eduagarcia
commited on
Update status of botbot-ai/Cabra-72b_eval_request_False_bfloat16_Original to FAILED
Browse files
botbot-ai/Cabra-72b_eval_request_False_bfloat16_Original.json
CHANGED
@@ -8,10 +8,12 @@
|
|
8 |
"architectures": "Qwen2ForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "Portuguese",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-04-06T22:02:03Z",
|
13 |
"model_type": "🔶 : fine-tuned/fp on domain-specific datasets",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 497,
|
16 |
-
"job_start_time": "2024-04-19T08-11-53.356622"
|
|
|
|
|
17 |
}
|
|
|
8 |
"architectures": "Qwen2ForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "Portuguese",
|
11 |
+
"status": "FAILED",
|
12 |
"submitted_time": "2024-04-06T22:02:03Z",
|
13 |
"model_type": "🔶 : fine-tuned/fp on domain-specific datasets",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 497,
|
16 |
+
"job_start_time": "2024-04-19T08-11-53.356622",
|
17 |
+
"error_msg": "CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 128.19 MiB is free. Process 3278346 has 79.22 GiB memory in use. Of the allocated memory 78.70 GiB is allocated by PyTorch, and 12.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
|
18 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 217, in wait_download_and_run_request\n else:\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 69, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 3677, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 4104, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 886, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 128.19 MiB is free. Process 3278346 has 79.22 GiB memory in use. Of the allocated memory 78.70 GiB is allocated by PyTorch, and 12.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
|
19 |
}
|