File size: 6,485 Bytes
a0ce7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d5b805
 
 
 
 
a0ce7c8
2d5b805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ada15c
 
 
 
2d5b805
 
 
 
 
 
2ada15c
 
2d5b805
 
 
 
2ada15c
2d5b805
 
 
 
 
2ada15c
 
2d5b805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
dataset_info:
  features:
  - name: GENE
    dtype: string
  - name: 293A_WT_T22_AB_XF498
    dtype: float64
  - name: 293A_LKB1_T22_AB
    dtype: float64
  - name: 293A_PTEN_T22_AB
    dtype: float64
  - name: 293A_VHL_T22_AB
    dtype: float64
  - name: 293A_BAP1NUMBER2_16_T25_AB
    dtype: float64
  - name: 293A_CDH1NUMBER2_15_T24_AB
    dtype: float64
  - name: 293A_NF2NUMBER2_3_T24_AB
    dtype: float64
  - name: 293A_WT_T21_AB_XF646
    dtype: float64
  - name: 293A_PBRM1_T25_AB
    dtype: float64
  - name: 293A_SETD2_T24_AB
    dtype: float64
  - name: 293A_WT_T20_AB_XF804
    dtype: float64
  - name: 293A_ARID1A_T21_AB
    dtype: float64
  - name: 293A_NF1_T24_AB
    dtype: float64
  - name: 293A_RB1_T21_AB
    dtype: float64
  - name: 293A_TP53_T21_AB
    dtype: float64
  - name: 293A_WT_T21_AB_XF821
    dtype: float64
  - name: 293A_KEAP1_T22_AB
    dtype: float64
  - name: 293A_g53BP1#1_T22_AB
    dtype: float64
  splits:
  - name: train
    num_bytes: 2770271
    num_examples: 18053
  download_size: 2438387
  dataset_size: 2770271
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: cc-by-4.0
tags:
- biology
- chemistry
- medical
---
# Dataset Card for Dataset Name

crispr-bf-master:  BF_master_Xu_Feng_Tm_sup_screens_042320

## Dataset Details

### Dataset Description

This dataset contains the results of genome-wide CRISPR screens using isogenic knockout cells to uncover vulnerabilities in tumor suppressor-deficient cancer cells.  The data was originally published by Feng et al., Sci. Adv. 8, eabm6638 (2022) and is available on Figshare.

- **Curated by:** Feng et al., Sci. Adv. 8, eabm6638 (2022)
- **Funded by:** Not explicitly specified, but likely supported by institutions associated with the authors.
- **Shared by:** Feng et al.
- **Language(s) (NLP):** Not applicable (this is a biomedical dataset).
- **License:** CC BY 4.0

### Dataset Sources [optional]

- **Repository:** [Figshare - Feng, Tang, Dede et al. 2022](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332)
- **Paper:** [Sci. Adv. 8, eabm6638 (2022)](https://doi.org/10.1126/sciadv.abm6638)

## Uses

### Direct Use

This dataset can be used for identifying genetic dependencies and vulnerabilities in cancer research, especially related to tumor suppressor genes. Potential applications include:

- Identification of potential therapeutic targets.
- Understanding genetic interactions in cancer progression.
- Training machine learning models for genomic data analysis.

### Out-of-Scope Use

This dataset should not be used for:
- Applications outside of research without proper domain expertise.
- Misinterpretation of the results to derive clinical conclusions without appropriate validation.
- Malicious use to generate unverified claims about genetic predispositions.

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

[More Information Needed]

### Splits

- **Train**: Contains the entirety of the dataset for analysis. No explicit validation or test splits are provided.

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

Confirm the methodology behind the binary essentiality calls in Genome-wide CRISPR Screens Using Isogenic Cells Reveal Vulnerabilities Conferred by Loss of Tumor Suppressors manuscript by Feng et al.

[More Information Needed]

### Source Data

[Table_S2_binary_calls.txt](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466981)

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

[Binary_essentiality_calls_analysis_Feng_et_al](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466987)

[More Information Needed]

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

[More Information Needed]

### Annotations [optional]

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

[More Information Needed]

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

[More Information Needed]

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

## Citation [optional]

**BibTeX:**

```txt
@article{
  Hart2022,
  author = "Traver Hart and Merve Dede",
  title = "{Feng, Tang, Dede et al 2022}",
  year = "2022",
  month = "3",
  url = "https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332",
  doi = "10.6084/m9.figshare.19398332.v1"
}
```

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Dataset Card Authors [optional]

[More Information Needed]

## Dataset Card Contact

dwb2023