Initial commit with the dataset loader
Browse files- GENIA-Term-Corpus.py +192 -0
GENIA-Term-Corpus.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
import xml.etree.ElementTree as ET
|
4 |
+
from typing import Tuple, List, Set
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
import csv
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
# TODO: Add BibTeX citation
|
14 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
15 |
+
_CITATION = """\
|
16 |
+
@InProceedings{huggingface:dataset,
|
17 |
+
title = {A great new dataset},
|
18 |
+
author={huggingface, Inc.
|
19 |
+
},
|
20 |
+
year={2020}
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
# TODO: Add description of the dataset here
|
25 |
+
# You can copy an official description
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
GENIA Term corpus
|
28 |
+
"""
|
29 |
+
|
30 |
+
# TODO: Add a link to an official homepage for the dataset here
|
31 |
+
_HOMEPAGE = "http://www.geniaproject.org/genia-corpus/term-corpus"
|
32 |
+
|
33 |
+
# TODO: Add the licence for the dataset here if you can find it
|
34 |
+
_LICENSE = ""
|
35 |
+
|
36 |
+
# TODO: Add link to the official dataset URLs here
|
37 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
38 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
39 |
+
_URLS = "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Term/GENIAcorpus3.02.tgz"
|
40 |
+
|
41 |
+
def _split_files(data_dir):
|
42 |
+
root = ET.parse(os.path.join(data_dir, "GENIA_term_3.02", "GENIAcorpus3.02.xml")).getroot()
|
43 |
+
articles = root.findall(".//article")
|
44 |
+
|
45 |
+
train_root = ET.Element("set")
|
46 |
+
dev_root = ET.Element("set")
|
47 |
+
test_root = ET.Element("set")
|
48 |
+
|
49 |
+
for a in articles:
|
50 |
+
root.remove(a)
|
51 |
+
|
52 |
+
random.shuffle(articles)
|
53 |
+
|
54 |
+
for a in articles[:1600]:
|
55 |
+
train_root.append(a)
|
56 |
+
|
57 |
+
for a in articles[1600:1800]:
|
58 |
+
dev_root.append(a)
|
59 |
+
|
60 |
+
for a in articles[1800:]:
|
61 |
+
test_root.append(a)
|
62 |
+
|
63 |
+
ET.ElementTree(train_root).write(os.path.join(data_dir, "train.xml"))
|
64 |
+
ET.ElementTree(dev_root).write(os.path.join(data_dir, "dev.xml"))
|
65 |
+
ET.ElementTree(test_root).write(os.path.join(data_dir, "test.xml"))
|
66 |
+
|
67 |
+
class GENIATermCorpus(datasets.GeneratorBasedBuilder):
|
68 |
+
|
69 |
+
VERSION = datasets.Version("0.9.0")
|
70 |
+
|
71 |
+
pattern = re.compile(r"[,\.;:\[\]\(\)]")
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
|
75 |
+
features = datasets.Features(
|
76 |
+
{
|
77 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
78 |
+
"folded_tokens": datasets.Sequence(datasets.Value("string")),
|
79 |
+
"labels": datasets.Sequence(datasets.Value("string"))
|
80 |
+
# datasets.features.ClassLabel(
|
81 |
+
# names=["O", ]
|
82 |
+
# )
|
83 |
+
# )
|
84 |
+
}
|
85 |
+
)
|
86 |
+
|
87 |
+
return datasets.DatasetInfo(
|
88 |
+
# This is the description that will appear on the datasets page.
|
89 |
+
description=_DESCRIPTION,
|
90 |
+
# This defines the different columns of the dataset and their types
|
91 |
+
features=features, # Here we define them above because they are different between the two configurations
|
92 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
93 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
94 |
+
# supervised_keys=("sentence", "label"),
|
95 |
+
# Homepage of the dataset for documentation
|
96 |
+
homepage=_HOMEPAGE,
|
97 |
+
# License for the dataset if available
|
98 |
+
license=_LICENSE,
|
99 |
+
# Citation for the dataset
|
100 |
+
citation=_CITATION,
|
101 |
+
)
|
102 |
+
|
103 |
+
def _split_generators(self, dl_manager):
|
104 |
+
|
105 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
106 |
+
# Split the dataset files in train/dev/test
|
107 |
+
_split_files(data_dir)
|
108 |
+
|
109 |
+
return [
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TRAIN,
|
112 |
+
# These kwargs will be passed to _generate_examples
|
113 |
+
gen_kwargs={
|
114 |
+
"filepath": os.path.join(data_dir, "train.xml"),
|
115 |
+
"split": "train",
|
116 |
+
},
|
117 |
+
),
|
118 |
+
datasets.SplitGenerator(
|
119 |
+
name=datasets.Split.TEST,
|
120 |
+
# These kwargs will be passed to _generate_examples
|
121 |
+
gen_kwargs={
|
122 |
+
"filepath": os.path.join(data_dir, "test.xml"),
|
123 |
+
"split": "test"
|
124 |
+
},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.VALIDATION,
|
128 |
+
# These kwargs will be passed to _generate_examples
|
129 |
+
gen_kwargs={
|
130 |
+
"filepath": os.path.join(data_dir, "dev.xml"),
|
131 |
+
"split": "dev",
|
132 |
+
},
|
133 |
+
),
|
134 |
+
]
|
135 |
+
|
136 |
+
|
137 |
+
def _generate_examples(self, filepath:str, split):
|
138 |
+
root = ET.parse(filepath)
|
139 |
+
articles = root.findall(".//article")
|
140 |
+
for idx, article in enumerate(articles):
|
141 |
+
article_id, data= self.parse_article(article)
|
142 |
+
for sen_ix, (tokens, entities) in enumerate(data):
|
143 |
+
yield f"{split}_{idx}_{sen_ix}", {
|
144 |
+
"tokens": tokens,
|
145 |
+
"folded_tokens": [t.lower() for t in tokens],
|
146 |
+
"labels": entities
|
147 |
+
}
|
148 |
+
|
149 |
+
def parse_article(self, article:ET):
|
150 |
+
# Get the id of the article
|
151 |
+
article_id = article.find("./articleinfo/bibliomisc").text
|
152 |
+
# Select all sentences in the article object
|
153 |
+
sentences = article.findall(".//sentence")
|
154 |
+
data = list()
|
155 |
+
for sentence in sentences:
|
156 |
+
data.append(self. build_bio_tags(*self.flatten_tree(sentence)))
|
157 |
+
|
158 |
+
return article_id, data
|
159 |
+
|
160 |
+
def build_bio_tags(self, text_segments:List[str], entities:List[str]) -> Tuple[List[str], List[str]]:
|
161 |
+
|
162 |
+
# Hacky tokenizer
|
163 |
+
tokens, tags = list(), list()
|
164 |
+
for seg, entity in zip(text_segments, entities):
|
165 |
+
# Insert whitespaces
|
166 |
+
seg = self.pattern.sub(r" \g<0> ", seg).strip() # Remove trailing whitespaces
|
167 |
+
t = seg.split()
|
168 |
+
tokens.extend(t)
|
169 |
+
tags.extend( [f"B-{entity}"] + [f"I-{entity}"] * (len(t) - 1) if entity != "O" else ["O"] * len(t))
|
170 |
+
return tokens, tags
|
171 |
+
|
172 |
+
|
173 |
+
def flatten_tree(self, elem:ET) -> Tuple[List[str], List[str]]:
|
174 |
+
# Just keep the simple (not the nested) annotations
|
175 |
+
text_segments, entities = list(), list()
|
176 |
+
if elem.text:
|
177 |
+
text_segments.append(elem.text)
|
178 |
+
if elem.tag == "cons" and "sem" in elem.attrib:
|
179 |
+
tag = elem.attrib['sem'].replace("G#", "")
|
180 |
+
else:
|
181 |
+
tag = "O"
|
182 |
+
entities.append(tag)
|
183 |
+
for child in elem:
|
184 |
+
c_segments, c_entities = self.flatten_tree(child)
|
185 |
+
text_segments.extend(c_segments)
|
186 |
+
entities.extend(c_entities)
|
187 |
+
if elem.tail and elem.tail != '\n':
|
188 |
+
text_segments.append(elem.tail)
|
189 |
+
entities.append("O")
|
190 |
+
|
191 |
+
|
192 |
+
return text_segments, entities
|