upload dataset generation notebook
Browse files- dataset_generation.ipynb +620 -0
dataset_generation.ipynb
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "b4f4da53",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from tqdm import tqdm\n",
|
13 |
+
"from PIL import Image as Im\n",
|
14 |
+
"from huggingface_hub import notebook_login\n",
|
15 |
+
"from datasets import load_dataset, Dataset, Image"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"id": "aa9019fe",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"### Load a set with coordinates"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"id": "11f31770",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"data": {
|
34 |
+
"text/html": [
|
35 |
+
"<div>\n",
|
36 |
+
"<style scoped>\n",
|
37 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
38 |
+
" vertical-align: middle;\n",
|
39 |
+
" }\n",
|
40 |
+
"\n",
|
41 |
+
" .dataframe tbody tr th {\n",
|
42 |
+
" vertical-align: top;\n",
|
43 |
+
" }\n",
|
44 |
+
"\n",
|
45 |
+
" .dataframe thead th {\n",
|
46 |
+
" text-align: right;\n",
|
47 |
+
" }\n",
|
48 |
+
"</style>\n",
|
49 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
50 |
+
" <thead>\n",
|
51 |
+
" <tr style=\"text-align: right;\">\n",
|
52 |
+
" <th></th>\n",
|
53 |
+
" <th>filename</th>\n",
|
54 |
+
" <th>x_from</th>\n",
|
55 |
+
" <th>y_from</th>\n",
|
56 |
+
" <th>width</th>\n",
|
57 |
+
" <th>height</th>\n",
|
58 |
+
" <th>sign_class</th>\n",
|
59 |
+
" <th>sign_id</th>\n",
|
60 |
+
" </tr>\n",
|
61 |
+
" </thead>\n",
|
62 |
+
" <tbody>\n",
|
63 |
+
" <tr>\n",
|
64 |
+
" <th>0</th>\n",
|
65 |
+
" <td>autosave01_02_2012_09_13_33.jpg</td>\n",
|
66 |
+
" <td>649</td>\n",
|
67 |
+
" <td>376</td>\n",
|
68 |
+
" <td>18</td>\n",
|
69 |
+
" <td>18</td>\n",
|
70 |
+
" <td>2_1</td>\n",
|
71 |
+
" <td>0</td>\n",
|
72 |
+
" </tr>\n",
|
73 |
+
" <tr>\n",
|
74 |
+
" <th>1</th>\n",
|
75 |
+
" <td>autosave01_02_2012_09_13_34.jpg</td>\n",
|
76 |
+
" <td>671</td>\n",
|
77 |
+
" <td>356</td>\n",
|
78 |
+
" <td>20</td>\n",
|
79 |
+
" <td>21</td>\n",
|
80 |
+
" <td>2_1</td>\n",
|
81 |
+
" <td>0</td>\n",
|
82 |
+
" </tr>\n",
|
83 |
+
" <tr>\n",
|
84 |
+
" <th>2</th>\n",
|
85 |
+
" <td>autosave01_02_2012_09_13_35.jpg</td>\n",
|
86 |
+
" <td>711</td>\n",
|
87 |
+
" <td>332</td>\n",
|
88 |
+
" <td>27</td>\n",
|
89 |
+
" <td>26</td>\n",
|
90 |
+
" <td>2_1</td>\n",
|
91 |
+
" <td>0</td>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" <tr>\n",
|
94 |
+
" <th>3</th>\n",
|
95 |
+
" <td>autosave01_02_2012_09_13_36.jpg</td>\n",
|
96 |
+
" <td>764</td>\n",
|
97 |
+
" <td>290</td>\n",
|
98 |
+
" <td>37</td>\n",
|
99 |
+
" <td>36</td>\n",
|
100 |
+
" <td>2_1</td>\n",
|
101 |
+
" <td>0</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>4</th>\n",
|
105 |
+
" <td>autosave01_02_2012_09_13_36.jpg</td>\n",
|
106 |
+
" <td>684</td>\n",
|
107 |
+
" <td>384</td>\n",
|
108 |
+
" <td>17</td>\n",
|
109 |
+
" <td>17</td>\n",
|
110 |
+
" <td>1_23</td>\n",
|
111 |
+
" <td>1</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" </tbody>\n",
|
114 |
+
"</table>\n",
|
115 |
+
"</div>"
|
116 |
+
],
|
117 |
+
"text/plain": [
|
118 |
+
" filename x_from y_from width height sign_class \\\n",
|
119 |
+
"0 autosave01_02_2012_09_13_33.jpg 649 376 18 18 2_1 \n",
|
120 |
+
"1 autosave01_02_2012_09_13_34.jpg 671 356 20 21 2_1 \n",
|
121 |
+
"2 autosave01_02_2012_09_13_35.jpg 711 332 27 26 2_1 \n",
|
122 |
+
"3 autosave01_02_2012_09_13_36.jpg 764 290 37 36 2_1 \n",
|
123 |
+
"4 autosave01_02_2012_09_13_36.jpg 684 384 17 17 1_23 \n",
|
124 |
+
"\n",
|
125 |
+
" sign_id \n",
|
126 |
+
"0 0 \n",
|
127 |
+
"1 0 \n",
|
128 |
+
"2 0 \n",
|
129 |
+
"3 0 \n",
|
130 |
+
"4 1 "
|
131 |
+
]
|
132 |
+
},
|
133 |
+
"execution_count": 2,
|
134 |
+
"metadata": {},
|
135 |
+
"output_type": "execute_result"
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"source": [
|
139 |
+
"data = pd.read_csv('full-gt.csv') # from URL: https://graphics.cs.msu.ru/projects/traffic-sign-recognition.html\n",
|
140 |
+
"data.head()"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 3,
|
146 |
+
"id": "1da9267c",
|
147 |
+
"metadata": {
|
148 |
+
"scrolled": true
|
149 |
+
},
|
150 |
+
"outputs": [
|
151 |
+
{
|
152 |
+
"data": {
|
153 |
+
"text/plain": [
|
154 |
+
"['autosave01_02_2012_09_13_32.jpg',\n",
|
155 |
+
" 'autosave01_02_2012_09_13_33.jpg',\n",
|
156 |
+
" 'autosave01_02_2012_09_13_34.jpg',\n",
|
157 |
+
" 'autosave01_02_2012_09_13_35.jpg',\n",
|
158 |
+
" 'autosave01_02_2012_09_13_36.jpg']"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 3,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"os.listdir('rtsd-frames')[:5] # from URL: https://www.kaggle.com/datasets/watchman/rtsd-dataset"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "markdown",
|
172 |
+
"id": "dd0a8dfc",
|
173 |
+
"metadata": {},
|
174 |
+
"source": [
|
175 |
+
"### Saving crop files"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 4,
|
181 |
+
"id": "e2cf6b7e",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"source_dir = 'rtsd-frames'\n",
|
186 |
+
"target_dir = 'dataset'\n",
|
187 |
+
"\n",
|
188 |
+
"if not os.path.exists(target_dir):\n",
|
189 |
+
" os.makedirs(target_dir)\n",
|
190 |
+
"\n",
|
191 |
+
"def get_sign(\n",
|
192 |
+
" filename, x_from, y_from, width, height, sign_class, sign_id, \n",
|
193 |
+
" img_path=source_dir, res_path=target_dir\n",
|
194 |
+
" ): \n",
|
195 |
+
" img = Im.open(f'{img_path}/{filename}')\n",
|
196 |
+
" img = img.crop((x_from, y_from, x_from + width, y_from + height))\n",
|
197 |
+
" filename = f'{sign_class}___{sign_id}__{filename}'\n",
|
198 |
+
" img.save(f'{target_dir}/{filename}')\n",
|
199 |
+
" return {'filename': filename, 'sign_class': sign_class, 'sign_id': sign_id}"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 5,
|
205 |
+
"id": "7d81a1cf",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [
|
208 |
+
{
|
209 |
+
"name": "stderr",
|
210 |
+
"output_type": "stream",
|
211 |
+
"text": [
|
212 |
+
"100%|██████████████████████████████████████████████████████████████████████████| 104358/104358 [18:08<00:00, 95.90it/s]\n"
|
213 |
+
]
|
214 |
+
}
|
215 |
+
],
|
216 |
+
"source": [
|
217 |
+
"result, bad_data = [], []\n",
|
218 |
+
"for i in tqdm(range(len(data))):\n",
|
219 |
+
" try:\n",
|
220 |
+
" result.append(get_sign(**data.iloc[i].to_dict()))\n",
|
221 |
+
" except Exception as e:\n",
|
222 |
+
" bad_data.append((e, data.iloc[i].to_dict()))\n",
|
223 |
+
" print('.', end='')"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 6,
|
229 |
+
"id": "c288b477",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"data": {
|
234 |
+
"text/plain": [
|
235 |
+
"104358"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
"execution_count": 6,
|
239 |
+
"metadata": {},
|
240 |
+
"output_type": "execute_result"
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"source": [
|
244 |
+
"len(os.listdir(target_dir))"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": 7,
|
250 |
+
"id": "51aae0a9",
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [
|
253 |
+
{
|
254 |
+
"data": {
|
255 |
+
"text/plain": [
|
256 |
+
"104358"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
"execution_count": 7,
|
260 |
+
"metadata": {},
|
261 |
+
"output_type": "execute_result"
|
262 |
+
}
|
263 |
+
],
|
264 |
+
"source": [
|
265 |
+
"len(result)"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"execution_count": 8,
|
271 |
+
"id": "454cc4f4",
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [
|
274 |
+
{
|
275 |
+
"data": {
|
276 |
+
"text/plain": [
|
277 |
+
"0"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
"execution_count": 8,
|
281 |
+
"metadata": {},
|
282 |
+
"output_type": "execute_result"
|
283 |
+
}
|
284 |
+
],
|
285 |
+
"source": [
|
286 |
+
"len(bad_data)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "markdown",
|
291 |
+
"id": "4fadacb7",
|
292 |
+
"metadata": {},
|
293 |
+
"source": [
|
294 |
+
"### Metadata generation"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": 9,
|
300 |
+
"id": "f9ee692c",
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"pd.DataFrame(result).to_csv(f'{target_dir}.csv', index=False)"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"execution_count": 10,
|
310 |
+
"id": "07d9969e",
|
311 |
+
"metadata": {
|
312 |
+
"scrolled": true
|
313 |
+
},
|
314 |
+
"outputs": [
|
315 |
+
{
|
316 |
+
"data": {
|
317 |
+
"text/html": [
|
318 |
+
"<div>\n",
|
319 |
+
"<style scoped>\n",
|
320 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
321 |
+
" vertical-align: middle;\n",
|
322 |
+
" }\n",
|
323 |
+
"\n",
|
324 |
+
" .dataframe tbody tr th {\n",
|
325 |
+
" vertical-align: top;\n",
|
326 |
+
" }\n",
|
327 |
+
"\n",
|
328 |
+
" .dataframe thead th {\n",
|
329 |
+
" text-align: right;\n",
|
330 |
+
" }\n",
|
331 |
+
"</style>\n",
|
332 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
333 |
+
" <thead>\n",
|
334 |
+
" <tr style=\"text-align: right;\">\n",
|
335 |
+
" <th></th>\n",
|
336 |
+
" <th>file_name</th>\n",
|
337 |
+
" <th>additional_feature</th>\n",
|
338 |
+
" </tr>\n",
|
339 |
+
" </thead>\n",
|
340 |
+
" <tbody>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>0</th>\n",
|
343 |
+
" <td>2_1___0__autosave01_02_2012_09_13_33.jpg</td>\n",
|
344 |
+
" <td>2_1</td>\n",
|
345 |
+
" </tr>\n",
|
346 |
+
" <tr>\n",
|
347 |
+
" <th>1</th>\n",
|
348 |
+
" <td>2_1___0__autosave01_02_2012_09_13_34.jpg</td>\n",
|
349 |
+
" <td>2_1</td>\n",
|
350 |
+
" </tr>\n",
|
351 |
+
" <tr>\n",
|
352 |
+
" <th>2</th>\n",
|
353 |
+
" <td>2_1___0__autosave01_02_2012_09_13_35.jpg</td>\n",
|
354 |
+
" <td>2_1</td>\n",
|
355 |
+
" </tr>\n",
|
356 |
+
" <tr>\n",
|
357 |
+
" <th>3</th>\n",
|
358 |
+
" <td>2_1___0__autosave01_02_2012_09_13_36.jpg</td>\n",
|
359 |
+
" <td>2_1</td>\n",
|
360 |
+
" </tr>\n",
|
361 |
+
" <tr>\n",
|
362 |
+
" <th>4</th>\n",
|
363 |
+
" <td>1_23___1__autosave01_02_2012_09_13_36.jpg</td>\n",
|
364 |
+
" <td>1_23</td>\n",
|
365 |
+
" </tr>\n",
|
366 |
+
" </tbody>\n",
|
367 |
+
"</table>\n",
|
368 |
+
"</div>"
|
369 |
+
],
|
370 |
+
"text/plain": [
|
371 |
+
" file_name additional_feature\n",
|
372 |
+
"0 2_1___0__autosave01_02_2012_09_13_33.jpg 2_1\n",
|
373 |
+
"1 2_1___0__autosave01_02_2012_09_13_34.jpg 2_1\n",
|
374 |
+
"2 2_1___0__autosave01_02_2012_09_13_35.jpg 2_1\n",
|
375 |
+
"3 2_1___0__autosave01_02_2012_09_13_36.jpg 2_1\n",
|
376 |
+
"4 1_23___1__autosave01_02_2012_09_13_36.jpg 1_23"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
"execution_count": 10,
|
380 |
+
"metadata": {},
|
381 |
+
"output_type": "execute_result"
|
382 |
+
}
|
383 |
+
],
|
384 |
+
"source": [
|
385 |
+
"df = pd.DataFrame(result)\n",
|
386 |
+
"df.drop(columns=['sign_id'], inplace=True)\n",
|
387 |
+
"df.columns = ['file_name', 'additional_feature']\n",
|
388 |
+
"df.head()"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": 11,
|
394 |
+
"id": "57a8c62a",
|
395 |
+
"metadata": {},
|
396 |
+
"outputs": [
|
397 |
+
{
|
398 |
+
"data": {
|
399 |
+
"text/html": [
|
400 |
+
"<div>\n",
|
401 |
+
"<style scoped>\n",
|
402 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
403 |
+
" vertical-align: middle;\n",
|
404 |
+
" }\n",
|
405 |
+
"\n",
|
406 |
+
" .dataframe tbody tr th {\n",
|
407 |
+
" vertical-align: top;\n",
|
408 |
+
" }\n",
|
409 |
+
"\n",
|
410 |
+
" .dataframe thead th {\n",
|
411 |
+
" text-align: right;\n",
|
412 |
+
" }\n",
|
413 |
+
"</style>\n",
|
414 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
415 |
+
" <thead>\n",
|
416 |
+
" <tr style=\"text-align: right;\">\n",
|
417 |
+
" <th></th>\n",
|
418 |
+
" <th>file_name</th>\n",
|
419 |
+
" <th>additional_feature</th>\n",
|
420 |
+
" </tr>\n",
|
421 |
+
" </thead>\n",
|
422 |
+
" <tbody>\n",
|
423 |
+
" <tr>\n",
|
424 |
+
" <th>0</th>\n",
|
425 |
+
" <td>2_1___0__autosave01_02_2012_09_13_33.jpg</td>\n",
|
426 |
+
" <td>2_1</td>\n",
|
427 |
+
" </tr>\n",
|
428 |
+
" <tr>\n",
|
429 |
+
" <th>1</th>\n",
|
430 |
+
" <td>2_1___0__autosave01_02_2012_09_13_34.jpg</td>\n",
|
431 |
+
" <td>2_1</td>\n",
|
432 |
+
" </tr>\n",
|
433 |
+
" <tr>\n",
|
434 |
+
" <th>2</th>\n",
|
435 |
+
" <td>2_1___0__autosave01_02_2012_09_13_35.jpg</td>\n",
|
436 |
+
" <td>2_1</td>\n",
|
437 |
+
" </tr>\n",
|
438 |
+
" <tr>\n",
|
439 |
+
" <th>3</th>\n",
|
440 |
+
" <td>2_1___0__autosave01_02_2012_09_13_36.jpg</td>\n",
|
441 |
+
" <td>2_1</td>\n",
|
442 |
+
" </tr>\n",
|
443 |
+
" <tr>\n",
|
444 |
+
" <th>4</th>\n",
|
445 |
+
" <td>1_23___1__autosave01_02_2012_09_13_36.jpg</td>\n",
|
446 |
+
" <td>1_23</td>\n",
|
447 |
+
" </tr>\n",
|
448 |
+
" </tbody>\n",
|
449 |
+
"</table>\n",
|
450 |
+
"</div>"
|
451 |
+
],
|
452 |
+
"text/plain": [
|
453 |
+
" file_name additional_feature\n",
|
454 |
+
"0 2_1___0__autosave01_02_2012_09_13_33.jpg 2_1\n",
|
455 |
+
"1 2_1___0__autosave01_02_2012_09_13_34.jpg 2_1\n",
|
456 |
+
"2 2_1___0__autosave01_02_2012_09_13_35.jpg 2_1\n",
|
457 |
+
"3 2_1___0__autosave01_02_2012_09_13_36.jpg 2_1\n",
|
458 |
+
"4 1_23___1__autosave01_02_2012_09_13_36.jpg 1_23"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
"execution_count": 11,
|
462 |
+
"metadata": {},
|
463 |
+
"output_type": "execute_result"
|
464 |
+
}
|
465 |
+
],
|
466 |
+
"source": [
|
467 |
+
"df.to_json(f'{target_dir}/metadata.jsonl', orient='records', lines=True); df.head()"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"execution_count": 12,
|
473 |
+
"id": "7245bea0",
|
474 |
+
"metadata": {},
|
475 |
+
"outputs": [],
|
476 |
+
"source": [
|
477 |
+
"metadata = pd.read_csv(f'{target_dir}.csv') # или metadata = df.copy()\n",
|
478 |
+
"metadata.columns = ['image', 'sign_class', 'sign_id']\n",
|
479 |
+
"metadata['image'] = metadata['image'].apply(lambda x: f'{target_dir}/{x}')\n",
|
480 |
+
"metadata = metadata.to_dict(orient='list')"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "markdown",
|
485 |
+
"id": "591c55b5",
|
486 |
+
"metadata": {},
|
487 |
+
"source": [
|
488 |
+
"### Creating a formatted dataset"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": 13,
|
494 |
+
"id": "6d5fb041",
|
495 |
+
"metadata": {},
|
496 |
+
"outputs": [],
|
497 |
+
"source": [
|
498 |
+
"dataset = Dataset.from_dict(metadata).cast_column(\"image\", Image())"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"cell_type": "code",
|
503 |
+
"execution_count": 14,
|
504 |
+
"id": "acd56ad2",
|
505 |
+
"metadata": {},
|
506 |
+
"outputs": [
|
507 |
+
{
|
508 |
+
"data": {
|
509 |
+
"text/plain": [
|
510 |
+
"Dataset({\n",
|
511 |
+
" features: ['image', 'sign_class', 'sign_id'],\n",
|
512 |
+
" num_rows: 104358\n",
|
513 |
+
"})"
|
514 |
+
]
|
515 |
+
},
|
516 |
+
"execution_count": 14,
|
517 |
+
"metadata": {},
|
518 |
+
"output_type": "execute_result"
|
519 |
+
}
|
520 |
+
],
|
521 |
+
"source": [
|
522 |
+
"dataset"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": 15,
|
528 |
+
"id": "98bb6893",
|
529 |
+
"metadata": {},
|
530 |
+
"outputs": [
|
531 |
+
{
|
532 |
+
"data": {
|
533 |
+
"text/plain": [
|
534 |
+
"{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=27x26 at 0x1EFD1DD5C70>,\n",
|
535 |
+
" 'sign_class': '2_1',\n",
|
536 |
+
" 'sign_id': 0}"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
"execution_count": 15,
|
540 |
+
"metadata": {},
|
541 |
+
"output_type": "execute_result"
|
542 |
+
}
|
543 |
+
],
|
544 |
+
"source": [
|
545 |
+
"dataset[2]"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"cell_type": "code",
|
550 |
+
"execution_count": 16,
|
551 |
+
"id": "3ab455b9",
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [
|
554 |
+
{
|
555 |
+
"data": {
|
556 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABsAAAAaCAIAAADJ6rCnAAAFtklEQVR4nC3VSZYbxxEA0BgyawZQGJpky6TJpuyl176RL20/P4mmyJ67ANSUQ0R4ozP8xcf9P/+lqgBgJiGuYVlAMzAS0W63+/Dhw+FwMLN5nmPIjLiMPqUUwpJyQLOqLpqmKks/DINzjr1zzB5AzATRFa5QLykhgjG5pqw2TdtWNRGVzi/LEmMOaKYxpyA5EUNKNk9pnjHGKCLO1DnyaATAiJgBzQkZAlhTlfvdod/u2rpBgNJ5TzzjPOMElk2TaTSEnCgGyTkzs6hTVQdiDpnZA4ClDIqeXeFdv9ue+v2u7URSWFdE9Gi157pAMkfGIVDOWVLKkkWEwAsAqLkcU1F4RjLNkjKKVlWx225Oh77vagc6Xc/D8OqI66b0zIeNl45D68dxvIzXeY6CgoQ5RzZTJZfigiBkycxIU+Gp75rTvjvsNp40TsN4fpyGV3bI2tZ13W92RE5Vx5a9V0Jb5iBm05IFEoN3Jmtc1hyAiDxh21THfXPad11DIVyn61te3hxMZGA5Spy58QVXrirrcuMdlo5fL9O8pJATk0cmhxhijCBalK5um65zu23RdVRyni+vYXpGHZvKGIUtWBplLQWa0m/LumHXIWI2MJtzrgwdELp5enbOIYPj6nTqfr277ZomLufX8znMA+hQuFQWWHoUjTlnk+18HXOcdsf3u+5YlXXVtOcxjFP4+fA8r4sTXcl8V9fvb/pPf3l3PGzQUlpDTmfTCXFhCGhmomCRNM3Xmtgj6HItDNkVu67rXNn5Os4x41g4RC0KPt3s777+9dOn26rk69uUwpzTDLYUnBEzYTTLBAmdxPFaVY1mOg+2Ztgdq2rTVVQ3O1qiIr+5umvfnW6+fL37fPdl29Tn4XkYXsfxApqZ0DtGIDQlEMQMoFBCWVKUPC3DKlh1x6Zn9gWqd0WJ7Ojm5t3Hz5+/3v395ua9ZBveLufzFGNGZCIiIkfoCBAygTCq8wiYRYNoIkbniZmB3GUax2mel9VtNqd9f7Pp9ghujSKCjktXCCRjE7IEhmZoZgYGqqAxBjH1XbPb3xy3fU+O5xiG83ValyTmzChEex2uyxJFcLc9leTC/BZnQxW0BECIzOAAxECdh7Rm5uLw7vjh40fXbF8uy8Pz8vR8Ga9zVnPLHIa3i+di09Sbpu53h+D5bAHSDBotRzBmYMLCVNWgqKqs0flqv98fj8dFisv17cf988vbPIwzs3fTOsX7eB3fbk7HDzcn4Kao3f72ttm34/nlPFBYibElTKIp5cDrLyHlT3d/O7z/xzj7P57Oj/fz48N5XqIvakR0yxJizJYNFEEsp77ftm1dtM2WwJBsHn1YR82LARBhXTWnrr/98Auzfx7Gnz9/3j+9hBDWNZAakXPrIo40B12mdbyu07ik2/ew3/W7tm2LomgKXw+vT5OgkWcHbdd/+nJ3OL67TPHh4eH3b98fXs7AtZmgmqE4EFIjFYgS1+UsUVGLHEyM2roo/LaqsWgsZFaL3vtm2zebfg7y7ceP//28f3l5Gcd101d1XbuiZGYnGdARMxuyiIxzfn65pGzLmvd91+874sqVfdUVAOoLLrvdtKb7x/t//+e3h+fzvAZVFZGmrL13zjmXc0ZEAiQiAgLDeU3ZruM4ny/TcQ6bbetc6eqCmZjR2P1x//Lf3799v38cpxCzGtC6rn8uoOIIQSUnU8eevQPCkGLMach5GKdhmg6H7f7Qd13jiUXw7bL+9v3H/dNLiHmNWUSJC0lhnjHn6At2vrCcU86gIKUrVdHMouSU0rhM4zJGieAZvSuhNJP1erl/fBnnCK5UiGrgGXPWHFdGI2CnFpCBCAFSjBJhNUIEFkm+LMTy0/PzmtZpmdq2RbSn+59Pb5cQgievqmYWY1RV732Ma8rgxAIAmAEAIbAioTKiAGZREwU1w8mKM6cUzCwmS1lzUqUkSUxEiUDkTw3F/wPe2gVRfByOAwAAAABJRU5ErkJggg==\n",
|
557 |
+
"text/plain": [
|
558 |
+
"<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=27x26 at 0x1EFD2DDBE80>"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
"execution_count": 16,
|
562 |
+
"metadata": {},
|
563 |
+
"output_type": "execute_result"
|
564 |
+
}
|
565 |
+
],
|
566 |
+
"source": [
|
567 |
+
"dataset[2]['image']"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"cell_type": "markdown",
|
572 |
+
"id": "49420851",
|
573 |
+
"metadata": {},
|
574 |
+
"source": [
|
575 |
+
"### Uploading to remote storage"
|
576 |
+
]
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "code",
|
580 |
+
"execution_count": 17,
|
581 |
+
"id": "1e3a67b4",
|
582 |
+
"metadata": {},
|
583 |
+
"outputs": [],
|
584 |
+
"source": [
|
585 |
+
"notebook_login()"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 18,
|
591 |
+
"id": "e59e80c5",
|
592 |
+
"metadata": {},
|
593 |
+
"outputs": [],
|
594 |
+
"source": [
|
595 |
+
"dataset.push_to_hub(\"eleldar/rtsd_cleaned\")"
|
596 |
+
]
|
597 |
+
}
|
598 |
+
],
|
599 |
+
"metadata": {
|
600 |
+
"kernelspec": {
|
601 |
+
"display_name": "Python 3 (ipykernel)",
|
602 |
+
"language": "python",
|
603 |
+
"name": "python3"
|
604 |
+
},
|
605 |
+
"language_info": {
|
606 |
+
"codemirror_mode": {
|
607 |
+
"name": "ipython",
|
608 |
+
"version": 3
|
609 |
+
},
|
610 |
+
"file_extension": ".py",
|
611 |
+
"mimetype": "text/x-python",
|
612 |
+
"name": "python",
|
613 |
+
"nbconvert_exporter": "python",
|
614 |
+
"pygments_lexer": "ipython3",
|
615 |
+
"version": "3.9.7"
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"nbformat": 4,
|
619 |
+
"nbformat_minor": 5
|
620 |
+
}
|