eduagarcia
commited on
Update status of GritLM/GritLM-8x7B-KTO_eval_request_False_bfloat16_Original to FAILED
Browse files
GritLM/GritLM-8x7B-KTO_eval_request_False_bfloat16_Original.json
CHANGED
@@ -8,10 +8,12 @@
|
|
8 |
"architectures": "MixtralForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-06-14T16:48:05Z",
|
13 |
"model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 1341,
|
16 |
-
"job_start_time": "2024-12-08T02-37-22.598684"
|
|
|
|
|
17 |
}
|
|
|
8 |
"architectures": "MixtralForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
+
"status": "FAILED",
|
12 |
"submitted_time": "2024-06-14T16:48:05Z",
|
13 |
"model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 1341,
|
16 |
+
"job_start_time": "2024-12-08T02-37-22.598684",
|
17 |
+
"error_msg": "CUDA out of memory. Tried to allocate 112.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 14.19 MiB is free. Process 3777301 has 1.55 GiB memory in use. Process 3780253 has 1.55 GiB memory in use. Process 4104970 has 76.24 GiB memory in use. Of the allocated memory 75.61 GiB is allocated by PyTorch, and 121.70 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
|
18 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 200, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 71, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 304, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 616, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 559, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 4225, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 4738, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 941, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 400, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 14.19 MiB is free. Process 3777301 has 1.55 GiB memory in use. Process 3780253 has 1.55 GiB memory in use. Process 4104970 has 76.24 GiB memory in use. Of the allocated memory 75.61 GiB is allocated by PyTorch, and 121.70 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
|
19 |
}
|