{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b4f4da53",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"from tqdm import tqdm\n",
"from PIL import Image as Im\n",
"from huggingface_hub import notebook_login\n",
"from datasets import load_dataset, Dataset, Image"
]
},
{
"cell_type": "markdown",
"id": "aa9019fe",
"metadata": {},
"source": [
"### Load a set with coordinates"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "11f31770",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" filename | \n",
" x_from | \n",
" y_from | \n",
" width | \n",
" height | \n",
" sign_class | \n",
" sign_id | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" autosave01_02_2012_09_13_33.jpg | \n",
" 649 | \n",
" 376 | \n",
" 18 | \n",
" 18 | \n",
" 2_1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" autosave01_02_2012_09_13_34.jpg | \n",
" 671 | \n",
" 356 | \n",
" 20 | \n",
" 21 | \n",
" 2_1 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" autosave01_02_2012_09_13_35.jpg | \n",
" 711 | \n",
" 332 | \n",
" 27 | \n",
" 26 | \n",
" 2_1 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" autosave01_02_2012_09_13_36.jpg | \n",
" 764 | \n",
" 290 | \n",
" 37 | \n",
" 36 | \n",
" 2_1 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" autosave01_02_2012_09_13_36.jpg | \n",
" 684 | \n",
" 384 | \n",
" 17 | \n",
" 17 | \n",
" 1_23 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" filename x_from y_from width height sign_class \\\n",
"0 autosave01_02_2012_09_13_33.jpg 649 376 18 18 2_1 \n",
"1 autosave01_02_2012_09_13_34.jpg 671 356 20 21 2_1 \n",
"2 autosave01_02_2012_09_13_35.jpg 711 332 27 26 2_1 \n",
"3 autosave01_02_2012_09_13_36.jpg 764 290 37 36 2_1 \n",
"4 autosave01_02_2012_09_13_36.jpg 684 384 17 17 1_23 \n",
"\n",
" sign_id \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 1 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('full-gt.csv') # from URL: https://graphics.cs.msu.ru/projects/traffic-sign-recognition.html\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1da9267c",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['autosave01_02_2012_09_13_32.jpg',\n",
" 'autosave01_02_2012_09_13_33.jpg',\n",
" 'autosave01_02_2012_09_13_34.jpg',\n",
" 'autosave01_02_2012_09_13_35.jpg',\n",
" 'autosave01_02_2012_09_13_36.jpg']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.listdir('rtsd-frames')[:5] # from URL: https://www.kaggle.com/datasets/watchman/rtsd-dataset"
]
},
{
"cell_type": "markdown",
"id": "dd0a8dfc",
"metadata": {},
"source": [
"### Saving crop files"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e2cf6b7e",
"metadata": {},
"outputs": [],
"source": [
"source_dir = 'rtsd-frames'\n",
"target_dir = 'dataset'\n",
"\n",
"if not os.path.exists(target_dir):\n",
" os.makedirs(target_dir)\n",
"\n",
"def get_sign(\n",
" filename, x_from, y_from, width, height, sign_class, sign_id, \n",
" img_path=source_dir, res_path=target_dir\n",
" ): \n",
" img = Im.open(f'{img_path}/{filename}')\n",
" img = img.crop((x_from, y_from, x_from + width, y_from + height))\n",
" filename = f'{sign_class}___{sign_id}__{filename}'\n",
" img.save(f'{target_dir}/{filename}')\n",
" return {'filename': filename, 'sign_class': sign_class, 'sign_id': sign_id}"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7d81a1cf",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████████████████████████████████████████████████████████████████████| 104358/104358 [18:08<00:00, 95.90it/s]\n"
]
}
],
"source": [
"result, bad_data = [], []\n",
"for i in tqdm(range(len(data))):\n",
" try:\n",
" result.append(get_sign(**data.iloc[i].to_dict()))\n",
" except Exception as e:\n",
" bad_data.append((e, data.iloc[i].to_dict()))\n",
" print('.', end='')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c288b477",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"104358"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(os.listdir(target_dir))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "51aae0a9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"104358"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(result)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "454cc4f4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(bad_data)"
]
},
{
"cell_type": "markdown",
"id": "4fadacb7",
"metadata": {},
"source": [
"### Metadata generation"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f9ee692c",
"metadata": {},
"outputs": [],
"source": [
"pd.DataFrame(result).to_csv(f'{target_dir}.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "07d9969e",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" file_name | \n",
" additional_feature | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2_1___0__autosave01_02_2012_09_13_33.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 1 | \n",
" 2_1___0__autosave01_02_2012_09_13_34.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 2 | \n",
" 2_1___0__autosave01_02_2012_09_13_35.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 3 | \n",
" 2_1___0__autosave01_02_2012_09_13_36.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 4 | \n",
" 1_23___1__autosave01_02_2012_09_13_36.jpg | \n",
" 1_23 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" file_name additional_feature\n",
"0 2_1___0__autosave01_02_2012_09_13_33.jpg 2_1\n",
"1 2_1___0__autosave01_02_2012_09_13_34.jpg 2_1\n",
"2 2_1___0__autosave01_02_2012_09_13_35.jpg 2_1\n",
"3 2_1___0__autosave01_02_2012_09_13_36.jpg 2_1\n",
"4 1_23___1__autosave01_02_2012_09_13_36.jpg 1_23"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame(result)\n",
"df.drop(columns=['sign_id'], inplace=True)\n",
"df.columns = ['file_name', 'additional_feature']\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "57a8c62a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" file_name | \n",
" additional_feature | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2_1___0__autosave01_02_2012_09_13_33.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 1 | \n",
" 2_1___0__autosave01_02_2012_09_13_34.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 2 | \n",
" 2_1___0__autosave01_02_2012_09_13_35.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 3 | \n",
" 2_1___0__autosave01_02_2012_09_13_36.jpg | \n",
" 2_1 | \n",
"
\n",
" \n",
" 4 | \n",
" 1_23___1__autosave01_02_2012_09_13_36.jpg | \n",
" 1_23 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" file_name additional_feature\n",
"0 2_1___0__autosave01_02_2012_09_13_33.jpg 2_1\n",
"1 2_1___0__autosave01_02_2012_09_13_34.jpg 2_1\n",
"2 2_1___0__autosave01_02_2012_09_13_35.jpg 2_1\n",
"3 2_1___0__autosave01_02_2012_09_13_36.jpg 2_1\n",
"4 1_23___1__autosave01_02_2012_09_13_36.jpg 1_23"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.to_json(f'{target_dir}/metadata.jsonl', orient='records', lines=True); df.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7245bea0",
"metadata": {},
"outputs": [],
"source": [
"metadata = pd.read_csv(f'{target_dir}.csv') # или metadata = df.copy()\n",
"metadata.columns = ['image', 'sign_class', 'sign_id']\n",
"metadata['image'] = metadata['image'].apply(lambda x: f'{target_dir}/{x}')\n",
"metadata = metadata.to_dict(orient='list')"
]
},
{
"cell_type": "markdown",
"id": "591c55b5",
"metadata": {},
"source": [
"### Creating a formatted dataset"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6d5fb041",
"metadata": {},
"outputs": [],
"source": [
"dataset = Dataset.from_dict(metadata).cast_column(\"image\", Image())"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "acd56ad2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['image', 'sign_class', 'sign_id'],\n",
" num_rows: 104358\n",
"})"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "98bb6893",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'image': ,\n",
" 'sign_class': '2_1',\n",
" 'sign_id': 0}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[2]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3ab455b9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABsAAAAaCAIAAADJ6rCnAAAFtklEQVR4nC3VSZYbxxEA0BgyawZQGJpky6TJpuyl176RL20/P4mmyJ67ANSUQ0R4ozP8xcf9P/+lqgBgJiGuYVlAMzAS0W63+/Dhw+FwMLN5nmPIjLiMPqUUwpJyQLOqLpqmKks/DINzjr1zzB5AzATRFa5QLykhgjG5pqw2TdtWNRGVzi/LEmMOaKYxpyA5EUNKNk9pnjHGKCLO1DnyaATAiJgBzQkZAlhTlfvdod/u2rpBgNJ5TzzjPOMElk2TaTSEnCgGyTkzs6hTVQdiDpnZA4ClDIqeXeFdv9ue+v2u7URSWFdE9Gi157pAMkfGIVDOWVLKkkWEwAsAqLkcU1F4RjLNkjKKVlWx225Oh77vagc6Xc/D8OqI66b0zIeNl45D68dxvIzXeY6CgoQ5RzZTJZfigiBkycxIU+Gp75rTvjvsNp40TsN4fpyGV3bI2tZ13W92RE5Vx5a9V0Jb5iBm05IFEoN3Jmtc1hyAiDxh21THfXPad11DIVyn61te3hxMZGA5Spy58QVXrirrcuMdlo5fL9O8pJATk0cmhxhijCBalK5um65zu23RdVRyni+vYXpGHZvKGIUtWBplLQWa0m/LumHXIWI2MJtzrgwdELp5enbOIYPj6nTqfr277ZomLufX8znMA+hQuFQWWHoUjTlnk+18HXOcdsf3u+5YlXXVtOcxjFP4+fA8r4sTXcl8V9fvb/pPf3l3PGzQUlpDTmfTCXFhCGhmomCRNM3Xmtgj6HItDNkVu67rXNn5Os4x41g4RC0KPt3s777+9dOn26rk69uUwpzTDLYUnBEzYTTLBAmdxPFaVY1mOg+2Ztgdq2rTVVQ3O1qiIr+5umvfnW6+fL37fPdl29Tn4XkYXsfxApqZ0DtGIDQlEMQMoFBCWVKUPC3DKlh1x6Zn9gWqd0WJ7Ojm5t3Hz5+/3v395ua9ZBveLufzFGNGZCIiIkfoCBAygTCq8wiYRYNoIkbniZmB3GUax2mel9VtNqd9f7Pp9ghujSKCjktXCCRjE7IEhmZoZgYGqqAxBjH1XbPb3xy3fU+O5xiG83ValyTmzChEex2uyxJFcLc9leTC/BZnQxW0BECIzOAAxECdh7Rm5uLw7vjh40fXbF8uy8Pz8vR8Ga9zVnPLHIa3i+di09Sbpu53h+D5bAHSDBotRzBmYMLCVNWgqKqs0flqv98fj8dFisv17cf988vbPIwzs3fTOsX7eB3fbk7HDzcn4Kao3f72ttm34/nlPFBYibElTKIp5cDrLyHlT3d/O7z/xzj7P57Oj/fz48N5XqIvakR0yxJizJYNFEEsp77ftm1dtM2WwJBsHn1YR82LARBhXTWnrr/98Auzfx7Gnz9/3j+9hBDWNZAakXPrIo40B12mdbyu07ik2/ew3/W7tm2LomgKXw+vT5OgkWcHbdd/+nJ3OL67TPHh4eH3b98fXs7AtZmgmqE4EFIjFYgS1+UsUVGLHEyM2roo/LaqsWgsZFaL3vtm2zebfg7y7ceP//28f3l5Gcd101d1XbuiZGYnGdARMxuyiIxzfn65pGzLmvd91+874sqVfdUVAOoLLrvdtKb7x/t//+e3h+fzvAZVFZGmrL13zjmXc0ZEAiQiAgLDeU3ZruM4ny/TcQ6bbetc6eqCmZjR2P1x//Lf3799v38cpxCzGtC6rn8uoOIIQSUnU8eevQPCkGLMach5GKdhmg6H7f7Qd13jiUXw7bL+9v3H/dNLiHmNWUSJC0lhnjHn6At2vrCcU86gIKUrVdHMouSU0rhM4zJGieAZvSuhNJP1erl/fBnnCK5UiGrgGXPWHFdGI2CnFpCBCAFSjBJhNUIEFkm+LMTy0/PzmtZpmdq2RbSn+59Pb5cQgievqmYWY1RV732Ma8rgxAIAmAEAIbAioTKiAGZREwU1w8mKM6cUzCwmS1lzUqUkSUxEiUDkTw3F/wPe2gVRfByOAwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[2]['image']"
]
},
{
"cell_type": "markdown",
"id": "49420851",
"metadata": {},
"source": [
"### Uploading to remote storage"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1e3a67b4",
"metadata": {},
"outputs": [],
"source": [
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "e59e80c5",
"metadata": {},
"outputs": [],
"source": [
"dataset.push_to_hub(\"eleldar/rtsd_cleaned\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}