eduagarcia's picture
Uploading raw results for 22h/open-cabrita3b
21acbeb verified
{
"results": {
"assin2_rte": {
"f1_macro,all": 0.4301327637723658,
"acc,all": 0.5379901960784313,
"alias": "assin2_rte"
},
"assin2_sts": {
"pearson,all": 0.08919111846797594,
"mse,all": 2.491196895424836,
"alias": "assin2_sts"
},
"bluex": {
"acc,all": 0.2114047287899861,
"acc,exam_id__USP_2023": 0.1590909090909091,
"acc,exam_id__UNICAMP_2023": 0.2558139534883721,
"acc,exam_id__UNICAMP_2024": 0.26666666666666666,
"acc,exam_id__USP_2021": 0.1346153846153846,
"acc,exam_id__UNICAMP_2021_2": 0.23529411764705882,
"acc,exam_id__UNICAMP_2019": 0.2,
"acc,exam_id__UNICAMP_2022": 0.2564102564102564,
"acc,exam_id__UNICAMP_2018": 0.2777777777777778,
"acc,exam_id__UNICAMP_2020": 0.2727272727272727,
"acc,exam_id__USP_2020": 0.14285714285714285,
"acc,exam_id__USP_2018": 0.09259259259259259,
"acc,exam_id__USP_2019": 0.25,
"acc,exam_id__UNICAMP_2021_1": 0.32608695652173914,
"acc,exam_id__USP_2024": 0.17073170731707318,
"acc,exam_id__USP_2022": 0.16326530612244897,
"alias": "bluex"
},
"enem_challenge": {
"alias": "enem",
"acc,all": 0.17984604618614417,
"acc,exam_id__2016_2": 0.2032520325203252,
"acc,exam_id__2023": 0.22962962962962963,
"acc,exam_id__2014": 0.1834862385321101,
"acc,exam_id__2017": 0.1810344827586207,
"acc,exam_id__2009": 0.1391304347826087,
"acc,exam_id__2015": 0.14285714285714285,
"acc,exam_id__2016": 0.18181818181818182,
"acc,exam_id__2022": 0.18796992481203006,
"acc,exam_id__2012": 0.1896551724137931,
"acc,exam_id__2013": 0.1388888888888889,
"acc,exam_id__2011": 0.20512820512820512,
"acc,exam_id__2010": 0.1623931623931624
},
"faquad_nli": {
"f1_macro,all": 0.4396551724137931,
"acc,all": 0.7846153846153846,
"alias": "faquad_nli"
},
"hatebr_offensive": {
"alias": "hatebr_offensive_binary",
"f1_macro,all": 0.5046251022011318,
"acc,all": 0.5585714285714286
},
"oab_exams": {
"acc,all": 0.22687927107061504,
"acc,exam_id__2012-08": 0.1875,
"acc,exam_id__2015-17": 0.2564102564102564,
"acc,exam_id__2012-09": 0.22077922077922077,
"acc,exam_id__2013-11": 0.1875,
"acc,exam_id__2014-13": 0.275,
"acc,exam_id__2012-06": 0.225,
"acc,exam_id__2017-24": 0.2125,
"acc,exam_id__2010-01": 0.2823529411764706,
"acc,exam_id__2016-20a": 0.25,
"acc,exam_id__2012-06a": 0.225,
"acc,exam_id__2017-23": 0.225,
"acc,exam_id__2014-14": 0.25,
"acc,exam_id__2018-25": 0.3,
"acc,exam_id__2013-10": 0.2375,
"acc,exam_id__2011-05": 0.2375,
"acc,exam_id__2017-22": 0.25,
"acc,exam_id__2011-03": 0.23232323232323232,
"acc,exam_id__2016-21": 0.2125,
"acc,exam_id__2015-16": 0.25,
"acc,exam_id__2011-04": 0.225,
"acc,exam_id__2016-20": 0.2,
"acc,exam_id__2014-15": 0.21794871794871795,
"acc,exam_id__2012-07": 0.15,
"acc,exam_id__2016-19": 0.16666666666666666,
"acc,exam_id__2015-18": 0.2375,
"acc,exam_id__2013-12": 0.175,
"acc,exam_id__2010-02": 0.23,
"alias": "oab_exams"
},
"portuguese_hate_speech": {
"alias": "portuguese_hate_speech_binary",
"f1_macro,all": 0.4118866620594333,
"acc,all": 0.700352526439483
},
"tweetsentbr": {
"f1_macro,all": 0.47963247012405114,
"acc,all": 0.5900497512437811,
"alias": "tweetsentbr"
}
},
"configs": {
"assin2_rte": {
"task": "assin2_rte",
"group": [
"pt_benchmark",
"assin2"
],
"dataset_path": "assin2",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Premissa: {{premise}}\nHipótese: {{hypothesis}}\nPergunta: A hipótese pode ser inferida pela premissa? Sim ou Não?\nResposta:",
"doc_to_target": "{{['Não', 'Sim'][entailment_judgment]}}",
"description": "Abaixo estão pares de premissa e hipótese. Para cada par, indique se a hipótese pode ser inferida a partir da premissa, responda apenas com \"Sim\" ou \"Não\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
1,
3251,
2,
3252,
3,
4,
5,
6,
3253,
7,
3254,
3255,
3256,
8,
9,
10,
3257,
11,
3258,
12,
13,
14,
15,
3259,
3260,
3261,
3262,
3263,
16,
17,
3264,
18,
3265,
3266,
3267,
19,
20,
3268,
3269,
21,
3270,
3271,
22,
3272,
3273,
23,
3274,
24,
25,
3275
],
"id_column": "sentence_pair_id"
}
},
"num_fewshot": 15,
"metric_list": [
{
"metric": "f1_macro",
"aggregation": "f1_macro",
"higher_is_better": true
},
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "find_similar_label",
"labels": [
"Sim",
"Não"
]
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.1
}
},
"assin2_sts": {
"task": "assin2_sts",
"group": [
"pt_benchmark",
"assin2"
],
"dataset_path": "assin2",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Frase 1: {{premise}}\nFrase 2: {{hypothesis}}\nPergunta: Quão similares são as duas frases? Dê uma pontuação entre 1,0 a 5,0.\nResposta:",
"doc_to_target": "<function assin2_float_to_pt_str at 0x7f9f4d56d120>",
"description": "Abaixo estão pares de frases que você deve avaliar o grau de similaridade. Dê uma pontuação entre 1,0 e 5,0, sendo 1,0 pouco similar e 5,0 muito similar.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
1,
3251,
2,
3252,
3,
4,
5,
6,
3253,
7,
3254,
3255,
3256,
8,
9,
10,
3257,
11,
3258,
12,
13,
14,
15,
3259,
3260,
3261,
3262,
3263,
16,
17,
3264,
18,
3265,
3266,
3267,
19,
20,
3268,
3269,
21,
3270,
3271,
22,
3272,
3273,
23,
3274,
24,
25,
3275
],
"id_column": "sentence_pair_id"
}
},
"num_fewshot": 15,
"metric_list": [
{
"metric": "pearson",
"aggregation": "pearsonr",
"higher_is_better": true
},
{
"metric": "mse",
"aggregation": "mean_squared_error",
"higher_is_better": false
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "number_filter",
"type": "float",
"range_min": 1.0,
"range_max": 5.0,
"on_outside_range": "clip",
"fallback": 5.0
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.1
}
},
"bluex": {
"task": "bluex",
"group": [
"pt_benchmark",
"vestibular"
],
"dataset_path": "eduagarcia-temp/BLUEX_without_images",
"test_split": "train",
"fewshot_split": "train",
"doc_to_text": "<function enem_doc_to_text at 0x7f9f4d56cae0>",
"doc_to_target": "{{answerKey}}",
"description": "As perguntas a seguir são questões de múltipla escolha de provas de vestibular de universidades brasileiras, selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\", \"D\" ou \"E\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
"USP_2018_3",
"UNICAMP_2018_2",
"USP_2018_35",
"UNICAMP_2018_16",
"USP_2018_89"
],
"id_column": "id",
"exclude_from_task": true
}
},
"num_fewshot": 3,
"metric_list": [
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "normalize_spaces"
},
{
"function": "remove_accents"
},
{
"function": "find_choices",
"choices": [
"A",
"B",
"C",
"D",
"E"
],
"regex_patterns": [
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b",
"\\b([ABCDE])\\.",
"\\b([ABCDE]) ?[.):-]",
"\\b([ABCDE])$",
"\\b([ABCDE])\\b"
]
},
{
"function": "take_first"
}
],
"group_by": {
"column": "exam_id"
}
}
],
"should_decontaminate": true,
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f9f4d56cd60>",
"metadata": {
"version": 1.1
}
},
"enem_challenge": {
"task": "enem_challenge",
"task_alias": "enem",
"group": [
"pt_benchmark",
"vestibular"
],
"dataset_path": "eduagarcia/enem_challenge",
"test_split": "train",
"fewshot_split": "train",
"doc_to_text": "<function enem_doc_to_text at 0x7f9f4d56d300>",
"doc_to_target": "{{answerKey}}",
"description": "As perguntas a seguir são questões de múltipla escolha do Exame Nacional do Ensino Médio (ENEM), selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\", \"D\" ou \"E\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
"2022_21",
"2022_88",
"2022_143"
],
"id_column": "id",
"exclude_from_task": true
}
},
"num_fewshot": 3,
"metric_list": [
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "normalize_spaces"
},
{
"function": "remove_accents"
},
{
"function": "find_choices",
"choices": [
"A",
"B",
"C",
"D",
"E"
],
"regex_patterns": [
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b",
"\\b([ABCDE])\\.",
"\\b([ABCDE]) ?[.):-]",
"\\b([ABCDE])$",
"\\b([ABCDE])\\b"
]
},
{
"function": "take_first"
}
],
"group_by": {
"column": "exam_id"
}
}
],
"should_decontaminate": true,
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f9f4d56d580>",
"metadata": {
"version": 1.1
}
},
"faquad_nli": {
"task": "faquad_nli",
"group": [
"pt_benchmark"
],
"dataset_path": "ruanchaves/faquad-nli",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Pergunta: {{question}}\nResposta: {{answer}}\nA resposta dada satisfaz à pergunta? Sim ou Não?",
"doc_to_target": "{{['Não', 'Sim'][label]}}",
"description": "Abaixo estão pares de pergunta e resposta. Para cada par, você deve julgar se a resposta responde à pergunta de maneira satisfatória e aparenta estar correta. Escreva apenas \"Sim\" ou \"Não\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"sampler_config": {
"fewshot_indices": [
1893,
949,
663,
105,
1169,
2910,
2227,
2813,
974,
558,
1503,
1958,
2918,
601,
1560,
984,
2388,
995,
2233,
1982,
165,
2788,
1312,
2285,
522,
1113,
1670,
323,
236,
1263,
1562,
2519,
1049,
432,
1167,
1394,
2022,
2551,
2194,
2187,
2282,
2816,
108,
301,
1185,
1315,
1420,
2436,
2322,
766
]
}
},
"num_fewshot": 15,
"metric_list": [
{
"metric": "f1_macro",
"aggregation": "f1_macro",
"higher_is_better": true
},
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "find_similar_label",
"labels": [
"Sim",
"Não"
]
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.1
}
},
"hatebr_offensive": {
"task": "hatebr_offensive",
"task_alias": "hatebr_offensive_binary",
"group": [
"pt_benchmark"
],
"dataset_path": "eduagarcia/portuguese_benchmark",
"dataset_name": "HateBR_offensive_binary",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Texto: {{sentence}}\nPergunta: O texto é ofensivo?\nResposta:",
"doc_to_target": "{{'Sim' if label == 1 else 'Não'}}",
"description": "Abaixo contém o texto de comentários de usuários do Instagram em português, sua tarefa é classificar se o texto é ofensivo ou não. Responda apenas com \"Sim\" ou \"Não\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
48,
44,
36,
20,
3511,
88,
3555,
16,
56,
3535,
60,
40,
3527,
4,
76,
3579,
3523,
3551,
68,
3503,
84,
3539,
64,
3599,
80,
3563,
3559,
3543,
3547,
3587,
3595,
3575,
3567,
3591,
24,
96,
92,
3507,
52,
72,
8,
3571,
3515,
3519,
3531,
28,
32,
0,
12,
3583
],
"id_column": "idx"
}
},
"num_fewshot": 25,
"metric_list": [
{
"metric": "f1_macro",
"aggregation": "f1_macro",
"higher_is_better": true
},
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "find_similar_label",
"labels": [
"Sim",
"Não"
]
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"oab_exams": {
"task": "oab_exams",
"group": [
"legal_benchmark",
"pt_benchmark"
],
"dataset_path": "eduagarcia/oab_exams",
"test_split": "train",
"fewshot_split": "train",
"doc_to_text": "<function doc_to_text at 0x7f9f4d56c4a0>",
"doc_to_target": "{{answerKey}}",
"description": "As perguntas a seguir são questões de múltipla escolha do Exame de Ordem da Ordem dos Advogados do Brasil (OAB), selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\" ou \"D\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
"2010-01_1",
"2010-01_11",
"2010-01_13",
"2010-01_23",
"2010-01_26",
"2010-01_28",
"2010-01_38",
"2010-01_48",
"2010-01_58",
"2010-01_68",
"2010-01_76",
"2010-01_83",
"2010-01_85",
"2010-01_91",
"2010-01_99"
],
"id_column": "id",
"exclude_from_task": true
}
},
"num_fewshot": 3,
"metric_list": [
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "normalize_spaces"
},
{
"function": "remove_accents"
},
{
"function": "find_choices",
"choices": [
"A",
"B",
"C",
"D"
],
"regex_patterns": [
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCD])\\b",
"\\b([ABCD])\\.",
"\\b([ABCD]) ?[.):-]",
"\\b([ABCD])$",
"\\b([ABCD])\\b"
]
},
{
"function": "take_first"
}
],
"group_by": {
"column": "exam_id"
}
}
],
"should_decontaminate": true,
"doc_to_decontamination_query": "<function doc_to_text at 0x7f9f4d56c720>",
"metadata": {
"version": 1.5
}
},
"portuguese_hate_speech": {
"task": "portuguese_hate_speech",
"task_alias": "portuguese_hate_speech_binary",
"group": [
"pt_benchmark"
],
"dataset_path": "eduagarcia/portuguese_benchmark",
"dataset_name": "Portuguese_Hate_Speech_binary",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Texto: {{sentence}}\nPergunta: O texto contém discurso de ódio?\nResposta:",
"doc_to_target": "{{'Sim' if label == 1 else 'Não'}}",
"description": "Abaixo contém o texto de tweets de usuários do Twitter em português, sua tarefa é classificar se o texto contém discurso de ódio ou não. Responda apenas com \"Sim\" ou \"Não\".\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
52,
50,
39,
28,
3,
105,
22,
25,
60,
11,
66,
41,
9,
4,
91,
42,
7,
20,
76,
1,
104,
13,
67,
54,
97,
27,
24,
14,
16,
48,
53,
40,
34,
49,
32,
119,
114,
2,
58,
83,
18,
36,
5,
6,
10,
35,
38,
0,
21,
46
],
"id_column": "idx"
}
},
"num_fewshot": 25,
"metric_list": [
{
"metric": "f1_macro",
"aggregation": "f1_macro",
"higher_is_better": true
},
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "find_similar_label",
"labels": [
"Sim",
"Não"
]
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"tweetsentbr": {
"task": "tweetsentbr",
"group": [
"pt_benchmark"
],
"dataset_path": "eduagarcia-temp/tweetsentbr",
"test_split": "test",
"fewshot_split": "train",
"doc_to_text": "Texto: {{sentence}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:",
"doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}",
"description": "Abaixo contém o texto de tweets de usuários do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "id_sampler",
"sampler_config": {
"id_list": [
"862006098672459776",
"861612241703063552",
"861833257087848448",
"861283345476571138",
"861283000335695873",
"862139461274152962",
"862139468702265344",
"862006107702734848",
"862004354458537984",
"861833322925883392",
"861603063190171648",
"862139462716989440",
"862005877355810818",
"861751885862244353",
"862045180261695489",
"862004252499226630",
"862023970828292097",
"862041752127107074",
"862034961863503872",
"861293756548608001",
"861993527575695360",
"862003099355021315",
"862002404086206467",
"861282989602463744",
"862139454399668229",
"862139463769743361",
"862054906689138688",
"862139446535360513",
"861997363744911361",
"862057988898648065",
"861329080083521536",
"861286289034838016",
"861833050526806017",
"861300658565255169",
"861989003821813760",
"861682750398631938",
"861283275716907008",
"861283402523267072",
"861873108147466240",
"862139462138171392",
"861284090271715333",
"862139446149427201",
"861629109331525633",
"861721698609098753",
"862139453124612096",
"861283339482914816",
"861282466291748867",
"862055346759749632",
"862003019860389891",
"862140698346344449",
"862084376280092672",
"862003058708017152",
"862000677345787904",
"862029129310502913",
"862005822376882178",
"861969836297134085",
"861302955361927168",
"862064949451005953",
"861282589541355520",
"862005476858486784",
"862004684411850757",
"862139471101349890",
"862139467146170368",
"862139475098558465",
"862140706550403072",
"861282777001537536",
"862003184147079169",
"861283410656059394",
"861283417857691649",
"861888778922856448",
"861655860812099585",
"861834248063504384",
"862005210935382017",
"861282716930760704",
"861287082433622022"
],
"id_column": "id"
}
},
"num_fewshot": 25,
"metric_list": [
{
"metric": "f1_macro",
"aggregation": "f1_macro",
"higher_is_better": true
},
{
"metric": "acc",
"aggregation": "acc",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"top_k": null,
"top_p": null,
"until": [
"\n\n"
]
},
"repeats": 1,
"filter_list": [
{
"name": "all",
"filter": [
{
"function": "find_similar_label",
"labels": [
"Positivo",
"Neutro",
"Negativo"
]
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"assin2_rte": 1.1,
"assin2_sts": 1.1,
"bluex": 1.1,
"enem_challenge": 1.1,
"faquad_nli": 1.1,
"hatebr_offensive": 1.0,
"oab_exams": 1.5,
"portuguese_hate_speech": 1.0,
"tweetsentbr": 1.0
},
"n-shot": {
"assin2_rte": 15,
"assin2_sts": 15,
"bluex": 3,
"enem_challenge": 3,
"faquad_nli": 15,
"hatebr_offensive": 25,
"oab_exams": 3,
"portuguese_hate_speech": 25,
"tweetsentbr": 25
},
"model_meta": {
"truncated": 4,
"non_truncated": 14146,
"padded": 0,
"non_padded": 14150,
"fewshots_truncated": 5,
"has_chat_template": false,
"chat_type": null,
"n_gpus": 1,
"accelerate_num_process": null,
"model_sha": "fc2a2de94a3b31de54aaace695537c4d1c3e456d",
"model_dtype": "torch.float16",
"model_memory_footprint": 7142506832,
"model_num_parameters": 3554473600,
"model_is_loaded_in_4bit": null,
"model_is_loaded_in_8bit": null,
"model_is_quantized": null,
"model_device": "cuda:0",
"batch_size": 16,
"max_length": 2048,
"max_ctx_length": 2016,
"max_gen_toks": 32
},
"task_model_meta": {
"assin2_rte": {
"sample_size": 2448,
"truncated": 0,
"non_truncated": 2448,
"padded": 0,
"non_padded": 2448,
"fewshots_truncated": 0,
"mean_seq_length": 1103.5416666666667,
"min_seq_length": 1086,
"max_seq_length": 1154,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 15.0,
"mean_effective_fewshot_size": 15.0
},
"assin2_sts": {
"sample_size": 2448,
"truncated": 0,
"non_truncated": 2448,
"padded": 0,
"non_padded": 2448,
"fewshots_truncated": 0,
"mean_seq_length": 1149.5416666666667,
"min_seq_length": 1132,
"max_seq_length": 1200,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 15.0,
"mean_effective_fewshot_size": 15.0
},
"bluex": {
"sample_size": 719,
"truncated": 2,
"non_truncated": 717,
"padded": 0,
"non_padded": 719,
"fewshots_truncated": 2,
"mean_seq_length": 1400.4019471488177,
"min_seq_length": 1095,
"max_seq_length": 2038,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 3.0,
"mean_effective_fewshot_size": 2.9972183588317107
},
"enem_challenge": {
"sample_size": 1429,
"truncated": 2,
"non_truncated": 1427,
"padded": 0,
"non_padded": 1429,
"fewshots_truncated": 3,
"mean_seq_length": 1243.1665500349895,
"min_seq_length": 1040,
"max_seq_length": 2372,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 3.0,
"mean_effective_fewshot_size": 2.9979006298110566
},
"faquad_nli": {
"sample_size": 650,
"truncated": 0,
"non_truncated": 650,
"padded": 0,
"non_padded": 650,
"fewshots_truncated": 0,
"mean_seq_length": 1238.533846153846,
"min_seq_length": 1201,
"max_seq_length": 1335,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 15.0,
"mean_effective_fewshot_size": 15.0
},
"hatebr_offensive": {
"sample_size": 1400,
"truncated": 0,
"non_truncated": 1400,
"padded": 0,
"non_padded": 1400,
"fewshots_truncated": 0,
"mean_seq_length": 1132.2078571428572,
"min_seq_length": 1111,
"max_seq_length": 1354,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 25.0,
"mean_effective_fewshot_size": 25.0
},
"oab_exams": {
"sample_size": 2195,
"truncated": 0,
"non_truncated": 2195,
"padded": 0,
"non_padded": 2195,
"fewshots_truncated": 0,
"mean_seq_length": 1039.7216400911161,
"min_seq_length": 845,
"max_seq_length": 1365,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 3.0,
"mean_effective_fewshot_size": 3.0
},
"portuguese_hate_speech": {
"sample_size": 851,
"truncated": 0,
"non_truncated": 851,
"padded": 0,
"non_padded": 851,
"fewshots_truncated": 0,
"mean_seq_length": 1463.2338425381904,
"min_seq_length": 1433,
"max_seq_length": 1510,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 25.0,
"mean_effective_fewshot_size": 25.0
},
"tweetsentbr": {
"sample_size": 2010,
"truncated": 0,
"non_truncated": 2010,
"padded": 0,
"non_padded": 2010,
"fewshots_truncated": 0,
"mean_seq_length": 1411.4726368159204,
"min_seq_length": 1392,
"max_seq_length": 1529,
"max_ctx_length": 2016,
"max_gen_toks": 32,
"mean_original_fewshots_size": 25.0,
"mean_effective_fewshot_size": 25.0
}
},
"config": {
"model": "huggingface",
"model_args": "pretrained=22h/open-cabrita3b,dtype=float16,device=cuda:0,revision=main,trust_remote_code=True,starting_max_length=4096",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": [
null,
null,
null,
null,
null,
null,
null,
null,
null
],
"bootstrap_iters": 0,
"gen_kwargs": null
},
"git_hash": "804df15"
}