|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RO-STS: The Romanian Semantic Textual Similarity Dataset""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{dumitrescu2021liro, |
|
title={Liro: Benchmark and leaderboard for romanian language tasks}, |
|
author={Dumitrescu, Stefan Daniel and Rebeja, Petru and Lorincz, Beata and Gaman, Mihaela and Avram, Andrei and Ilie, Mihai and Pruteanu, Andrei and Stan, Adriana and Rosia, Lorena and Iacobescu, Cristina and others}, |
|
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The RO-STS (Romanian Semantic Textual Similarity) dataset contains 8628 pairs of sentences with their similarity score. It is a high-quality translation of the STS benchmark dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/dumitrescustefan/RO-STS/" |
|
|
|
_LICENSE = "CC BY-SA 4.0 License" |
|
|
|
|
|
|
|
_URL = "https://raw.githubusercontent.com/dumitrescustefan/RO-STS/master/dataset/text-similarity/" |
|
_TRAINING_FILE = "RO-STS.train.tsv" |
|
_TEST_FILE = "RO-STS.test.tsv" |
|
_DEV_FILE = "RO-STS.dev.tsv" |
|
|
|
|
|
class ROSTSConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RO-STS dataset""" |
|
|
|
def __init__(self, **kwargs): |
|
super(ROSTSConfig, self).__init__(**kwargs) |
|
|
|
|
|
class RoSts(datasets.GeneratorBasedBuilder): |
|
"""RO-STS dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
ROSTSConfig(name="ro_sts", version=VERSION, description="RO-STS dataset"), |
|
] |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"score": datasets.Value("float"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
urls_to_download = {"train": _URL + _TRAINING_FILE, "dev": _URL + _DEV_FILE, "test": _URL + _TEST_FILE} |
|
|
|
downloaded_files = dl_manager.download(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": downloaded_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": downloaded_files["test"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": downloaded_files["dev"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
|
|
reader = f.readlines() |
|
for idx, row in enumerate(reader): |
|
splits = row.strip().split("\t") |
|
yield idx, { |
|
"score": splits[0], |
|
"sentence1": splits[1], |
|
"sentence2": splits[2], |
|
} |
|
|