--- dataset_info: features: - name: GENE_CLONE dtype: string - name: GENE dtype: string - name: 293A_WT_T0_XF498 dtype: int64 - name: 293A_WT_T22-A_XF498 dtype: int64 - name: 293A_WT_T22-B_XF498 dtype: int64 - name: 293A_LKB1_T0_XF498 dtype: int64 - name: 293A_LKB1_T22-A_XF498 dtype: int64 - name: 293A_LKB1_T22-B_XF498 dtype: int64 - name: 293A_PTEN_T0_XF498 dtype: int64 - name: 293A_PTEN_T22-A_XF498 dtype: int64 - name: 293A_PTEN_T22-B_XF498 dtype: int64 - name: 293A_VHL_T0_XF498 dtype: int64 - name: 293A_VHL_T22-A_XF498 dtype: int64 - name: 293A_VHL_T22-B_XF498 dtype: int64 - name: 293A_WT_T0_XF_646 dtype: int64 - name: 293A_WT_T21_A_XF_646 dtype: int64 - name: 293A_WT_T21_B_XF_646 dtype: int64 - name: 293A_CDH1_T0 dtype: int64 - name: 293A_CDH1_T24_A_XF_646 dtype: int64 - name: 293A_CDH1_T24_B_XF_646 dtype: int64 - name: 293A_NF2_T0_XF_646 dtype: int64 - name: 293A_NF2_T24_A_XF_646 dtype: int64 - name: 293A_NF2_T24_B_XF_646 dtype: int64 - name: 293A_BAP1_16_T0_XF_646 dtype: int64 - name: 293A_BAP1_T25_A_XF_646 dtype: int64 - name: 293A_BAP1_T25_B_XF_646 dtype: int64 - name: 293A_WT_T0_XF_804 dtype: int64 - name: 293A_WT_T20_A_XF_804 dtype: int64 - name: 293A_WT_T20_B_XF_804 dtype: int64 - name: 293A_ARID1A_T0_XF_804 dtype: int64 - name: 293A_ARID1A_T21_A_XF_804 dtype: int64 - name: 293A_ARID1A_T21_B_XF_804 dtype: int64 - name: 293A_PBRM1_T0_XF_804 dtype: int64 - name: 293A_PBRM1_T25_A_XF_804 dtype: int64 - name: 293A_PBRM1_T25_B_XF_804 dtype: int64 - name: 293A_WT_T0_XF_821 dtype: int64 - name: 293A_WT_T21_A_XF_821 dtype: int64 - name: 293A_WT_T21_B_XF_821 dtype: int64 - name: 293A_KEAP1_T0_XF_821 dtype: int64 - name: 293A_KEAP1_T22_A_XF_821 dtype: int64 - name: 293A_KEAP1_T22_B_XF_821 dtype: int64 - name: 293A_NF1_T0_XF_821 dtype: int64 - name: 293A_NF1_T24_A_XF_821 dtype: int64 - name: 293A_NF1_T24_B_XF_821 dtype: int64 - name: 293A_RB1_T0_XF_821 dtype: int64 - name: 293A_RB1_T21_A_XF_821 dtype: int64 - name: 293A_RB1_T21_B_XF_821 dtype: int64 - name: 293A_TP53_T0_XF_821 dtype: int64 - name: 293A_TP53_T21_A_XF_821 dtype: int64 - name: 293A_TP53_T21_B_XF_821 dtype: int64 - name: 293A_TP53BP1_T0_XF_443 dtype: int64 - name: 293A_TP53BP1_T22-A_XF_443 dtype: int64 - name: 293A_TP53BP1_T22-B_XF_443 dtype: int64 splits: - name: train num_bytes: 31839870 num_examples: 71090 download_size: 13100019 dataset_size: 31839870 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 tags: - biology - chemistry - medical --- # Dataset Card for Dataset Name crispr-raw-read-counts: Table_S1_Raw_read_counts_master_Xu_Feng_Tm_sup_screens ## Dataset Details ### Dataset Description This dataset contains the results of genome-wide CRISPR screens using isogenic knockout cells to uncover vulnerabilities in tumor suppressor-deficient cancer cells. The data was originally published by Feng et al., Sci. Adv. 8, eabm6638 (2022) and is available on Figshare. - **Curated by:** Feng et al., Sci. Adv. 8, eabm6638 (2022) - **Funded by:** Not explicitly specified, but likely supported by institutions associated with the authors. - **Shared by:** Feng et al. - **Language(s) (NLP):** Not applicable (this is a biomedical dataset). - **License:** CC BY 4.0 ### Dataset Sources [optional] - **Repository:** [Figshare - Feng, Tang, Dede et al. 2022](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332) - **Paper:** [Sci. Adv. 8, eabm6638 (2022)](https://doi.org/10.1126/sciadv.abm6638) ## Uses ### Direct Use This dataset can be used for identifying genetic dependencies and vulnerabilities in cancer research, especially related to tumor suppressor genes. Potential applications include: - Identification of potential therapeutic targets. - Understanding genetic interactions in cancer progression. - Training machine learning models for genomic data analysis. ### Out-of-Scope Use This dataset should not be used for: - Applications outside of research without proper domain expertise. - Misinterpretation of the results to derive clinical conclusions without appropriate validation. - Malicious use to generate unverified claims about genetic predispositions. ## Dataset Structure [More Information Needed] ### Splits - **Train**: Contains the entirety of the dataset for analysis. No explicit validation or test splits are provided. ## Dataset Creation ### Curation Rationale Confirm the methodology behind the binary essentiality calls in Genome-wide CRISPR Screens Using Isogenic Cells Reveal Vulnerabilities Conferred by Loss of Tumor Suppressors manuscript by Feng et al. [More Information Needed] ### Source Data [Table_S1_Raw_read_counts_master_Xu_Feng_Tm_sup_screens](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466978) #### Data Collection and Processing [Binary_essentiality_calls_analysis_Feng_et_al](https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332?file=34466987) [More Information Needed] #### Who are the source data producers? [More Information Needed] ### Annotations [optional] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] #### Personal and Sensitive Information [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] **BibTeX:** ```txt @article{ Hart2022, author = "Traver Hart and Merve Dede", title = "{Feng, Tang, Dede et al 2022}", year = "2022", month = "3", url = "https://figshare.com/articles/dataset/Feng_Tang_Dede_et_al_2022/19398332", doi = "10.6084/m9.figshare.19398332.v1" } ``` ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact dwb2023