Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Turkish
Size:
100K<n<1M
ArXiv:
License:
Commit
·
8e3b9cf
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +155 -0
- dataset_infos.json +1 -0
- dummy/0.0.0/dummy_data.zip +3 -0
- turkish_ner.py +170 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- machine-generated
|
4 |
+
language_creators:
|
5 |
+
- expert-generated
|
6 |
+
languages:
|
7 |
+
- tr
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<1M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- structure-prediction
|
18 |
+
task_ids:
|
19 |
+
- named-entity-recognition
|
20 |
+
---
|
21 |
+
|
22 |
+
|
23 |
+
# Dataset Card for turkish_ner
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
- [Dataset Description](#dataset-description)
|
27 |
+
- [Dataset Summary](#dataset-summary)
|
28 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
29 |
+
- [Languages](#languages)
|
30 |
+
- [Dataset Structure](#dataset-structure)
|
31 |
+
- [Data Instances](#data-instances)
|
32 |
+
- [Data Fields](#data-instances)
|
33 |
+
- [Data Splits](#data-instances)
|
34 |
+
- [Dataset Creation](#dataset-creation)
|
35 |
+
- [Curation Rationale](#curation-rationale)
|
36 |
+
- [Source Data](#source-data)
|
37 |
+
- [Annotations](#annotations)
|
38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
42 |
+
- [Other Known Limitations](#other-known-limitations)
|
43 |
+
- [Additional Information](#additional-information)
|
44 |
+
- [Dataset Curators](#dataset-curators)
|
45 |
+
- [Licensing Information](#licensing-information)
|
46 |
+
- [Citation Information](#citation-information)
|
47 |
+
|
48 |
+
## Dataset Description
|
49 |
+
|
50 |
+
- **Homepage:** http://arxiv.org/abs/1702.02363
|
51 |
+
- **Repository:** [Needs More Information]
|
52 |
+
- **Paper:** http://arxiv.org/abs/1702.02363
|
53 |
+
- **Leaderboard:** [Needs More Information]
|
54 |
+
- **Point of Contact:** erayyildiz@ktu.edu.tr
|
55 |
+
|
56 |
+
### Dataset Summary
|
57 |
+
|
58 |
+
Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.
|
59 |
+
|
60 |
+
### Supported Tasks and Leaderboards
|
61 |
+
|
62 |
+
[Needs More Information]
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
Turkish
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
### Data Instances
|
71 |
+
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
### Data Fields
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
+
|
78 |
+
### Data Splits
|
79 |
+
|
80 |
+
There's only the training set.
|
81 |
+
|
82 |
+
## Dataset Creation
|
83 |
+
|
84 |
+
### Curation Rationale
|
85 |
+
|
86 |
+
[More Information Needed]
|
87 |
+
|
88 |
+
### Source Data
|
89 |
+
|
90 |
+
#### Initial Data Collection and Normalization
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
#### Who are the source language producers?
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
### Annotations
|
99 |
+
|
100 |
+
#### Annotation process
|
101 |
+
|
102 |
+
[More Information Needed]
|
103 |
+
|
104 |
+
#### Who are the annotators?
|
105 |
+
|
106 |
+
[More Information Needed]
|
107 |
+
|
108 |
+
### Personal and Sensitive Information
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
## Considerations for Using the Data
|
113 |
+
|
114 |
+
### Social Impact of Dataset
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
### Discussion of Biases
|
119 |
+
|
120 |
+
[More Information Needed]
|
121 |
+
|
122 |
+
### Other Known Limitations
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
## Additional Information
|
127 |
+
|
128 |
+
### Dataset Curators
|
129 |
+
|
130 |
+
H. Bahadir Sahin, Caglar Tirkaz, Eray Yildiz, Mustafa Tolga Eren and Omer Ozan Sonmez
|
131 |
+
|
132 |
+
### Licensing Information
|
133 |
+
|
134 |
+
Creative Commons Attribution 4.0 International
|
135 |
+
|
136 |
+
### Citation Information
|
137 |
+
|
138 |
+
@InProceedings@article{DBLP:journals/corr/SahinTYES17,
|
139 |
+
author = {H. Bahadir Sahin and
|
140 |
+
Caglar Tirkaz and
|
141 |
+
Eray Yildiz and
|
142 |
+
Mustafa Tolga Eren and
|
143 |
+
Omer Ozan Sonmez},
|
144 |
+
title = {Automatically Annotated Turkish Corpus for Named Entity Recognition
|
145 |
+
and Text Categorization using Large-Scale Gazetteers},
|
146 |
+
journal = {CoRR},
|
147 |
+
volume = {abs/1702.02363},
|
148 |
+
year = {2017},
|
149 |
+
url = {http://arxiv.org/abs/1702.02363},
|
150 |
+
archivePrefix = {arXiv},
|
151 |
+
eprint = {1702.02363},
|
152 |
+
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
|
153 |
+
biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},
|
154 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
155 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Turkish Wikipedia Named-Entity Recognition and Text Categorization\n(TWNERTC) dataset is a collection of automatically categorized and annotated\nsentences obtained from Wikipedia. The authors constructed large-scale\ngazetteers by using a graph crawler algorithm to extract\nrelevant entity and domain information\nfrom a semantic knowledge base, Freebase.\nThe constructed gazetteers contains approximately\n300K entities with thousands of fine-grained entity types\nunder 77 different domains.\n", "citation": "@InProceedings@article{DBLP:journals/corr/SahinTYES17,\n author = {H. Bahadir Sahin and\n Caglar Tirkaz and\n Eray Yildiz and\n Mustafa Tolga Eren and\n Omer Ozan Sonmez},\n title = {Automatically Annotated Turkish Corpus for Named Entity Recognition\n and Text Categorization using Large-Scale Gazetteers},\n journal = {CoRR},\n volume = {abs/1702.02363},\n year = {2017},\n url = {http://arxiv.org/abs/1702.02363},\n archivePrefix = {arXiv},\n eprint = {1702.02363},\n timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},\n biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "https://data.mendeley.com/datasets/cdcztymf4k/1", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"num_classes": 25, "names": ["architecture", "basketball", "book", "business", "education", "fictional_universe", "film", "food", "geography", "government", "law", "location", "military", "music", "opera", "organization", "people", "religion", "royalty", "soccer", "sports", "theater", "time", "travel", "tv"], "names_file": null, "id": null, "_type": "ClassLabel"}, "ner_tags": {"feature": {"num_classes": 9, "names": ["O", "B-PERSON", "I-PERSON", "B-ORGANIZATION", "I-ORGANIZATION", "B-LOCATION", "I-LOCATION", "B-MISC", "I-MISC"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "turkish_ner", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 177658278, "num_examples": 532629, "dataset_name": "turkish_ner"}}, "download_checksums": {"https://data.mendeley.com/public-files/datasets/cdcztymf4k/files/5557ef78-7d53-4a01-8241-3173c47bbe10/file_downloaded": {"num_bytes": 204393976, "checksum": "e03e2867a225d63f0139dd4ced028e5da795a8a48e140ad4c17999a8560dbc57"}}, "download_size": 204393976, "post_processing_size": null, "dataset_size": 177658278, "size_in_bytes": 382052254}}
|
dummy/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ce14f1ea12dda073ba35fe0381e477c03c176f8c4d192d87b72977846b89c9d
|
3 |
+
size 5801
|
turkish_ner.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@InProceedings@article{DBLP:journals/corr/SahinTYES17,
|
29 |
+
author = {H. Bahadir Sahin and
|
30 |
+
Caglar Tirkaz and
|
31 |
+
Eray Yildiz and
|
32 |
+
Mustafa Tolga Eren and
|
33 |
+
Omer Ozan Sonmez},
|
34 |
+
title = {Automatically Annotated Turkish Corpus for Named Entity Recognition
|
35 |
+
and Text Categorization using Large-Scale Gazetteers},
|
36 |
+
journal = {CoRR},
|
37 |
+
volume = {abs/1702.02363},
|
38 |
+
year = {2017},
|
39 |
+
url = {http://arxiv.org/abs/1702.02363},
|
40 |
+
archivePrefix = {arXiv},
|
41 |
+
eprint = {1702.02363},
|
42 |
+
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
|
43 |
+
biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},
|
44 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
# TODO: Add description of the dataset here
|
49 |
+
# You can copy an official description
|
50 |
+
_DESCRIPTION = """\
|
51 |
+
Turkish Wikipedia Named-Entity Recognition and Text Categorization
|
52 |
+
(TWNERTC) dataset is a collection of automatically categorized and annotated
|
53 |
+
sentences obtained from Wikipedia. The authors constructed large-scale
|
54 |
+
gazetteers by using a graph crawler algorithm to extract
|
55 |
+
relevant entity and domain information
|
56 |
+
from a semantic knowledge base, Freebase.
|
57 |
+
The constructed gazetteers contains approximately
|
58 |
+
300K entities with thousands of fine-grained entity types
|
59 |
+
under 77 different domains.
|
60 |
+
"""
|
61 |
+
|
62 |
+
# TODO: Add a link to an official homepage for the dataset here
|
63 |
+
_HOMEPAGE = "https://data.mendeley.com/datasets/cdcztymf4k/1"
|
64 |
+
|
65 |
+
# TODO: Add the licence for the dataset here if you can find it
|
66 |
+
_LICENSE = "Creative Commons Attribution 4.0 International"
|
67 |
+
|
68 |
+
_URL = "https://data.mendeley.com/public-files/datasets/cdcztymf4k/files/5557ef78-7d53-4a01-8241-3173c47bbe10/file_downloaded"
|
69 |
+
|
70 |
+
|
71 |
+
_FILE_NAME_ZIP = "TWNERTC_TC_Coarse Grained NER_DomainIndependent_NoiseReduction.zip"
|
72 |
+
_FILE_NAME = "TWNERTC_TC_Coarse Grained NER_DomainIndependent_NoiseReduction.DUMP"
|
73 |
+
|
74 |
+
|
75 |
+
class TurkishNER(datasets.GeneratorBasedBuilder):
|
76 |
+
"""TODO: Short description of my dataset."""
|
77 |
+
|
78 |
+
def _info(self):
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=datasets.Features(
|
82 |
+
{
|
83 |
+
"id": datasets.Value("string"),
|
84 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
85 |
+
"domain": datasets.ClassLabel(
|
86 |
+
names=[
|
87 |
+
"architecture",
|
88 |
+
"basketball",
|
89 |
+
"book",
|
90 |
+
"business",
|
91 |
+
"education",
|
92 |
+
"fictional_universe",
|
93 |
+
"film",
|
94 |
+
"food",
|
95 |
+
"geography",
|
96 |
+
"government",
|
97 |
+
"law",
|
98 |
+
"location",
|
99 |
+
"military",
|
100 |
+
"music",
|
101 |
+
"opera",
|
102 |
+
"organization",
|
103 |
+
"people",
|
104 |
+
"religion",
|
105 |
+
"royalty",
|
106 |
+
"soccer",
|
107 |
+
"sports",
|
108 |
+
"theater",
|
109 |
+
"time",
|
110 |
+
"travel",
|
111 |
+
"tv",
|
112 |
+
]
|
113 |
+
),
|
114 |
+
"ner_tags": datasets.Sequence(
|
115 |
+
datasets.features.ClassLabel(
|
116 |
+
names=[
|
117 |
+
"O",
|
118 |
+
"B-PERSON",
|
119 |
+
"I-PERSON",
|
120 |
+
"B-ORGANIZATION",
|
121 |
+
"I-ORGANIZATION",
|
122 |
+
"B-LOCATION",
|
123 |
+
"I-LOCATION",
|
124 |
+
"B-MISC",
|
125 |
+
"I-MISC",
|
126 |
+
]
|
127 |
+
)
|
128 |
+
),
|
129 |
+
}
|
130 |
+
),
|
131 |
+
supervised_keys=None,
|
132 |
+
# Homepage of the dataset for documentation
|
133 |
+
homepage=_HOMEPAGE,
|
134 |
+
# License for the dataset if available
|
135 |
+
license=_LICENSE,
|
136 |
+
# Citation for the dataset
|
137 |
+
citation=_CITATION,
|
138 |
+
)
|
139 |
+
|
140 |
+
def _split_generators(self, dl_manager):
|
141 |
+
"""Returns SplitGenerators."""
|
142 |
+
data_dir = dl_manager.extract(os.path.join(dl_manager.download_and_extract(_URL), _FILE_NAME_ZIP))
|
143 |
+
return [
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=datasets.Split.TRAIN,
|
146 |
+
gen_kwargs={
|
147 |
+
"filepath": (os.path.join(data_dir, _FILE_NAME)),
|
148 |
+
"split": "train",
|
149 |
+
},
|
150 |
+
),
|
151 |
+
]
|
152 |
+
|
153 |
+
def _generate_examples(self, filepath, split):
|
154 |
+
""" Yields examples. """
|
155 |
+
logging.info("⏳ Generating examples from = %s", filepath)
|
156 |
+
|
157 |
+
with open(filepath, encoding="utf-8") as f:
|
158 |
+
id_ = -1
|
159 |
+
for line in f:
|
160 |
+
if line == "" or line == "\n":
|
161 |
+
continue
|
162 |
+
else:
|
163 |
+
splits = line.split("\t")
|
164 |
+
id_ += 1
|
165 |
+
yield id_, {
|
166 |
+
"id": str(id_),
|
167 |
+
"domain": splits[0],
|
168 |
+
"tokens": splits[2].split(" "),
|
169 |
+
"ner_tags": splits[1].split(" "),
|
170 |
+
}
|