Datasets:
File size: 6,485 Bytes
a0ce7c8 2d5b805 a0ce7c8 2d5b805 2ada15c 2d5b805 2ada15c 2d5b805 2ada15c 2d5b805 2ada15c 2d5b805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
dataset_info:
features:
- name: GENE
dtype: string
- name: 293A_WT_T22_AB_XF498
dtype: float64
- name: 293A_LKB1_T22_AB
dtype: float64
- name: 293A_PTEN_T22_AB
dtype: float64
- name: 293A_VHL_T22_AB
dtype: float64
- name: 293A_BAP1NUMBER2_16_T25_AB
dtype: float64
- name: 293A_CDH1NUMBER2_15_T24_AB
dtype: float64
- name: 293A_NF2NUMBER2_3_T24_AB
dtype: float64
- name: 293A_WT_T21_AB_XF646
dtype: float64
- name: 293A_PBRM1_T25_AB
dtype: float64
- name: 293A_SETD2_T24_AB
dtype: float64
- name: 293A_WT_T20_AB_XF804
dtype: float64
- name: 293A_ARID1A_T21_AB
dtype: float64
- name: 293A_NF1_T24_AB
dtype: float64
- name: 293A_RB1_T21_AB
dtype: float64
- name: 293A_TP53_T21_AB
dtype: float64
- name: 293A_WT_T21_AB_XF821
dtype: float64
- name: 293A_KEAP1_T22_AB
dtype: float64
- name: 293A_g53BP1#1_T22_AB
dtype: float64
splits:
- name: train
num_bytes: 2770271
num_examples: 18053
download_size: 2438387
dataset_size: 2770271
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-4.0
tags:
- biology
- chemistry
- medical
---
# Dataset Card for Dataset Name
crispr-bf-master: BF_master_Xu_Feng_Tm_sup_screens_042320
## Dataset Details
### Dataset Description
This dataset contains the results of genome-wide CRISPR screens using isogenic knockout cells to uncover vulnerabilities in tumor suppressor-deficient cancer cells. The data was originally published by Feng et al., Sci. Adv. 8, eabm6638 (2022) and is available on Figshare.
- **Curated by:** Feng et al., Sci. Adv. 8, eabm6638 (2022)
- **Funded by:** Not explicitly specified, but likely supported by institutions associated with the authors.
- **Shared by:** Feng et al.
- **Language(s) (NLP):** Not applicable (this is a biomedical dataset).
- **License:** CC BY 4.0
### Dataset Sources [optional]
- **Repository:** [Figshare - Feng, Tang, Dede et al. 2022](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332)
- **Paper:** [Sci. Adv. 8, eabm6638 (2022)](https://doi.org/10.1126/sciadv.abm6638)
## Uses
### Direct Use
This dataset can be used for identifying genetic dependencies and vulnerabilities in cancer research, especially related to tumor suppressor genes. Potential applications include:
- Identification of potential therapeutic targets.
- Understanding genetic interactions in cancer progression.
- Training machine learning models for genomic data analysis.
### Out-of-Scope Use
This dataset should not be used for:
- Applications outside of research without proper domain expertise.
- Misinterpretation of the results to derive clinical conclusions without appropriate validation.
- Malicious use to generate unverified claims about genetic predispositions.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
### Splits
- **Train**: Contains the entirety of the dataset for analysis. No explicit validation or test splits are provided.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Confirm the methodology behind the binary essentiality calls in Genome-wide CRISPR Screens Using Isogenic Cells Reveal Vulnerabilities Conferred by Loss of Tumor Suppressors manuscript by Feng et al.
[More Information Needed]
### Source Data
[Table_S2_binary_calls.txt](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466981)
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[Binary_essentiality_calls_analysis_Feng_et_al](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466987)
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
**BibTeX:**
```txt
@article{
Hart2022,
author = "Traver Hart and Merve Dede",
title = "{Feng, Tang, Dede et al 2022}",
year = "2022",
month = "3",
url = "https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332",
doi = "10.6084/m9.figshare.19398332.v1"
}
```
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
dwb2023 |