pretty_name: DocLayNet
6
+ size_categories:
7
+ - 10K<n<100K
8
+ tags:
9
+ - layout-segmentation
10
+ - COCO
11
+ - document-understanding
12
+ - PDF
13
+ task_categories:
14
+ - object-detection
15
+ - image-segmentation
16
+ task_ids:
17
+ - instance-segmentation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ---
 
19
 
20
+ # Dataset Card for DocLayNet v1.1
21
+
22
+ ## Table of Contents
23
+ - [Table of Contents](#table-of-contents)
24
+ - [Dataset Description](#dataset-description)
25
+ - [Dataset Summary](#dataset-summary)
26
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
27
+ - [Dataset Structure](#dataset-structure)
28
+ - [Data Fields](#data-fields)
29
+ - [Data Splits](#data-splits)
30
+ - [Dataset Creation](#dataset-creation)
31
+ - [Annotations](#annotations)
32
+ - [Additional Information](#additional-information)
33
+ - [Dataset Curators](#dataset-curators)
34
+ - [Licensing Information](#licensing-information)
35
+ - [Citation Information](#citation-information)
36
+ - [Contributions](#contributions)
37
+
38
+ ## Dataset Description
39
+
40
+ - **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
41
+ - **Repository:** https://github.com/DS4SD/DocLayNet
42
+ - **Paper:** https://doi.org/10.1145/3534678.3539043
43
+
44
+ ### Dataset Summary
45
+
46
+ DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
47
+
48
+ 1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
49
+ 2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
50
+ 3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
51
+ 4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
52
+ 5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
53
+
54
+
55
+ ## Dataset Structure
56
+
57
+ This dataset is structured differently from the other repository [ds4sd/DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet), as this one includes the content (PDF cells) of the detections, and abandons the COCO format.
58
+
59
+ * `image`: page PIL image.
60
+ * `bboxes`: a list of layout bounding boxes.
61
+ * `category_id`: a list of class ids corresponding to the bounding boxes.
62
+ * `segmentation`: a list of layout segmentation polygons.
63
+ * `pdf_cells`: a list of lists corresponding to `bbox`. Each list contains the PDF cells (content) inside the bbox.
64
+ * `metadata`: page and document metadetails.
65
+
66
+ Bounding boxes classes / categories:
67
+
68
+ ```
69
+ 1: Caption
70
+ 2: Footnote
71
+ 3: Formula
72
+ 4: List-item
73
+ 5: Page-footer
74
+ 6: Page-header
75
+ 7: Picture
76
+ 8: Section-header
77
+ 9: Table
78
+ 10: Text
79
+ 11: Title
80
+ ```
81
+
82
+
83
+ The `["metadata"]["doc_category"]` field uses one of the following constants:
84
+
85
+ ```
86
+ * financial_reports,
87
+ * scientific_articles,
88
+ * laws_and_regulations,
89
+ * government_tenders,
90
+ * manuals,
91
+ * patents
92
+ ```
93
+
94
+
95
+ ### Data Splits
96
+
97
+ The dataset provides three splits
98
+ - `train`
99
+ - `val`
100
+ - `test`
101
+
102
+ ## Dataset Creation
103
+
104
+ ### Annotations
105
+
106
+ #### Annotation process
107
+
108
+ The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
109
+
110
+
111
+ #### Who are the annotators?
112
+
113
+ Annotations are crowdsourced.
114
+
115
+
116
+ ## Additional Information
117
+
118
+ ### Dataset Curators
119
+
120
+ The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
121
+ You can contact us at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).
122
+
123
+ Curators:
124
+ - Christoph Auer, [@cau-git](https://github.com/cau-git)
125
+ - Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
126
+ - Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
127
+ - Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
128
+
129
+ ### Licensing Information
130
+
131
+ License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
132
+
133
+
134
+ ### Citation Information
135
+
136
+
137
+ ```bib
138
+ @article{doclaynet2022,
139
+ title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
140
+ doi = {10.1145/3534678.353904},
141
+ url = {https://doi.org/10.1145/3534678.3539043},
142
+ author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
143
+ year = {2022},
144
+ isbn = {9781450393850},
145
+ publisher = {Association for Computing Machinery},
146
+ address = {New York, NY, USA},
147
+ booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
148
+ pages = {3743–3751},
149
+ numpages = {9},
150
+ location = {Washington DC, USA},
151
+ series = {KDD '22}
152
+ }
153
+ ```