|
""" |
|
Inspired from |
|
https://huggingface.co/datasets/ydshieh/coco_dataset_script/blob/main/coco_dataset_script.py |
|
""" |
|
|
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
class COCOBuilderConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, name, splits, **kwargs): |
|
super().__init__(name, **kwargs) |
|
self.splits = splits |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{doclaynet2022, |
|
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis}, |
|
doi = {10.1145/3534678.353904}, |
|
url = {https://arxiv.org/abs/2206.01062}, |
|
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
DocLayNet is a human-annotated document layout segmentation dataset from a broad variety of document sources. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://developer.ibm.com/exchanges/data/all/doclaynet/" |
|
|
|
|
|
_LICENSE = "CDLA-Permissive-1.0" |
|
|
|
|
|
|
|
|
|
|
|
|
|
_URLs = { |
|
"core": "https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip", |
|
} |
|
|
|
|
|
|
|
class COCODataset(datasets.GeneratorBasedBuilder): |
|
"""An example dataset script to work with the local (downloaded) COCO dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = COCOBuilderConfig |
|
BUILDER_CONFIGS = [ |
|
COCOBuilderConfig(name='2022.08', splits=['train', 'val', 'test']), |
|
] |
|
DEFAULT_CONFIG_NAME = "2022.08" |
|
|
|
def _info(self): |
|
|
|
|
|
feature_dict = { |
|
"id": datasets.Value("int64"), |
|
"height": datasets.Value("int64"), |
|
"width": datasets.Value("int64"), |
|
"file_name": datasets.Value("string"), |
|
|
|
|
|
"doc_category": datasets.Value("string"), |
|
"collection": datasets.Value("string"), |
|
"doc_name": datasets.Value("string"), |
|
"page_no": datasets.Value("int64"), |
|
|
|
} |
|
|
|
features = datasets.Features(feature_dict) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
archive_path = dl_manager.download_and_extract(_URLs) |
|
print("archive_path: ", archive_path) |
|
|
|
splits = [] |
|
for split in self.config.splits: |
|
if split == 'train': |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join(archive_path["core"], "COCO", "train.json"), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "train", |
|
} |
|
) |
|
elif split in ['val', 'valid', 'validation', 'dev']: |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join(archive_path["core"], "COCO", "val.json"), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "val", |
|
}, |
|
) |
|
elif split == 'test': |
|
dataset = datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"json_path": os.path.join(archive_path["core"], "COCO", "test.json"), |
|
"image_dir": os.path.join(archive_path["core"], "PNG"), |
|
"split": "test", |
|
}, |
|
) |
|
else: |
|
continue |
|
|
|
splits.append(dataset) |
|
|
|
return splits |
|
|
|
def _generate_examples( |
|
|
|
self, json_path, image_dir, split |
|
): |
|
""" Yields examples as (key, example) tuples. """ |
|
|
|
|
|
|
|
_features = ["image_id", "image_path", "doc_category", "collection", "height", "width", "file_name", "doc_name", "page_no", "id"] |
|
features = list(_features) |
|
|
|
with open(json_path, 'r', encoding='UTF-8') as fp: |
|
data = json.load(fp) |
|
|
|
|
|
images = data["images"] |
|
entries = images |
|
|
|
|
|
d = {image["id"]: image for image in images} |
|
|
|
|
|
if split in ["train", "val"]: |
|
annotations = data["annotations"] |
|
|
|
|
|
for annotation in annotations: |
|
_id = annotation["id"] |
|
image_info = d[annotation["image_id"]] |
|
annotation.update(image_info) |
|
annotation["id"] = _id |
|
|
|
entries = annotations |
|
|
|
for id_, entry in enumerate(entries): |
|
|
|
entry = {k: v for k, v in entry.items() if k in features} |
|
|
|
if split == "test": |
|
entry["image_id"] = entry["id"] |
|
entry["id"] = -1 |
|
|
|
entry["image_path"] = os.path.join(image_dir, entry["file_name"]) |
|
|
|
entry = {k: entry[k] for k in _features if k in entry} |
|
|
|
yield str((entry["image_id"], entry["id"])), entry |
|
|