# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RO-STS: The Romanian Semantic Textual Similarity Dataset""" import datasets # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ Article under review """ # You can copy an official description _DESCRIPTION = """\ The RO-STS (Romanian Semantic Textual Similarity) dataset contains 8628 pairs of sentences with their similarity score. It is a high-quality translation of the STS benchmark dataset. """ _HOMEPAGE = "https://github.com/dumitrescustefan/RO-STS/" _LICENSE = "CC BY-SA 4.0 License" # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URL = "https://raw.githubusercontent.com/dumitrescustefan/RO-STS/master/dataset/text-similarity/" _TRAINING_FILE = "RO-STS.train.tsv" _TEST_FILE = "RO-STS.test.tsv" _DEV_FILE = "RO-STS.dev.tsv" class ROSTSConfig(datasets.BuilderConfig): """BuilderConfig for RO-STS dataset""" def __init__(self, **kwargs): super(ROSTSConfig, self).__init__(**kwargs) class RoSts(datasets.GeneratorBasedBuilder): """RO-STS dataset""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ ROSTSConfig(name="ro_sts", version=VERSION, description="RO-STS dataset"), ] def _info(self): features = datasets.Features( { "score": datasets.Value("float"), "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = {"train": _URL + _TRAINING_FILE, "dev": _URL + _DEV_FILE, "test": _URL + _TEST_FILE} downloaded_files = dl_manager.download(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files["test"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files["dev"]}, ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, encoding="utf-8") as f: reader = f.readlines() for idx, row in enumerate(reader): splits = row.strip().split("\t") yield idx, { "score": splits[0], # row["score"], "sentence1": splits[1], # row["sentence1"], "sentence2": splits[2], # row["sentence2"], }