llm_pt_leaderboard_raw_results
/
mistralai
/Mistral-7B-v0.1
/raw_2024-02-06T13-10-21.397647
/results.json
{ | |
"results": { | |
"assin2_rte": { | |
"f1_macro,all": 0.5483129429185911, | |
"acc,all": 0.6151960784313726, | |
"alias": "assin2_rte" | |
}, | |
"assin2_sts": { | |
"pearson,all": 0.578493410475696, | |
"mse,all": 2.071368464052288, | |
"alias": "assin2_sts" | |
}, | |
"bluex": { | |
"acc,all": 0.5062586926286509, | |
"acc,exam_id__USP_2019": 0.45, | |
"acc,exam_id__USP_2020": 0.4107142857142857, | |
"acc,exam_id__USP_2023": 0.6363636363636364, | |
"acc,exam_id__UNICAMP_2021_1": 0.5, | |
"acc,exam_id__USP_2018": 0.4074074074074074, | |
"acc,exam_id__USP_2024": 0.6097560975609756, | |
"acc,exam_id__UNICAMP_2019": 0.6, | |
"acc,exam_id__USP_2022": 0.4897959183673469, | |
"acc,exam_id__UNICAMP_2018": 0.3888888888888889, | |
"acc,exam_id__UNICAMP_2023": 0.5813953488372093, | |
"acc,exam_id__UNICAMP_2022": 0.5897435897435898, | |
"acc,exam_id__UNICAMP_2024": 0.5777777777777777, | |
"acc,exam_id__UNICAMP_2021_2": 0.43137254901960786, | |
"acc,exam_id__UNICAMP_2020": 0.5818181818181818, | |
"acc,exam_id__USP_2021": 0.4230769230769231, | |
"alias": "bluex" | |
}, | |
"enem_challenge": { | |
"alias": "enem", | |
"acc,all": 0.6333100069979006, | |
"acc,exam_id__2013": 0.6574074074074074, | |
"acc,exam_id__2023": 0.6444444444444445, | |
"acc,exam_id__2015": 0.6218487394957983, | |
"acc,exam_id__2022": 0.6390977443609023, | |
"acc,exam_id__2009": 0.591304347826087, | |
"acc,exam_id__2011": 0.6923076923076923, | |
"acc,exam_id__2012": 0.646551724137931, | |
"acc,exam_id__2017": 0.5689655172413793, | |
"acc,exam_id__2016": 0.6446280991735537, | |
"acc,exam_id__2010": 0.6581196581196581, | |
"acc,exam_id__2016_2": 0.6260162601626016, | |
"acc,exam_id__2014": 0.6055045871559633 | |
}, | |
"faquad_nli": { | |
"f1_macro,all": 0.43917169974115616, | |
"acc,all": 0.7830769230769231, | |
"alias": "faquad_nli" | |
}, | |
"oab_exams": { | |
"acc,all": 0.4432801822323462, | |
"acc,exam_id__2016-19": 0.5256410256410257, | |
"acc,exam_id__2011-05": 0.4625, | |
"acc,exam_id__2017-24": 0.425, | |
"acc,exam_id__2015-17": 0.5512820512820513, | |
"acc,exam_id__2012-09": 0.38961038961038963, | |
"acc,exam_id__2013-10": 0.375, | |
"acc,exam_id__2017-22": 0.5125, | |
"acc,exam_id__2015-18": 0.425, | |
"acc,exam_id__2016-20a": 0.4, | |
"acc,exam_id__2010-01": 0.38823529411764707, | |
"acc,exam_id__2011-04": 0.3875, | |
"acc,exam_id__2013-11": 0.4875, | |
"acc,exam_id__2018-25": 0.4, | |
"acc,exam_id__2012-06a": 0.5125, | |
"acc,exam_id__2012-08": 0.4125, | |
"acc,exam_id__2016-20": 0.475, | |
"acc,exam_id__2012-07": 0.425, | |
"acc,exam_id__2011-03": 0.3939393939393939, | |
"acc,exam_id__2014-15": 0.46153846153846156, | |
"acc,exam_id__2010-02": 0.46, | |
"acc,exam_id__2013-12": 0.5375, | |
"acc,exam_id__2016-21": 0.425, | |
"acc,exam_id__2014-13": 0.4, | |
"acc,exam_id__2015-16": 0.3875, | |
"acc,exam_id__2014-14": 0.5, | |
"acc,exam_id__2012-06": 0.475, | |
"acc,exam_id__2017-23": 0.3875, | |
"alias": "oab_exams" | |
}, | |
"sparrow_emotion-2021-cortiz-por": { | |
"alias": "emotion-2021-cortiz-por", | |
"f1_macro,all": 0.08051665230631404, | |
"acc,all": 0.136 | |
}, | |
"sparrow_hate-2019-fortuna-por": { | |
"alias": "hate-2019-fortuna-por", | |
"f1_macro,all": 0.3932038834951456, | |
"acc,all": 0.648 | |
}, | |
"sparrow_sentiment-2016-mozetic-por": { | |
"alias": "sentiment-2016-mozetic-por", | |
"f1_macro,all": 0.3210000798602493, | |
"acc,all": 0.304 | |
}, | |
"sparrow_sentiment-2018-brum-por": { | |
"alias": "sentiment-2018-brum-por", | |
"f1_macro,all": 0.36047865572211196, | |
"acc,all": 0.382 | |
} | |
}, | |
"configs": { | |
"assin2_rte": { | |
"task": "assin2_rte", | |
"group": [ | |
"pt_benchmark", | |
"assin2" | |
], | |
"dataset_path": "assin2", | |
"test_split": "test", | |
"fewshot_split": "train", | |
"doc_to_text": "Premissa: {{premise}}\nHipótese: {{hypothesis}}\nPergunta: A hipótese pode ser inferida pela premissa?\nResposta:", | |
"doc_to_target": "{{['Não', 'Sim'][entailment_judgment]}}", | |
"description": "Abaixo contém pares de premissa e hipótese, para cada par você deve julgar se a hipótese pode ser inferida a partir da premissa, responda apenas com Sim ou Não.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "id_sampler", | |
"sampler_config": { | |
"id_list": [ | |
1, | |
3251, | |
2, | |
3252, | |
3, | |
4, | |
5, | |
6, | |
3253, | |
7, | |
3254, | |
3255, | |
3256, | |
8, | |
9, | |
10, | |
3257, | |
11, | |
3258, | |
12, | |
13, | |
14, | |
15, | |
3259, | |
3260, | |
3261, | |
3262, | |
3263, | |
16, | |
17, | |
3264, | |
18, | |
3265, | |
3266, | |
3267, | |
19, | |
20, | |
3268, | |
3269, | |
21, | |
3270, | |
3271, | |
22, | |
3272, | |
3273, | |
23, | |
3274, | |
24, | |
25, | |
3275 | |
], | |
"id_column": "sentence_pair_id" | |
} | |
}, | |
"num_fewshot": 15, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Sim", | |
"Não" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"assin2_sts": { | |
"task": "assin2_sts", | |
"group": [ | |
"pt_benchmark", | |
"assin2" | |
], | |
"dataset_path": "assin2", | |
"test_split": "test", | |
"fewshot_split": "train", | |
"doc_to_text": "Frase 1: {{premise}}\nFrase 2: {{hypothesis}}\nPergunta: Qual o grau de similaridade entre as duas frases de 1,0 a 5,0?\nResposta:", | |
"doc_to_target": "<function assin2_float_to_pt_str at 0x7f74a34e1760>", | |
"description": "Abaixo contém pares de frases, para cada par você deve julgar o grau de similaridade de 1,0 a 5,0, responda apenas com o número.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "id_sampler", | |
"sampler_config": { | |
"id_list": [ | |
1, | |
3251, | |
2, | |
3252, | |
3, | |
4, | |
5, | |
6, | |
3253, | |
7, | |
3254, | |
3255, | |
3256, | |
8, | |
9, | |
10, | |
3257, | |
11, | |
3258, | |
12, | |
13, | |
14, | |
15, | |
3259, | |
3260, | |
3261, | |
3262, | |
3263, | |
16, | |
17, | |
3264, | |
18, | |
3265, | |
3266, | |
3267, | |
19, | |
20, | |
3268, | |
3269, | |
21, | |
3270, | |
3271, | |
22, | |
3272, | |
3273, | |
23, | |
3274, | |
24, | |
25, | |
3275 | |
], | |
"id_column": "sentence_pair_id" | |
} | |
}, | |
"num_fewshot": 15, | |
"metric_list": [ | |
{ | |
"metric": "pearson", | |
"aggregation": "pearsonr", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "mse", | |
"aggregation": "mean_squared_error", | |
"higher_is_better": false | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "number_filter", | |
"type": "float", | |
"range_min": 1.0, | |
"range_max": 5.0, | |
"on_outside_range": "clip", | |
"fallback": 5.0 | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"bluex": { | |
"task": "bluex", | |
"group": [ | |
"pt_benchmark", | |
"vestibular" | |
], | |
"dataset_path": "eduagarcia-temp/BLUEX_without_images", | |
"test_split": "train", | |
"fewshot_split": "train", | |
"doc_to_text": "<function enem_doc_to_text at 0x7f74a34e1120>", | |
"doc_to_target": "{{answerKey}}", | |
"description": "As perguntas a seguir são questões de multipla escolha de provas de vestibular de Universidades Brasileiras, reponda apenas com as letras A, B, C, D ou E.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "id_sampler", | |
"sampler_config": { | |
"id_list": [ | |
"USP_2018_3", | |
"UNICAMP_2018_2", | |
"USP_2018_35", | |
"UNICAMP_2018_16", | |
"USP_2018_89" | |
], | |
"id_column": "id", | |
"exclude_from_task": true | |
} | |
}, | |
"num_fewshot": 3, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "normalize_spaces" | |
}, | |
{ | |
"function": "remove_accents" | |
}, | |
{ | |
"function": "find_choices", | |
"choices": [ | |
"A", | |
"B", | |
"C", | |
"D", | |
"E" | |
], | |
"regex_patterns": [ | |
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", | |
"\\b([ABCDE])\\.", | |
"\\b([ABCDE]) ?[.):-]", | |
"\\b([ABCDE])$", | |
"\\b([ABCDE])\\b" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
], | |
"group_by": { | |
"column": "exam_id" | |
} | |
} | |
], | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f74a34e13a0>", | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"enem_challenge": { | |
"task": "enem_challenge", | |
"task_alias": "enem", | |
"group": [ | |
"pt_benchmark", | |
"vestibular" | |
], | |
"dataset_path": "eduagarcia/enem_challenge", | |
"test_split": "train", | |
"fewshot_split": "train", | |
"doc_to_text": "<function enem_doc_to_text at 0x7f74a34e1940>", | |
"doc_to_target": "{{answerKey}}", | |
"description": "As perguntas a seguir são questões de multipla escolha do Exame Nacional do Ensino Médio (ENEM), reponda apenas com as letras A, B, C, D ou E.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "id_sampler", | |
"sampler_config": { | |
"id_list": [ | |
"2022_21", | |
"2022_88", | |
"2022_143" | |
], | |
"id_column": "id", | |
"exclude_from_task": true | |
} | |
}, | |
"num_fewshot": 3, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "normalize_spaces" | |
}, | |
{ | |
"function": "remove_accents" | |
}, | |
{ | |
"function": "find_choices", | |
"choices": [ | |
"A", | |
"B", | |
"C", | |
"D", | |
"E" | |
], | |
"regex_patterns": [ | |
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", | |
"\\b([ABCDE])\\.", | |
"\\b([ABCDE]) ?[.):-]", | |
"\\b([ABCDE])$", | |
"\\b([ABCDE])\\b" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
], | |
"group_by": { | |
"column": "exam_id" | |
} | |
} | |
], | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f74a34e1bc0>", | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"faquad_nli": { | |
"task": "faquad_nli", | |
"group": [ | |
"pt_benchmark" | |
], | |
"dataset_path": "ruanchaves/faquad-nli", | |
"test_split": "test", | |
"fewshot_split": "train", | |
"doc_to_text": "Pergunta: {{question}}\nResposta: {{answer}}\nA resposta satisfaz a pergunta? Sim ou Não?", | |
"doc_to_target": "{{['Não', 'Sim'][label]}}", | |
"description": "Abaixo contém pares de pergunta e reposta, para cada par você deve julgar resposta responde a pergunta de maneira satisfatória e aparenta estar correta, escreva apenas Sim ou Não.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n", | |
"sampler_config": { | |
"fewshot_indices": [ | |
1893, | |
949, | |
663, | |
105, | |
1169, | |
2910, | |
2227, | |
2813, | |
974, | |
558, | |
1503, | |
1958, | |
2918, | |
601, | |
1560, | |
984, | |
2388, | |
995, | |
2233, | |
1982, | |
165, | |
2788, | |
1312, | |
2285, | |
522, | |
1113, | |
1670, | |
323, | |
236, | |
1263, | |
1562, | |
2519, | |
1049, | |
432, | |
1167, | |
1394, | |
2022, | |
2551, | |
2194, | |
2187, | |
2282, | |
2816, | |
108, | |
301, | |
1185, | |
1315, | |
1420, | |
2436, | |
2322, | |
766 | |
] | |
} | |
}, | |
"num_fewshot": 15, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Sim", | |
"Não" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"oab_exams": { | |
"task": "oab_exams", | |
"group": [ | |
"legal_benchmark", | |
"pt_benchmark" | |
], | |
"dataset_path": "eduagarcia/oab_exams", | |
"test_split": "train", | |
"fewshot_split": "train", | |
"doc_to_text": "<function doc_to_text at 0x7f74a34e0ae0>", | |
"doc_to_target": "{{answerKey}}", | |
"description": "As perguntas a seguir são questões de multipla escolha do Exame de Ordem da Ordem dos Advogados do Brasil (OAB), reponda apenas com as letras A, B, C ou D.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "id_sampler", | |
"sampler_config": { | |
"id_list": [ | |
"2010-01_1", | |
"2010-01_11", | |
"2010-01_13", | |
"2010-01_23", | |
"2010-01_26", | |
"2010-01_28", | |
"2010-01_38", | |
"2010-01_48", | |
"2010-01_58", | |
"2010-01_68", | |
"2010-01_76", | |
"2010-01_83", | |
"2010-01_85", | |
"2010-01_91", | |
"2010-01_99" | |
], | |
"id_column": "id", | |
"exclude_from_task": true | |
} | |
}, | |
"num_fewshot": 3, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "normalize_spaces" | |
}, | |
{ | |
"function": "remove_accents" | |
}, | |
{ | |
"function": "find_choices", | |
"choices": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"regex_patterns": [ | |
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCD])\\b", | |
"\\b([ABCD])\\)", | |
"\\b([ABCD]) ?[.):-]", | |
"\\b([ABCD])$", | |
"\\b([ABCD])\\b" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
], | |
"group_by": { | |
"column": "exam_id" | |
} | |
} | |
], | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "<function doc_to_text at 0x7f74a34e0d60>", | |
"metadata": { | |
"version": 1.4 | |
} | |
}, | |
"sparrow_emotion-2021-cortiz-por": { | |
"task": "sparrow_emotion-2021-cortiz-por", | |
"task_alias": "emotion-2021-cortiz-por", | |
"group": [ | |
"pt_benchmark", | |
"sparrow" | |
], | |
"dataset_path": "UBC-NLP/sparrow", | |
"dataset_name": "emotion-2021-cortiz-por", | |
"test_split": "validation", | |
"fewshot_split": "train", | |
"doc_to_text": "Texto: {{content}}\nPergunta: Qual a principal emoção apresentada no texto?\nResposta:", | |
"doc_to_target": "<function sparrow_emotion_por_trans_label at 0x7f74a34e0fe0>", | |
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é extrair qual a principal emoção dos textos. Responda com apenas uma das seguintes opções:\n Admiração, Diversão, Raiva, Aborrecimento, Aprovação, Compaixão, Confusão, Curiosidade, Desejo, Decepção, Desaprovação, Nojo, Vergonha, Inveja, Entusiasmo, Medo, Gratidão, Luto, Alegria, Saudade, Amor, Nervosismo, Otimismo, Orgulho, Alívio, Remorso, Tristeza ou Surpresa.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 25, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Admiração", | |
"Diversão", | |
"Raiva", | |
"Aborrecimento", | |
"Aprovação", | |
"Compaixão", | |
"Confusão", | |
"Curiosidade", | |
"Desejo", | |
"Decepção", | |
"Desaprovação", | |
"Nojo", | |
" Vergonha", | |
"Inveja", | |
"Entusiasmo", | |
"Medo", | |
"Gratidão", | |
"Luto", | |
"Alegria", | |
"Saudade", | |
"Amor", | |
"Nervosismo", | |
"Otimismo", | |
"Orgulho", | |
"Alívio", | |
"Remorso", | |
"Tristeza", | |
"Surpresa" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"limit": 500, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"sparrow_hate-2019-fortuna-por": { | |
"task": "sparrow_hate-2019-fortuna-por", | |
"task_alias": "hate-2019-fortuna-por", | |
"group": [ | |
"pt_benchmark", | |
"sparrow" | |
], | |
"dataset_path": "UBC-NLP/sparrow", | |
"dataset_name": "hate-2019-fortuna-por", | |
"test_split": "validation", | |
"fewshot_split": "train", | |
"doc_to_text": "Texto: {{content}}\nPergunta: O texto contém discurso de ódio?\nResposta:", | |
"doc_to_target": "{{'Sim' if label == 'Hate' else 'Não'}}", | |
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o texto contem discurso de ódio our não. Responda apenas com Sim ou Não.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 25, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Sim", | |
"Não" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"limit": 500, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"sparrow_sentiment-2016-mozetic-por": { | |
"task": "sparrow_sentiment-2016-mozetic-por", | |
"task_alias": "sentiment-2016-mozetic-por", | |
"group": [ | |
"pt_benchmark", | |
"sparrow" | |
], | |
"dataset_path": "UBC-NLP/sparrow", | |
"dataset_name": "sentiment-2016-mozetic-por", | |
"test_split": "validation", | |
"fewshot_split": "train", | |
"doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:", | |
"doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}", | |
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 25, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Positivo", | |
"Neutro", | |
"Negativo" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"limit": 500, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"sparrow_sentiment-2018-brum-por": { | |
"task": "sparrow_sentiment-2018-brum-por", | |
"task_alias": "sentiment-2018-brum-por", | |
"group": [ | |
"pt_benchmark", | |
"sparrow" | |
], | |
"dataset_path": "UBC-NLP/sparrow", | |
"dataset_name": "sentiment-2018-brum-por", | |
"test_split": "validation", | |
"fewshot_split": "train", | |
"doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:", | |
"doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}", | |
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 25, | |
"metric_list": [ | |
{ | |
"metric": "f1_macro", | |
"aggregation": "f1_macro", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc", | |
"aggregation": "acc", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"max_gen_toks": 32, | |
"do_sample": false, | |
"temperature": 0.0, | |
"top_k": null, | |
"top_p": null, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "all", | |
"filter": [ | |
{ | |
"function": "find_similar_label", | |
"labels": [ | |
"Positivo", | |
"Neutro", | |
"Negativo" | |
] | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"limit": 500, | |
"metadata": { | |
"version": 1.0 | |
} | |
} | |
}, | |
"versions": { | |
"assin2_rte": 1.0, | |
"assin2_sts": 1.0, | |
"bluex": 1.0, | |
"enem_challenge": 1.0, | |
"faquad_nli": 1.0, | |
"oab_exams": 1.4, | |
"sparrow_emotion-2021-cortiz-por": 1.0, | |
"sparrow_hate-2019-fortuna-por": 1.0, | |
"sparrow_sentiment-2016-mozetic-por": 1.0, | |
"sparrow_sentiment-2018-brum-por": 1.0 | |
}, | |
"n-shot": { | |
"assin2_rte": 15, | |
"assin2_sts": 15, | |
"bluex": 3, | |
"enem_challenge": 3, | |
"faquad_nli": 15, | |
"oab_exams": 3, | |
"sparrow_emotion-2021-cortiz-por": 25, | |
"sparrow_hate-2019-fortuna-por": 25, | |
"sparrow_sentiment-2016-mozetic-por": 25, | |
"sparrow_sentiment-2018-brum-por": 25 | |
}, | |
"model_meta": { | |
"truncated": 0, | |
"non_truncated": 11889, | |
"padded": 0, | |
"non_padded": 11889, | |
"fewshots_truncated": 0, | |
"has_chat_template": false, | |
"chat_type": null, | |
"n_gpus": 1, | |
"accelerate_num_process": null, | |
"model_sha": "26bca36bde8333b5d7f72e9ed20ccda6a618af24", | |
"model_dtype": "torch.bfloat16", | |
"model_memory_footprint": 15020343296, | |
"model_num_parameters": 7241732096, | |
"model_is_loaded_in_4bit": false, | |
"model_is_loaded_in_8bit": false, | |
"model_is_quantized": null, | |
"model_device": "cuda:1", | |
"batch_size": 4, | |
"max_length": 4096, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32 | |
}, | |
"task_model_meta": { | |
"assin2_rte": { | |
"sample_size": 2448, | |
"truncated": 0, | |
"non_truncated": 2448, | |
"padded": 0, | |
"non_padded": 2448, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1244.7455065359477, | |
"min_seq_length": 1221, | |
"max_seq_length": 1311, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 15.0, | |
"mean_effective_fewshot_size": 15.0 | |
}, | |
"assin2_sts": { | |
"sample_size": 2448, | |
"truncated": 0, | |
"non_truncated": 2448, | |
"padded": 0, | |
"non_padded": 2448, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1459.7455065359477, | |
"min_seq_length": 1436, | |
"max_seq_length": 1526, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 15.0, | |
"mean_effective_fewshot_size": 15.0 | |
}, | |
"bluex": { | |
"sample_size": 719, | |
"truncated": 0, | |
"non_truncated": 719, | |
"padded": 0, | |
"non_padded": 719, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1394.9262865090404, | |
"min_seq_length": 1018, | |
"max_seq_length": 2195, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 3.0, | |
"mean_effective_fewshot_size": 3.0 | |
}, | |
"enem_challenge": { | |
"sample_size": 1429, | |
"truncated": 0, | |
"non_truncated": 1429, | |
"padded": 0, | |
"non_padded": 1429, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1605.039188243527, | |
"min_seq_length": 1339, | |
"max_seq_length": 2603, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 3.0, | |
"mean_effective_fewshot_size": 3.0 | |
}, | |
"faquad_nli": { | |
"sample_size": 650, | |
"truncated": 0, | |
"non_truncated": 650, | |
"padded": 0, | |
"non_padded": 650, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1555.9876923076922, | |
"min_seq_length": 1500, | |
"max_seq_length": 1676, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 15.0, | |
"mean_effective_fewshot_size": 15.0 | |
}, | |
"oab_exams": { | |
"sample_size": 2195, | |
"truncated": 0, | |
"non_truncated": 2195, | |
"padded": 0, | |
"non_padded": 2195, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1351.764464692483, | |
"min_seq_length": 1085, | |
"max_seq_length": 1854, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 3.0, | |
"mean_effective_fewshot_size": 3.0 | |
}, | |
"sparrow_emotion-2021-cortiz-por": { | |
"sample_size": 500, | |
"truncated": 0, | |
"non_truncated": 500, | |
"padded": 0, | |
"non_padded": 500, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1723.336, | |
"min_seq_length": 1701, | |
"max_seq_length": 1757, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 25.0, | |
"mean_effective_fewshot_size": 25.0 | |
}, | |
"sparrow_hate-2019-fortuna-por": { | |
"sample_size": 500, | |
"truncated": 0, | |
"non_truncated": 500, | |
"padded": 0, | |
"non_padded": 500, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1746.15, | |
"min_seq_length": 1722, | |
"max_seq_length": 1791, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 25.0, | |
"mean_effective_fewshot_size": 25.0 | |
}, | |
"sparrow_sentiment-2016-mozetic-por": { | |
"sample_size": 500, | |
"truncated": 0, | |
"non_truncated": 500, | |
"padded": 0, | |
"non_padded": 500, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1458.088, | |
"min_seq_length": 1441, | |
"max_seq_length": 1494, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 25.0, | |
"mean_effective_fewshot_size": 25.0 | |
}, | |
"sparrow_sentiment-2018-brum-por": { | |
"sample_size": 500, | |
"truncated": 0, | |
"non_truncated": 500, | |
"padded": 0, | |
"non_padded": 500, | |
"fewshots_truncated": 0, | |
"mean_seq_length": 1623.55, | |
"min_seq_length": 1606, | |
"max_seq_length": 1656, | |
"max_ctx_length": 4064, | |
"max_gen_toks": 32, | |
"mean_original_fewshots_size": 25.0, | |
"mean_effective_fewshot_size": 25.0 | |
} | |
}, | |
"config": { | |
"model": "huggingface", | |
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,device=cuda:1,revision=main,trust_remote_code=True,starting_max_length=4096", | |
"batch_size": "auto", | |
"batch_sizes": [], | |
"device": null, | |
"use_cache": null, | |
"limit": [ | |
null, | |
null, | |
null, | |
null, | |
null, | |
null, | |
500.0, | |
500.0, | |
500.0, | |
500.0 | |
], | |
"bootstrap_iters": 0, | |
"gen_kwargs": null | |
}, | |
"git_hash": "637ac6b" | |
} |