dylanorange commited on
Commit
d77a28a
·
verified ·
1 Parent(s): f5de5a7

release dataset

Browse files
Files changed (6) hide show
  1. LASO-C.tar.gz +3 -0
  2. PIAD-C.tar.gz +3 -0
  3. README.md +67 -0
  4. dataset.py +72 -0
  5. supp_benchmark_1.jpg +3 -0
  6. supp_benchmark_2.jpg +3 -0
LASO-C.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de34d3940f38b58e723b717581c9d1a6a24ccc3e3a88bfb5b8960b126323c5e
3
+ size 2528938849
PIAD-C.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a39c5adf3c24fdef21aec0043b407497acb45ab1f680e2d1f12ec43cba56ca5
3
+ size 2605080518
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+
3
+ <h3 align="center"><strong>GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency</strong></h3>
4
+
5
+ <p align="center">
6
+ <a href="https://dylanorange.github.io" target='_blank'>Dongyue Lu</a>&nbsp;&nbsp;&nbsp;
7
+ <a href="https://ldkong.com" target='_blank'>Lingdong Kong</a>&nbsp;&nbsp;&nbsp;
8
+ <a href="https://tianxinhuang.github.io/" target='_blank'>Tianxin Huang</a>&nbsp;&nbsp;&nbsp;
9
+ <a href="https://www.comp.nus.edu.sg/~leegh/">Gim Hee Lee</a>&nbsp;&nbsp;&nbsp;
10
+ </br>
11
+ National University of Singapore&nbsp;&nbsp;&nbsp;
12
+ </p>
13
+
14
+ </p>
15
+
16
+ <p align="center">
17
+ <a href="https://dylanorange.github.io/projects/geal/static/files/geal.pdf" target='_blank'>
18
+ <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-lightblue">
19
+ </a>
20
+
21
+ <a href="https://dylanorange.github.io/projects/geal" target='_blank'>
22
+ <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-blue">
23
+ </a>
24
+
25
+ <a href="https://huggingface.co/datasets/dylanorange/geal" target="_blank">
26
+ <img src="https://img.shields.io/badge/Dataset-%20Hugging%20Face-yellow">
27
+ </a>
28
+
29
+
30
+ </p>
31
+
32
+
33
+ ## About 🛠️
34
+
35
+ **GEAL** is a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging pre-trained 2D models.
36
+
37
+ To facilitate robust 3D affordance learning across diverse real-world scenarios, we establish two 3D affordance robustness benchmarks: **PIAD-C** and **LASO-C**, based on the test sets of the commonly used datasets PIAD and LASO. We apply seven types of corruptions:
38
+
39
+ - **Add Global**
40
+ - **Add Local**
41
+ - **Drop Global**
42
+ - **Drop Local**
43
+ - **Rotate**
44
+ - **Scale**
45
+ - **Jitter**
46
+
47
+ Each corruption is applied with five severity levels, resulting in a total of **4890 object-affordance pairings**, comprising **17 affordance categories** and **23 object categories** with **2047 distinct object shapes**.
48
+
49
+
50
+ <div style="text-align: center;">
51
+ <img src="supp_benchmark_1.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;">
52
+ <img src="supp_benchmark_2.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;">
53
+ </div>
54
+
55
+ ## Updates 📰
56
+
57
+ - **[2024.12]** - We have released our **PIAD-C** and **LASO-C** datasets! 🎉📂
58
+
59
+
60
+ ## Dataset and Code Release 🚀
61
+
62
+ We are excited to announce the release of our dataset and dataloader:
63
+
64
+ - **Dataset**: Available in the `PIAD-C` and `LASO-C` files 📜
65
+ - **Dataloader**: Available in the `dataset.py` file 📜
66
+
67
+ Stay tuned! Further evaluation code will be coming soon. 🔧✨
dataset.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import pickle
4
+ import numpy as np
5
+ from torch.utils.data import Dataset
6
+
7
+ CLASSES = ["Bag", "Bed", "Bowl","Clock", "Dishwasher", "Display", "Door", "Earphone", "Faucet",
8
+ "Hat", "StorageFurniture", "Keyboard", "Knife", "Laptop", "Microwave", "Mug",
9
+ "Refrigerator", "Chair", "Scissors", "Table", "TrashCan", "Vase", "Bottle"]
10
+
11
+ AFFORD_CL = ['lay','sit','support','grasp','lift','contain','open','wrap_grasp','pour',
12
+ 'move','display','push','pull','listen','wear','press','cut','stab']
13
+
14
+ def pc_normalize(pc):
15
+ centroid = np.mean(pc, axis=0)
16
+ pc = pc - centroid
17
+ m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
18
+ pc = pc / m
19
+ return pc, centroid, m
20
+
21
+ class Corrupt(Dataset):
22
+
23
+ def __init__(self,
24
+ corrupt_type='scale',
25
+ level=0
26
+ ):
27
+
28
+ #replace with the path to the LASO-C/PIAD-C dataset
29
+ data_root='LASO-C'
30
+
31
+ file_name = f'{corrupt_type}_{level}.pkl'
32
+
33
+ self.corrupt_type = corrupt_type
34
+ self.level = level
35
+
36
+ self.cls2idx = {cls.lower():np.array(i).astype(np.int64) for i, cls in enumerate(CLASSES)}
37
+ self.aff2idx = {cls:np.array(i).astype(np.int64) for i, cls in enumerate(AFFORD_CL)}
38
+
39
+ with open(os.path.join(data_root, 'point', file_name), 'rb') as f:
40
+ self.anno = pickle.load(f)
41
+
42
+ self.question_df = pd.read_csv(os.path.join(data_root, 'text', 'Affordance-Question.csv'))
43
+
44
+ def find_rephrase(self, df, object_name, affordance):
45
+
46
+ qid = 'Question0'
47
+ result = df.loc[(df['Object'] == object_name) & (df['Affordance'] == affordance), [qid]]
48
+ if not result.empty:
49
+ return result.iloc[0][qid]
50
+ else:
51
+ raise NotImplementedError
52
+
53
+ def __getitem__(self, index):
54
+
55
+ data = self.anno[index]
56
+ cls = data['class']
57
+ affordance = data['affordance']
58
+ gt_mask = data['mask']
59
+ point_set = data['point']
60
+ point_set,_,_ = pc_normalize(point_set)
61
+
62
+ question = self.find_rephrase(self.question_df, cls, affordance)
63
+
64
+ affordance = self.aff2idx[affordance]
65
+
66
+ point_input = point_set.transpose()
67
+
68
+ return point_input, self.cls2idx[cls], gt_mask, question, affordance
69
+
70
+ def __len__(self):
71
+
72
+ return len(self.anno)
supp_benchmark_1.jpg ADDED

Git LFS Details

  • SHA256: 4d091e96ec07e295f08defe19c4d2cae9ef4ef2ed1cd1851306c6466bbc825a7
  • Pointer size: 132 Bytes
  • Size of remote file: 1.08 MB
supp_benchmark_2.jpg ADDED

Git LFS Details

  • SHA256: 3164b2fb646d17e7984eb9d378140b88098c304bba93cba2a1f8c258961e054a
  • Pointer size: 131 Bytes
  • Size of remote file: 949 kB