Unnamed: 0
int64
0
10k
repository_name
stringlengths
7
54
func_path_in_repository
stringlengths
5
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
100
30.3k
language
stringclasses
1 value
func_code_string
stringlengths
100
30.3k
func_code_tokens
stringlengths
138
33.2k
func_documentation_string
stringlengths
1
15k
func_documentation_tokens
stringlengths
5
5.14k
split_name
stringclasses
1 value
func_code_url
stringlengths
91
315
300
Cognexa/cxflow
cxflow/cli/ls.py
_ls_print_listing
def _ls_print_listing(dir_: str, recursive: bool, all_: bool, long: bool) -> List[Tuple[str, dict, TrainingTrace]]: """ Print names of the train dirs contained in the given dir. :param dir_: dir to be listed :param recursive: walk recursively in sub-directories, stop at train dirs (--recursive option) :param all_: include train dirs with no epochs done (--all option) :param long: list more details including model name, model and dataset classes, age, duration and epochs done (--long option) :return: list of found training tuples (train_dir, configuration dict, trace) """ all_trainings = [] for root_dir, train_dirs in walk_train_dirs(dir_): if train_dirs: if recursive: print(root_dir + ':') trainings = [(train_dir, load_config(path.join(train_dir, CXF_CONFIG_FILE), []), TrainingTrace.from_file(path.join(train_dir, CXF_TRACE_FILE))) for train_dir in [os.path.join(root_dir, train_dir) for train_dir in train_dirs]] if not all_: trainings = [train_dir for train_dir in trainings if train_dir[2][TrainingTraceKeys.EPOCHS_DONE]] if long: print('total {}'.format(len(trainings))) _print_trainings_long(trainings) else: for train_dir, _, _ in trainings: print(path.basename(train_dir)) all_trainings.extend(trainings) if recursive: print() if not recursive: break return all_trainings
python
def _ls_print_listing(dir_: str, recursive: bool, all_: bool, long: bool) -> List[Tuple[str, dict, TrainingTrace]]: """ Print names of the train dirs contained in the given dir. :param dir_: dir to be listed :param recursive: walk recursively in sub-directories, stop at train dirs (--recursive option) :param all_: include train dirs with no epochs done (--all option) :param long: list more details including model name, model and dataset classes, age, duration and epochs done (--long option) :return: list of found training tuples (train_dir, configuration dict, trace) """ all_trainings = [] for root_dir, train_dirs in walk_train_dirs(dir_): if train_dirs: if recursive: print(root_dir + ':') trainings = [(train_dir, load_config(path.join(train_dir, CXF_CONFIG_FILE), []), TrainingTrace.from_file(path.join(train_dir, CXF_TRACE_FILE))) for train_dir in [os.path.join(root_dir, train_dir) for train_dir in train_dirs]] if not all_: trainings = [train_dir for train_dir in trainings if train_dir[2][TrainingTraceKeys.EPOCHS_DONE]] if long: print('total {}'.format(len(trainings))) _print_trainings_long(trainings) else: for train_dir, _, _ in trainings: print(path.basename(train_dir)) all_trainings.extend(trainings) if recursive: print() if not recursive: break return all_trainings
['def', '_ls_print_listing', '(', 'dir_', ':', 'str', ',', 'recursive', ':', 'bool', ',', 'all_', ':', 'bool', ',', 'long', ':', 'bool', ')', '->', 'List', '[', 'Tuple', '[', 'str', ',', 'dict', ',', 'TrainingTrace', ']', ']', ':', 'all_trainings', '=', '[', ']', 'for', 'root_dir', ',', 'train_dirs', 'in', 'walk_train_dirs', '(', 'dir_', ')', ':', 'if', 'train_dirs', ':', 'if', 'recursive', ':', 'print', '(', 'root_dir', '+', "':'", ')', 'trainings', '=', '[', '(', 'train_dir', ',', 'load_config', '(', 'path', '.', 'join', '(', 'train_dir', ',', 'CXF_CONFIG_FILE', ')', ',', '[', ']', ')', ',', 'TrainingTrace', '.', 'from_file', '(', 'path', '.', 'join', '(', 'train_dir', ',', 'CXF_TRACE_FILE', ')', ')', ')', 'for', 'train_dir', 'in', '[', 'os', '.', 'path', '.', 'join', '(', 'root_dir', ',', 'train_dir', ')', 'for', 'train_dir', 'in', 'train_dirs', ']', ']', 'if', 'not', 'all_', ':', 'trainings', '=', '[', 'train_dir', 'for', 'train_dir', 'in', 'trainings', 'if', 'train_dir', '[', '2', ']', '[', 'TrainingTraceKeys', '.', 'EPOCHS_DONE', ']', ']', 'if', 'long', ':', 'print', '(', "'total {}'", '.', 'format', '(', 'len', '(', 'trainings', ')', ')', ')', '_print_trainings_long', '(', 'trainings', ')', 'else', ':', 'for', 'train_dir', ',', '_', ',', '_', 'in', 'trainings', ':', 'print', '(', 'path', '.', 'basename', '(', 'train_dir', ')', ')', 'all_trainings', '.', 'extend', '(', 'trainings', ')', 'if', 'recursive', ':', 'print', '(', ')', 'if', 'not', 'recursive', ':', 'break', 'return', 'all_trainings']
Print names of the train dirs contained in the given dir. :param dir_: dir to be listed :param recursive: walk recursively in sub-directories, stop at train dirs (--recursive option) :param all_: include train dirs with no epochs done (--all option) :param long: list more details including model name, model and dataset classes, age, duration and epochs done (--long option) :return: list of found training tuples (train_dir, configuration dict, trace)
['Print', 'names', 'of', 'the', 'train', 'dirs', 'contained', 'in', 'the', 'given', 'dir', '.']
train
https://github.com/Cognexa/cxflow/blob/dd609e6b0bd854424a8f86781dd77801a13038f9/cxflow/cli/ls.py#L117-L152
301
potash/drain
drain/util.py
to_float
def to_float(*args): """ cast numpy arrays to float32 if there's more than one, return an array """ floats = [np.array(a, dtype=np.float32) for a in args] return floats[0] if len(floats) == 1 else floats
python
def to_float(*args): """ cast numpy arrays to float32 if there's more than one, return an array """ floats = [np.array(a, dtype=np.float32) for a in args] return floats[0] if len(floats) == 1 else floats
['def', 'to_float', '(', '*', 'args', ')', ':', 'floats', '=', '[', 'np', '.', 'array', '(', 'a', ',', 'dtype', '=', 'np', '.', 'float32', ')', 'for', 'a', 'in', 'args', ']', 'return', 'floats', '[', '0', ']', 'if', 'len', '(', 'floats', ')', '==', '1', 'else', 'floats']
cast numpy arrays to float32 if there's more than one, return an array
['cast', 'numpy', 'arrays', 'to', 'float32', 'if', 'there', 's', 'more', 'than', 'one', 'return', 'an', 'array']
train
https://github.com/potash/drain/blob/ddd62081cb9317beb5d21f86c8b4bb196ca3d222/drain/util.py#L83-L89
302
pymoca/pymoca
src/pymoca/backends/xml/parser.py
ModelListener.call
def call(self, tag_name: str, *args, **kwargs): """Convenience method for calling methods with walker.""" if hasattr(self, tag_name): getattr(self, tag_name)(*args, **kwargs)
python
def call(self, tag_name: str, *args, **kwargs): """Convenience method for calling methods with walker.""" if hasattr(self, tag_name): getattr(self, tag_name)(*args, **kwargs)
['def', 'call', '(', 'self', ',', 'tag_name', ':', 'str', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'if', 'hasattr', '(', 'self', ',', 'tag_name', ')', ':', 'getattr', '(', 'self', ',', 'tag_name', ')', '(', '*', 'args', ',', '*', '*', 'kwargs', ')']
Convenience method for calling methods with walker.
['Convenience', 'method', 'for', 'calling', 'methods', 'with', 'walker', '.']
train
https://github.com/pymoca/pymoca/blob/14b5eb7425e96689de6cc5c10f400895d586a978/src/pymoca/backends/xml/parser.py#L85-L88
303
cloud-custodian/cloud-custodian
c7n/utils.py
reformat_schema
def reformat_schema(model): """ Reformat schema to be in a more displayable format. """ if not hasattr(model, 'schema'): return "Model '{}' does not have a schema".format(model) if 'properties' not in model.schema: return "Schema in unexpected format." ret = copy.deepcopy(model.schema['properties']) if 'type' in ret: del(ret['type']) for key in model.schema.get('required', []): if key in ret: ret[key]['required'] = True return ret
python
def reformat_schema(model): """ Reformat schema to be in a more displayable format. """ if not hasattr(model, 'schema'): return "Model '{}' does not have a schema".format(model) if 'properties' not in model.schema: return "Schema in unexpected format." ret = copy.deepcopy(model.schema['properties']) if 'type' in ret: del(ret['type']) for key in model.schema.get('required', []): if key in ret: ret[key]['required'] = True return ret
['def', 'reformat_schema', '(', 'model', ')', ':', 'if', 'not', 'hasattr', '(', 'model', ',', "'schema'", ')', ':', 'return', '"Model \'{}\' does not have a schema"', '.', 'format', '(', 'model', ')', 'if', "'properties'", 'not', 'in', 'model', '.', 'schema', ':', 'return', '"Schema in unexpected format."', 'ret', '=', 'copy', '.', 'deepcopy', '(', 'model', '.', 'schema', '[', "'properties'", ']', ')', 'if', "'type'", 'in', 'ret', ':', 'del', '(', 'ret', '[', "'type'", ']', ')', 'for', 'key', 'in', 'model', '.', 'schema', '.', 'get', '(', "'required'", ',', '[', ']', ')', ':', 'if', 'key', 'in', 'ret', ':', 'ret', '[', 'key', ']', '[', "'required'", ']', '=', 'True', 'return', 'ret']
Reformat schema to be in a more displayable format.
['Reformat', 'schema', 'to', 'be', 'in', 'a', 'more', 'displayable', 'format', '.']
train
https://github.com/cloud-custodian/cloud-custodian/blob/52ef732eb3d7bc939d1579faf519314814695c08/c7n/utils.py#L449-L466
304
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecuritiesAggregate.get_by_symbol
def get_by_symbol(self, symbol: str) -> Commodity: """ Returns the commodity with the given symbol. If more are found, an exception will be thrown. """ # handle namespace. Accept GnuCash and Yahoo-style symbols. full_symbol = self.__parse_gc_symbol(symbol) query = ( self.query .filter(Commodity.mnemonic == full_symbol["mnemonic"]) ) if full_symbol["namespace"]: query = query.filter(Commodity.namespace == full_symbol["namespace"]) return query.first()
python
def get_by_symbol(self, symbol: str) -> Commodity: """ Returns the commodity with the given symbol. If more are found, an exception will be thrown. """ # handle namespace. Accept GnuCash and Yahoo-style symbols. full_symbol = self.__parse_gc_symbol(symbol) query = ( self.query .filter(Commodity.mnemonic == full_symbol["mnemonic"]) ) if full_symbol["namespace"]: query = query.filter(Commodity.namespace == full_symbol["namespace"]) return query.first()
['def', 'get_by_symbol', '(', 'self', ',', 'symbol', ':', 'str', ')', '->', 'Commodity', ':', '# handle namespace. Accept GnuCash and Yahoo-style symbols.', 'full_symbol', '=', 'self', '.', '__parse_gc_symbol', '(', 'symbol', ')', 'query', '=', '(', 'self', '.', 'query', '.', 'filter', '(', 'Commodity', '.', 'mnemonic', '==', 'full_symbol', '[', '"mnemonic"', ']', ')', ')', 'if', 'full_symbol', '[', '"namespace"', ']', ':', 'query', '=', 'query', '.', 'filter', '(', 'Commodity', '.', 'namespace', '==', 'full_symbol', '[', '"namespace"', ']', ')', 'return', 'query', '.', 'first', '(', ')']
Returns the commodity with the given symbol. If more are found, an exception will be thrown.
['Returns', 'the', 'commodity', 'with', 'the', 'given', 'symbol', '.', 'If', 'more', 'are', 'found', 'an', 'exception', 'will', 'be', 'thrown', '.']
train
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L387-L402
305
O365/python-o365
O365/mailbox.py
Folder.copy_folder
def copy_folder(self, to_folder): """ Copy this folder and it's contents to into another folder :param to_folder: the destination Folder/folder_id to copy into :type to_folder: mailbox.Folder or str :return: The new folder after copying :rtype: mailbox.Folder or None """ to_folder_id = to_folder.folder_id if isinstance(to_folder, Folder) else to_folder if self.root or not self.folder_id or not to_folder_id: return None url = self.build_url( self._endpoints.get('copy_folder').format(id=self.folder_id)) response = self.con.post(url, data={self._cc('destinationId'): to_folder_id}) if not response: return None folder = response.json() self_class = getattr(self, 'folder_constructor', type(self)) # Everything received from cloud must be passed as self._cloud_data_key return self_class(con=self.con, main_resource=self.main_resource, **{self._cloud_data_key: folder})
python
def copy_folder(self, to_folder): """ Copy this folder and it's contents to into another folder :param to_folder: the destination Folder/folder_id to copy into :type to_folder: mailbox.Folder or str :return: The new folder after copying :rtype: mailbox.Folder or None """ to_folder_id = to_folder.folder_id if isinstance(to_folder, Folder) else to_folder if self.root or not self.folder_id or not to_folder_id: return None url = self.build_url( self._endpoints.get('copy_folder').format(id=self.folder_id)) response = self.con.post(url, data={self._cc('destinationId'): to_folder_id}) if not response: return None folder = response.json() self_class = getattr(self, 'folder_constructor', type(self)) # Everything received from cloud must be passed as self._cloud_data_key return self_class(con=self.con, main_resource=self.main_resource, **{self._cloud_data_key: folder})
['def', 'copy_folder', '(', 'self', ',', 'to_folder', ')', ':', 'to_folder_id', '=', 'to_folder', '.', 'folder_id', 'if', 'isinstance', '(', 'to_folder', ',', 'Folder', ')', 'else', 'to_folder', 'if', 'self', '.', 'root', 'or', 'not', 'self', '.', 'folder_id', 'or', 'not', 'to_folder_id', ':', 'return', 'None', 'url', '=', 'self', '.', 'build_url', '(', 'self', '.', '_endpoints', '.', 'get', '(', "'copy_folder'", ')', '.', 'format', '(', 'id', '=', 'self', '.', 'folder_id', ')', ')', 'response', '=', 'self', '.', 'con', '.', 'post', '(', 'url', ',', 'data', '=', '{', 'self', '.', '_cc', '(', "'destinationId'", ')', ':', 'to_folder_id', '}', ')', 'if', 'not', 'response', ':', 'return', 'None', 'folder', '=', 'response', '.', 'json', '(', ')', 'self_class', '=', 'getattr', '(', 'self', ',', "'folder_constructor'", ',', 'type', '(', 'self', ')', ')', '# Everything received from cloud must be passed as self._cloud_data_key', 'return', 'self_class', '(', 'con', '=', 'self', '.', 'con', ',', 'main_resource', '=', 'self', '.', 'main_resource', ',', '*', '*', '{', 'self', '.', '_cloud_data_key', ':', 'folder', '}', ')']
Copy this folder and it's contents to into another folder :param to_folder: the destination Folder/folder_id to copy into :type to_folder: mailbox.Folder or str :return: The new folder after copying :rtype: mailbox.Folder or None
['Copy', 'this', 'folder', 'and', 'it', 's', 'contents', 'to', 'into', 'another', 'folder']
train
https://github.com/O365/python-o365/blob/02a71cf3775cc6a3c042e003365d6a07c8c75a73/O365/mailbox.py#L405-L432
306
geertj/gruvi
lib/gruvi/fibers.py
spawn
def spawn(func, *args, **kwargs): """Spawn a new fiber. A new :class:`Fiber` is created with main function *func* and positional arguments *args*. The keyword arguments are passed to the :class:`Fiber` constructor, not to the main function. The fiber is then scheduled to start by calling its :meth:`~Fiber.start` method. The fiber instance is returned. """ fiber = Fiber(func, args, **kwargs) fiber.start() return fiber
python
def spawn(func, *args, **kwargs): """Spawn a new fiber. A new :class:`Fiber` is created with main function *func* and positional arguments *args*. The keyword arguments are passed to the :class:`Fiber` constructor, not to the main function. The fiber is then scheduled to start by calling its :meth:`~Fiber.start` method. The fiber instance is returned. """ fiber = Fiber(func, args, **kwargs) fiber.start() return fiber
['def', 'spawn', '(', 'func', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'fiber', '=', 'Fiber', '(', 'func', ',', 'args', ',', '*', '*', 'kwargs', ')', 'fiber', '.', 'start', '(', ')', 'return', 'fiber']
Spawn a new fiber. A new :class:`Fiber` is created with main function *func* and positional arguments *args*. The keyword arguments are passed to the :class:`Fiber` constructor, not to the main function. The fiber is then scheduled to start by calling its :meth:`~Fiber.start` method. The fiber instance is returned.
['Spawn', 'a', 'new', 'fiber', '.']
train
https://github.com/geertj/gruvi/blob/1d77ca439600b6ea7a19aa1ee85dca0f3be3f3f8/lib/gruvi/fibers.py#L150-L162
307
MalongTech/productai-python-sdk
productai/__init__.py
ProductSetAPI.get_products
def get_products(self, product_ids): """ This function (and backend API) is being obsoleted. Don't use it anymore. """ if self.product_set_id is None: raise ValueError('product_set_id must be specified') data = {'ids': product_ids} return self.client.get(self.base_url + '/products', json=data)
python
def get_products(self, product_ids): """ This function (and backend API) is being obsoleted. Don't use it anymore. """ if self.product_set_id is None: raise ValueError('product_set_id must be specified') data = {'ids': product_ids} return self.client.get(self.base_url + '/products', json=data)
['def', 'get_products', '(', 'self', ',', 'product_ids', ')', ':', 'if', 'self', '.', 'product_set_id', 'is', 'None', ':', 'raise', 'ValueError', '(', "'product_set_id must be specified'", ')', 'data', '=', '{', "'ids'", ':', 'product_ids', '}', 'return', 'self', '.', 'client', '.', 'get', '(', 'self', '.', 'base_url', '+', "'/products'", ',', 'json', '=', 'data', ')']
This function (and backend API) is being obsoleted. Don't use it anymore.
['This', 'function', '(', 'and', 'backend', 'API', ')', 'is', 'being', 'obsoleted', '.', 'Don', 't', 'use', 'it', 'anymore', '.']
train
https://github.com/MalongTech/productai-python-sdk/blob/2227783dbef4ce8e94613c08e67d65d6eecee21c/productai/__init__.py#L544-L551
308
singingwolfboy/flask-dance
flask_dance/contrib/reddit.py
make_reddit_blueprint
def make_reddit_blueprint( client_id=None, client_secret=None, scope="identity", permanent=False, redirect_url=None, redirect_to=None, login_url=None, authorized_url=None, session_class=None, storage=None, user_agent=None, ): """ Make a blueprint for authenticating with Reddit using OAuth 2. This requires a client ID and client secret from Reddit. You should either pass them to this constructor, or make sure that your Flask application config defines them, using the variables :envvar:`REDDIT_OAUTH_CLIENT_ID` and :envvar:`REDDIT_OAUTH_CLIENT_SECRET`. Args: client_id (str): The client ID for your application on Reddit. client_secret (str): The client secret for your application on Reddit scope (str, optional): space-separated list of scopes for the OAuth token Defaults to ``identity`` permanent (bool, optional): Whether to request permanent access token. Defaults to False, access will be valid for 1 hour redirect_url (str): the URL to redirect to after the authentication dance is complete redirect_to (str): if ``redirect_url`` is not defined, the name of the view to redirect to after the authentication dance is complete. The actual URL will be determined by :func:`flask.url_for` login_url (str, optional): the URL path for the ``login`` view. Defaults to ``/reddit`` authorized_url (str, optional): the URL path for the ``authorized`` view. Defaults to ``/reddit/authorized``. session_class (class, optional): The class to use for creating a Requests session. Defaults to :class:`~flask_dance.contrib.reddit.RedditOAuth2Session`. storage: A token storage class, or an instance of a token storage class, to use for this blueprint. Defaults to :class:`~flask_dance.consumer.storage.session.SessionStorage`. user_agent (str, optional): User agent for the requests to Reddit API. Defaults to ``Flask-Dance/{{version}}`` :rtype: :class:`~flask_dance.consumer.OAuth2ConsumerBlueprint` :returns: A :ref:`blueprint <flask:blueprints>` to attach to your Flask app. """ authorization_url_params = {} if permanent: authorization_url_params["duration"] = "permanent" reddit_bp = OAuth2ConsumerBlueprint( "reddit", __name__, client_id=client_id, client_secret=client_secret, scope=scope, base_url="https://oauth.reddit.com/", authorization_url="https://www.reddit.com/api/v1/authorize", authorization_url_params=authorization_url_params, token_url="https://www.reddit.com/api/v1/access_token", auto_refresh_url="https://www.reddit.com/api/v1/access_token", redirect_url=redirect_url, redirect_to=redirect_to, login_url=login_url, authorized_url=authorized_url, session_class=session_class or RedditOAuth2Session, storage=storage, ) reddit_bp.from_config["client_id"] = "REDDIT_OAUTH_CLIENT_ID" reddit_bp.from_config["client_secret"] = "REDDIT_OAUTH_CLIENT_SECRET" reddit_bp.user_agent = user_agent @reddit_bp.before_app_request def set_applocal_session(): ctx = stack.top ctx.reddit_oauth = reddit_bp.session return reddit_bp
python
def make_reddit_blueprint( client_id=None, client_secret=None, scope="identity", permanent=False, redirect_url=None, redirect_to=None, login_url=None, authorized_url=None, session_class=None, storage=None, user_agent=None, ): """ Make a blueprint for authenticating with Reddit using OAuth 2. This requires a client ID and client secret from Reddit. You should either pass them to this constructor, or make sure that your Flask application config defines them, using the variables :envvar:`REDDIT_OAUTH_CLIENT_ID` and :envvar:`REDDIT_OAUTH_CLIENT_SECRET`. Args: client_id (str): The client ID for your application on Reddit. client_secret (str): The client secret for your application on Reddit scope (str, optional): space-separated list of scopes for the OAuth token Defaults to ``identity`` permanent (bool, optional): Whether to request permanent access token. Defaults to False, access will be valid for 1 hour redirect_url (str): the URL to redirect to after the authentication dance is complete redirect_to (str): if ``redirect_url`` is not defined, the name of the view to redirect to after the authentication dance is complete. The actual URL will be determined by :func:`flask.url_for` login_url (str, optional): the URL path for the ``login`` view. Defaults to ``/reddit`` authorized_url (str, optional): the URL path for the ``authorized`` view. Defaults to ``/reddit/authorized``. session_class (class, optional): The class to use for creating a Requests session. Defaults to :class:`~flask_dance.contrib.reddit.RedditOAuth2Session`. storage: A token storage class, or an instance of a token storage class, to use for this blueprint. Defaults to :class:`~flask_dance.consumer.storage.session.SessionStorage`. user_agent (str, optional): User agent for the requests to Reddit API. Defaults to ``Flask-Dance/{{version}}`` :rtype: :class:`~flask_dance.consumer.OAuth2ConsumerBlueprint` :returns: A :ref:`blueprint <flask:blueprints>` to attach to your Flask app. """ authorization_url_params = {} if permanent: authorization_url_params["duration"] = "permanent" reddit_bp = OAuth2ConsumerBlueprint( "reddit", __name__, client_id=client_id, client_secret=client_secret, scope=scope, base_url="https://oauth.reddit.com/", authorization_url="https://www.reddit.com/api/v1/authorize", authorization_url_params=authorization_url_params, token_url="https://www.reddit.com/api/v1/access_token", auto_refresh_url="https://www.reddit.com/api/v1/access_token", redirect_url=redirect_url, redirect_to=redirect_to, login_url=login_url, authorized_url=authorized_url, session_class=session_class or RedditOAuth2Session, storage=storage, ) reddit_bp.from_config["client_id"] = "REDDIT_OAUTH_CLIENT_ID" reddit_bp.from_config["client_secret"] = "REDDIT_OAUTH_CLIENT_SECRET" reddit_bp.user_agent = user_agent @reddit_bp.before_app_request def set_applocal_session(): ctx = stack.top ctx.reddit_oauth = reddit_bp.session return reddit_bp
['def', 'make_reddit_blueprint', '(', 'client_id', '=', 'None', ',', 'client_secret', '=', 'None', ',', 'scope', '=', '"identity"', ',', 'permanent', '=', 'False', ',', 'redirect_url', '=', 'None', ',', 'redirect_to', '=', 'None', ',', 'login_url', '=', 'None', ',', 'authorized_url', '=', 'None', ',', 'session_class', '=', 'None', ',', 'storage', '=', 'None', ',', 'user_agent', '=', 'None', ',', ')', ':', 'authorization_url_params', '=', '{', '}', 'if', 'permanent', ':', 'authorization_url_params', '[', '"duration"', ']', '=', '"permanent"', 'reddit_bp', '=', 'OAuth2ConsumerBlueprint', '(', '"reddit"', ',', '__name__', ',', 'client_id', '=', 'client_id', ',', 'client_secret', '=', 'client_secret', ',', 'scope', '=', 'scope', ',', 'base_url', '=', '"https://oauth.reddit.com/"', ',', 'authorization_url', '=', '"https://www.reddit.com/api/v1/authorize"', ',', 'authorization_url_params', '=', 'authorization_url_params', ',', 'token_url', '=', '"https://www.reddit.com/api/v1/access_token"', ',', 'auto_refresh_url', '=', '"https://www.reddit.com/api/v1/access_token"', ',', 'redirect_url', '=', 'redirect_url', ',', 'redirect_to', '=', 'redirect_to', ',', 'login_url', '=', 'login_url', ',', 'authorized_url', '=', 'authorized_url', ',', 'session_class', '=', 'session_class', 'or', 'RedditOAuth2Session', ',', 'storage', '=', 'storage', ',', ')', 'reddit_bp', '.', 'from_config', '[', '"client_id"', ']', '=', '"REDDIT_OAUTH_CLIENT_ID"', 'reddit_bp', '.', 'from_config', '[', '"client_secret"', ']', '=', '"REDDIT_OAUTH_CLIENT_SECRET"', 'reddit_bp', '.', 'user_agent', '=', 'user_agent', '@', 'reddit_bp', '.', 'before_app_request', 'def', 'set_applocal_session', '(', ')', ':', 'ctx', '=', 'stack', '.', 'top', 'ctx', '.', 'reddit_oauth', '=', 'reddit_bp', '.', 'session', 'return', 'reddit_bp']
Make a blueprint for authenticating with Reddit using OAuth 2. This requires a client ID and client secret from Reddit. You should either pass them to this constructor, or make sure that your Flask application config defines them, using the variables :envvar:`REDDIT_OAUTH_CLIENT_ID` and :envvar:`REDDIT_OAUTH_CLIENT_SECRET`. Args: client_id (str): The client ID for your application on Reddit. client_secret (str): The client secret for your application on Reddit scope (str, optional): space-separated list of scopes for the OAuth token Defaults to ``identity`` permanent (bool, optional): Whether to request permanent access token. Defaults to False, access will be valid for 1 hour redirect_url (str): the URL to redirect to after the authentication dance is complete redirect_to (str): if ``redirect_url`` is not defined, the name of the view to redirect to after the authentication dance is complete. The actual URL will be determined by :func:`flask.url_for` login_url (str, optional): the URL path for the ``login`` view. Defaults to ``/reddit`` authorized_url (str, optional): the URL path for the ``authorized`` view. Defaults to ``/reddit/authorized``. session_class (class, optional): The class to use for creating a Requests session. Defaults to :class:`~flask_dance.contrib.reddit.RedditOAuth2Session`. storage: A token storage class, or an instance of a token storage class, to use for this blueprint. Defaults to :class:`~flask_dance.consumer.storage.session.SessionStorage`. user_agent (str, optional): User agent for the requests to Reddit API. Defaults to ``Flask-Dance/{{version}}`` :rtype: :class:`~flask_dance.consumer.OAuth2ConsumerBlueprint` :returns: A :ref:`blueprint <flask:blueprints>` to attach to your Flask app.
['Make', 'a', 'blueprint', 'for', 'authenticating', 'with', 'Reddit', 'using', 'OAuth', '2', '.', 'This', 'requires', 'a', 'client', 'ID', 'and', 'client', 'secret', 'from', 'Reddit', '.', 'You', 'should', 'either', 'pass', 'them', 'to', 'this', 'constructor', 'or', 'make', 'sure', 'that', 'your', 'Flask', 'application', 'config', 'defines', 'them', 'using', 'the', 'variables', ':', 'envvar', ':', 'REDDIT_OAUTH_CLIENT_ID', 'and', ':', 'envvar', ':', 'REDDIT_OAUTH_CLIENT_SECRET', '.']
train
https://github.com/singingwolfboy/flask-dance/blob/87d45328bbdaff833559a6d3da71461fe4579592/flask_dance/contrib/reddit.py#L34-L115
309
Capitains/MyCapytain
MyCapytain/common/utils/_generic.py
nested_get
def nested_get(dictionary, keys): """ Get value in dictionary for dictionary[keys[0]][keys[1]][keys[..n]] :param dictionary: An input dictionary :param keys: Keys where to store data :return: """ return reduce(lambda d, k: d[k], keys, dictionary)
python
def nested_get(dictionary, keys): """ Get value in dictionary for dictionary[keys[0]][keys[1]][keys[..n]] :param dictionary: An input dictionary :param keys: Keys where to store data :return: """ return reduce(lambda d, k: d[k], keys, dictionary)
['def', 'nested_get', '(', 'dictionary', ',', 'keys', ')', ':', 'return', 'reduce', '(', 'lambda', 'd', ',', 'k', ':', 'd', '[', 'k', ']', ',', 'keys', ',', 'dictionary', ')']
Get value in dictionary for dictionary[keys[0]][keys[1]][keys[..n]] :param dictionary: An input dictionary :param keys: Keys where to store data :return:
['Get', 'value', 'in', 'dictionary', 'for', 'dictionary', '[', 'keys', '[', '0', ']]', '[', 'keys', '[', '1', ']]', '[', 'keys', '[', '..', 'n', ']]']
train
https://github.com/Capitains/MyCapytain/blob/b11bbf6b6ae141fc02be70471e3fbf6907be6593/MyCapytain/common/utils/_generic.py#L32-L39
310
singularityhub/singularity-python
singularity/package/clone.py
package_node
def package_node(root=None, name=None): '''package node aims to package a (present working node) for a user into a container. This assumes that the node is a single partition. :param root: the root of the node to package, default is / :param name: the name for the image. If not specified, will use machine's psutil.disk_partitions() ''' if name is None: name = platform.node() if root is None: root = "/" tmpdir = tempfile.mkdtemp() image = "%s/%s.tgz" %(tmpdir,name) print("Preparing to package root %s into %s" %(root,name)) cmd = ["tar","--one-file-system","-czvSf", image, root,"--exclude",image] output = run_command(cmd) return image
python
def package_node(root=None, name=None): '''package node aims to package a (present working node) for a user into a container. This assumes that the node is a single partition. :param root: the root of the node to package, default is / :param name: the name for the image. If not specified, will use machine's psutil.disk_partitions() ''' if name is None: name = platform.node() if root is None: root = "/" tmpdir = tempfile.mkdtemp() image = "%s/%s.tgz" %(tmpdir,name) print("Preparing to package root %s into %s" %(root,name)) cmd = ["tar","--one-file-system","-czvSf", image, root,"--exclude",image] output = run_command(cmd) return image
['def', 'package_node', '(', 'root', '=', 'None', ',', 'name', '=', 'None', ')', ':', 'if', 'name', 'is', 'None', ':', 'name', '=', 'platform', '.', 'node', '(', ')', 'if', 'root', 'is', 'None', ':', 'root', '=', '"/"', 'tmpdir', '=', 'tempfile', '.', 'mkdtemp', '(', ')', 'image', '=', '"%s/%s.tgz"', '%', '(', 'tmpdir', ',', 'name', ')', 'print', '(', '"Preparing to package root %s into %s"', '%', '(', 'root', ',', 'name', ')', ')', 'cmd', '=', '[', '"tar"', ',', '"--one-file-system"', ',', '"-czvSf"', ',', 'image', ',', 'root', ',', '"--exclude"', ',', 'image', ']', 'output', '=', 'run_command', '(', 'cmd', ')', 'return', 'image']
package node aims to package a (present working node) for a user into a container. This assumes that the node is a single partition. :param root: the root of the node to package, default is / :param name: the name for the image. If not specified, will use machine's psutil.disk_partitions()
['package', 'node', 'aims', 'to', 'package', 'a', '(', 'present', 'working', 'node', ')', 'for', 'a', 'user', 'into', 'a', 'container', '.', 'This', 'assumes', 'that', 'the', 'node', 'is', 'a', 'single', 'partition', '.', ':', 'param', 'root', ':', 'the', 'root', 'of', 'the', 'node', 'to', 'package', 'default', 'is', '/', ':', 'param', 'name', ':', 'the', 'name', 'for', 'the', 'image', '.', 'If', 'not', 'specified', 'will', 'use', 'machine', 's']
train
https://github.com/singularityhub/singularity-python/blob/498c3433724b332f7493fec632d8daf479f47b82/singularity/package/clone.py#L30-L53
311
glomex/gcdt
gcdt/yugen_core.py
_update_stage
def _update_stage(awsclient, api_id, stage_name, method_settings): """Helper to apply method_settings to stage :param awsclient: :param api_id: :param stage_name: :param method_settings: :return: """ # settings docs in response: https://botocore.readthedocs.io/en/latest/reference/services/apigateway.html#APIGateway.Client.update_stage client_api = awsclient.get_client('apigateway') operations = _convert_method_settings_into_operations(method_settings) if operations: print('update method settings for stage') _sleep() response = client_api.update_stage( restApiId=api_id, stageName=stage_name, patchOperations=operations)
python
def _update_stage(awsclient, api_id, stage_name, method_settings): """Helper to apply method_settings to stage :param awsclient: :param api_id: :param stage_name: :param method_settings: :return: """ # settings docs in response: https://botocore.readthedocs.io/en/latest/reference/services/apigateway.html#APIGateway.Client.update_stage client_api = awsclient.get_client('apigateway') operations = _convert_method_settings_into_operations(method_settings) if operations: print('update method settings for stage') _sleep() response = client_api.update_stage( restApiId=api_id, stageName=stage_name, patchOperations=operations)
['def', '_update_stage', '(', 'awsclient', ',', 'api_id', ',', 'stage_name', ',', 'method_settings', ')', ':', '# settings docs in response: https://botocore.readthedocs.io/en/latest/reference/services/apigateway.html#APIGateway.Client.update_stage', 'client_api', '=', 'awsclient', '.', 'get_client', '(', "'apigateway'", ')', 'operations', '=', '_convert_method_settings_into_operations', '(', 'method_settings', ')', 'if', 'operations', ':', 'print', '(', "'update method settings for stage'", ')', '_sleep', '(', ')', 'response', '=', 'client_api', '.', 'update_stage', '(', 'restApiId', '=', 'api_id', ',', 'stageName', '=', 'stage_name', ',', 'patchOperations', '=', 'operations', ')']
Helper to apply method_settings to stage :param awsclient: :param api_id: :param stage_name: :param method_settings: :return:
['Helper', 'to', 'apply', 'method_settings', 'to', 'stage']
train
https://github.com/glomex/gcdt/blob/cd67cf416371337b83cb9ca3f696277125703339/gcdt/yugen_core.py#L461-L479
312
pdkit/pdkit
pdkit/tremor_processor.py
TremorProcessor.amplitude_by_fft
def amplitude_by_fft(self, data_frame): """ This methods extract the fft components and sum the ones from lower to upper freq as per \ :cite:`Kassavetis2015` :param data_frame: the data frame :type data_frame: pandas.DataFrame :return ampl: the ampl :rtype ampl: float :return freq: the freq :rtype freq: float """ signal_length = len(data_frame.filtered_signal) normalised_transformed_signal = data_frame.transformed_signal.values / signal_length k = np.arange(signal_length) T = signal_length / self.sampling_frequency f = k / T # two sides frequency range f = f[range(int(signal_length / 2))] # one side frequency range ts = normalised_transformed_signal[range(int(signal_length / 2))] ampl = sum(abs(ts[(f > self.lower_frequency) & (f < self.upper_frequency)])) freq = f[abs(ts).argmax(axis=0)] logging.debug("tremor ampl calculated") return ampl, freq
python
def amplitude_by_fft(self, data_frame): """ This methods extract the fft components and sum the ones from lower to upper freq as per \ :cite:`Kassavetis2015` :param data_frame: the data frame :type data_frame: pandas.DataFrame :return ampl: the ampl :rtype ampl: float :return freq: the freq :rtype freq: float """ signal_length = len(data_frame.filtered_signal) normalised_transformed_signal = data_frame.transformed_signal.values / signal_length k = np.arange(signal_length) T = signal_length / self.sampling_frequency f = k / T # two sides frequency range f = f[range(int(signal_length / 2))] # one side frequency range ts = normalised_transformed_signal[range(int(signal_length / 2))] ampl = sum(abs(ts[(f > self.lower_frequency) & (f < self.upper_frequency)])) freq = f[abs(ts).argmax(axis=0)] logging.debug("tremor ampl calculated") return ampl, freq
['def', 'amplitude_by_fft', '(', 'self', ',', 'data_frame', ')', ':', 'signal_length', '=', 'len', '(', 'data_frame', '.', 'filtered_signal', ')', 'normalised_transformed_signal', '=', 'data_frame', '.', 'transformed_signal', '.', 'values', '/', 'signal_length', 'k', '=', 'np', '.', 'arange', '(', 'signal_length', ')', 'T', '=', 'signal_length', '/', 'self', '.', 'sampling_frequency', 'f', '=', 'k', '/', 'T', '# two sides frequency range', 'f', '=', 'f', '[', 'range', '(', 'int', '(', 'signal_length', '/', '2', ')', ')', ']', '# one side frequency range', 'ts', '=', 'normalised_transformed_signal', '[', 'range', '(', 'int', '(', 'signal_length', '/', '2', ')', ')', ']', 'ampl', '=', 'sum', '(', 'abs', '(', 'ts', '[', '(', 'f', '>', 'self', '.', 'lower_frequency', ')', '&', '(', 'f', '<', 'self', '.', 'upper_frequency', ')', ']', ')', ')', 'freq', '=', 'f', '[', 'abs', '(', 'ts', ')', '.', 'argmax', '(', 'axis', '=', '0', ')', ']', 'logging', '.', 'debug', '(', '"tremor ampl calculated"', ')', 'return', 'ampl', ',', 'freq']
This methods extract the fft components and sum the ones from lower to upper freq as per \ :cite:`Kassavetis2015` :param data_frame: the data frame :type data_frame: pandas.DataFrame :return ampl: the ampl :rtype ampl: float :return freq: the freq :rtype freq: float
['This', 'methods', 'extract', 'the', 'fft', 'components', 'and', 'sum', 'the', 'ones', 'from', 'lower', 'to', 'upper', 'freq', 'as', 'per', '\\', ':', 'cite', ':', 'Kassavetis2015']
train
https://github.com/pdkit/pdkit/blob/c7120263da2071bb139815fbdb56ca77b544f340/pdkit/tremor_processor.py#L144-L170
313
Jaymon/prom
prom/config.py
Schema.required_fields
def required_fields(self): """The normal required fields (eg, no magic fields like _id are included)""" return {f:v for f, v in self.normal_fields.items() if v.required}
python
def required_fields(self): """The normal required fields (eg, no magic fields like _id are included)""" return {f:v for f, v in self.normal_fields.items() if v.required}
['def', 'required_fields', '(', 'self', ')', ':', 'return', '{', 'f', ':', 'v', 'for', 'f', ',', 'v', 'in', 'self', '.', 'normal_fields', '.', 'items', '(', ')', 'if', 'v', '.', 'required', '}']
The normal required fields (eg, no magic fields like _id are included)
['The', 'normal', 'required', 'fields', '(', 'eg', 'no', 'magic', 'fields', 'like', '_id', 'are', 'included', ')']
train
https://github.com/Jaymon/prom/blob/b7ad2c259eca198da03e1e4bc7d95014c168c361/prom/config.py#L175-L177
314
saltstack/salt
salt/states/boto_vpc.py
dhcp_options_present
def dhcp_options_present(name, dhcp_options_id=None, vpc_name=None, vpc_id=None, domain_name=None, domain_name_servers=None, ntp_servers=None, netbios_name_servers=None, netbios_node_type=None, tags=None, region=None, key=None, keyid=None, profile=None): ''' Ensure a set of DHCP options with the given settings exist. Note that the current implementation only SETS values during option set creation. It is unable to update option sets in place, and thus merely verifies the set exists via the given name and/or dhcp_options_id param. name (string) Name of the DHCP options. vpc_name (string) Name of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. vpc_id (string) Id of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. domain_name (string) Domain name to be assiciated with this option set. domain_name_servers (list of strings) The IP address(es) of up to four domain name servers. ntp_servers (list of strings) The IP address(es) of up to four desired NTP servers. netbios_name_servers (list of strings) The IP address(es) of up to four NetBIOS name servers. netbios_node_type (string) The NetBIOS node type (1, 2, 4, or 8). For more information about the allowed values, see RFC 2132. The recommended is 2 at this time (broadcast and multicast are currently not supported). tags (dict of key:value pairs) A set of tags to be added. region (string) Region to connect to. key (string) Secret key to be used. keyid (string) Access key to be used. profile (various) A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. .. versionadded:: 2016.3.0 ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {} } _new = {'domain_name': domain_name, 'domain_name_servers': domain_name_servers, 'ntp_servers': ntp_servers, 'netbios_name_servers': netbios_name_servers, 'netbios_node_type': netbios_node_type } # boto provides no "update_dhcp_options()" functionality, and you can't delete it if # it's attached, and you can't detach it if it's the only one, so just check if it's # there or not, and make no effort to validate it's actual settings... :( ### TODO - add support for multiple sets of DHCP options, and then for "swapping out" ### sets by creating new, mapping, then deleting the old. r = __salt__['boto_vpc.dhcp_options_exists'](dhcp_options_id=dhcp_options_id, dhcp_options_name=name, region=region, key=key, keyid=keyid, profile=profile) if 'error' in r: ret['result'] = False ret['comment'] = 'Failed to validate DHCP options: {0}.'.format(r['error']['message']) return ret if r.get('exists'): ret['comment'] = 'DHCP options already present.' return ret else: if __opts__['test']: ret['comment'] = 'DHCP options {0} are set to be created.'.format(name) ret['result'] = None return ret r = __salt__['boto_vpc.create_dhcp_options'](domain_name=domain_name, domain_name_servers=domain_name_servers, ntp_servers=ntp_servers, netbios_name_servers=netbios_name_servers, netbios_node_type=netbios_node_type, dhcp_options_name=name, tags=tags, vpc_id=vpc_id, vpc_name=vpc_name, region=region, key=key, keyid=keyid, profile=profile) if not r.get('created'): ret['result'] = False ret['comment'] = 'Failed to create DHCP options: {0}'.format(r['error']['message']) return ret ret['changes']['old'] = {'dhcp_options': None} ret['changes']['new'] = {'dhcp_options': _new} ret['comment'] = 'DHCP options {0} created.'.format(name) return ret
python
def dhcp_options_present(name, dhcp_options_id=None, vpc_name=None, vpc_id=None, domain_name=None, domain_name_servers=None, ntp_servers=None, netbios_name_servers=None, netbios_node_type=None, tags=None, region=None, key=None, keyid=None, profile=None): ''' Ensure a set of DHCP options with the given settings exist. Note that the current implementation only SETS values during option set creation. It is unable to update option sets in place, and thus merely verifies the set exists via the given name and/or dhcp_options_id param. name (string) Name of the DHCP options. vpc_name (string) Name of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. vpc_id (string) Id of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. domain_name (string) Domain name to be assiciated with this option set. domain_name_servers (list of strings) The IP address(es) of up to four domain name servers. ntp_servers (list of strings) The IP address(es) of up to four desired NTP servers. netbios_name_servers (list of strings) The IP address(es) of up to four NetBIOS name servers. netbios_node_type (string) The NetBIOS node type (1, 2, 4, or 8). For more information about the allowed values, see RFC 2132. The recommended is 2 at this time (broadcast and multicast are currently not supported). tags (dict of key:value pairs) A set of tags to be added. region (string) Region to connect to. key (string) Secret key to be used. keyid (string) Access key to be used. profile (various) A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. .. versionadded:: 2016.3.0 ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {} } _new = {'domain_name': domain_name, 'domain_name_servers': domain_name_servers, 'ntp_servers': ntp_servers, 'netbios_name_servers': netbios_name_servers, 'netbios_node_type': netbios_node_type } # boto provides no "update_dhcp_options()" functionality, and you can't delete it if # it's attached, and you can't detach it if it's the only one, so just check if it's # there or not, and make no effort to validate it's actual settings... :( ### TODO - add support for multiple sets of DHCP options, and then for "swapping out" ### sets by creating new, mapping, then deleting the old. r = __salt__['boto_vpc.dhcp_options_exists'](dhcp_options_id=dhcp_options_id, dhcp_options_name=name, region=region, key=key, keyid=keyid, profile=profile) if 'error' in r: ret['result'] = False ret['comment'] = 'Failed to validate DHCP options: {0}.'.format(r['error']['message']) return ret if r.get('exists'): ret['comment'] = 'DHCP options already present.' return ret else: if __opts__['test']: ret['comment'] = 'DHCP options {0} are set to be created.'.format(name) ret['result'] = None return ret r = __salt__['boto_vpc.create_dhcp_options'](domain_name=domain_name, domain_name_servers=domain_name_servers, ntp_servers=ntp_servers, netbios_name_servers=netbios_name_servers, netbios_node_type=netbios_node_type, dhcp_options_name=name, tags=tags, vpc_id=vpc_id, vpc_name=vpc_name, region=region, key=key, keyid=keyid, profile=profile) if not r.get('created'): ret['result'] = False ret['comment'] = 'Failed to create DHCP options: {0}'.format(r['error']['message']) return ret ret['changes']['old'] = {'dhcp_options': None} ret['changes']['new'] = {'dhcp_options': _new} ret['comment'] = 'DHCP options {0} created.'.format(name) return ret
['def', 'dhcp_options_present', '(', 'name', ',', 'dhcp_options_id', '=', 'None', ',', 'vpc_name', '=', 'None', ',', 'vpc_id', '=', 'None', ',', 'domain_name', '=', 'None', ',', 'domain_name_servers', '=', 'None', ',', 'ntp_servers', '=', 'None', ',', 'netbios_name_servers', '=', 'None', ',', 'netbios_node_type', '=', 'None', ',', 'tags', '=', 'None', ',', 'region', '=', 'None', ',', 'key', '=', 'None', ',', 'keyid', '=', 'None', ',', 'profile', '=', 'None', ')', ':', 'ret', '=', '{', "'name'", ':', 'name', ',', "'result'", ':', 'True', ',', "'comment'", ':', "''", ',', "'changes'", ':', '{', '}', '}', '_new', '=', '{', "'domain_name'", ':', 'domain_name', ',', "'domain_name_servers'", ':', 'domain_name_servers', ',', "'ntp_servers'", ':', 'ntp_servers', ',', "'netbios_name_servers'", ':', 'netbios_name_servers', ',', "'netbios_node_type'", ':', 'netbios_node_type', '}', '# boto provides no "update_dhcp_options()" functionality, and you can\'t delete it if', "# it's attached, and you can't detach it if it's the only one, so just check if it's", "# there or not, and make no effort to validate it's actual settings... :(", '### TODO - add support for multiple sets of DHCP options, and then for "swapping out"', '### sets by creating new, mapping, then deleting the old.', 'r', '=', '__salt__', '[', "'boto_vpc.dhcp_options_exists'", ']', '(', 'dhcp_options_id', '=', 'dhcp_options_id', ',', 'dhcp_options_name', '=', 'name', ',', 'region', '=', 'region', ',', 'key', '=', 'key', ',', 'keyid', '=', 'keyid', ',', 'profile', '=', 'profile', ')', 'if', "'error'", 'in', 'r', ':', 'ret', '[', "'result'", ']', '=', 'False', 'ret', '[', "'comment'", ']', '=', "'Failed to validate DHCP options: {0}.'", '.', 'format', '(', 'r', '[', "'error'", ']', '[', "'message'", ']', ')', 'return', 'ret', 'if', 'r', '.', 'get', '(', "'exists'", ')', ':', 'ret', '[', "'comment'", ']', '=', "'DHCP options already present.'", 'return', 'ret', 'else', ':', 'if', '__opts__', '[', "'test'", ']', ':', 'ret', '[', "'comment'", ']', '=', "'DHCP options {0} are set to be created.'", '.', 'format', '(', 'name', ')', 'ret', '[', "'result'", ']', '=', 'None', 'return', 'ret', 'r', '=', '__salt__', '[', "'boto_vpc.create_dhcp_options'", ']', '(', 'domain_name', '=', 'domain_name', ',', 'domain_name_servers', '=', 'domain_name_servers', ',', 'ntp_servers', '=', 'ntp_servers', ',', 'netbios_name_servers', '=', 'netbios_name_servers', ',', 'netbios_node_type', '=', 'netbios_node_type', ',', 'dhcp_options_name', '=', 'name', ',', 'tags', '=', 'tags', ',', 'vpc_id', '=', 'vpc_id', ',', 'vpc_name', '=', 'vpc_name', ',', 'region', '=', 'region', ',', 'key', '=', 'key', ',', 'keyid', '=', 'keyid', ',', 'profile', '=', 'profile', ')', 'if', 'not', 'r', '.', 'get', '(', "'created'", ')', ':', 'ret', '[', "'result'", ']', '=', 'False', 'ret', '[', "'comment'", ']', '=', "'Failed to create DHCP options: {0}'", '.', 'format', '(', 'r', '[', "'error'", ']', '[', "'message'", ']', ')', 'return', 'ret', 'ret', '[', "'changes'", ']', '[', "'old'", ']', '=', '{', "'dhcp_options'", ':', 'None', '}', 'ret', '[', "'changes'", ']', '[', "'new'", ']', '=', '{', "'dhcp_options'", ':', '_new', '}', 'ret', '[', "'comment'", ']', '=', "'DHCP options {0} created.'", '.', 'format', '(', 'name', ')', 'return', 'ret']
Ensure a set of DHCP options with the given settings exist. Note that the current implementation only SETS values during option set creation. It is unable to update option sets in place, and thus merely verifies the set exists via the given name and/or dhcp_options_id param. name (string) Name of the DHCP options. vpc_name (string) Name of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. vpc_id (string) Id of a VPC to which the options should be associated. Either vpc_name or vpc_id must be provided. domain_name (string) Domain name to be assiciated with this option set. domain_name_servers (list of strings) The IP address(es) of up to four domain name servers. ntp_servers (list of strings) The IP address(es) of up to four desired NTP servers. netbios_name_servers (list of strings) The IP address(es) of up to four NetBIOS name servers. netbios_node_type (string) The NetBIOS node type (1, 2, 4, or 8). For more information about the allowed values, see RFC 2132. The recommended is 2 at this time (broadcast and multicast are currently not supported). tags (dict of key:value pairs) A set of tags to be added. region (string) Region to connect to. key (string) Secret key to be used. keyid (string) Access key to be used. profile (various) A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. .. versionadded:: 2016.3.0
['Ensure', 'a', 'set', 'of', 'DHCP', 'options', 'with', 'the', 'given', 'settings', 'exist', '.', 'Note', 'that', 'the', 'current', 'implementation', 'only', 'SETS', 'values', 'during', 'option', 'set', 'creation', '.', 'It', 'is', 'unable', 'to', 'update', 'option', 'sets', 'in', 'place', 'and', 'thus', 'merely', 'verifies', 'the', 'set', 'exists', 'via', 'the', 'given', 'name', 'and', '/', 'or', 'dhcp_options_id', 'param', '.']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/boto_vpc.py#L307-L428
315
dbrattli/OSlash
oslash/observable.py
Observable.bind
def bind(self, fn: Callable[[Any], 'Observable']) -> 'Observable': r"""Chain continuation passing functions. Haskell: m >>= k = Cont $ \c -> runCont m $ \a -> runCont (k a) c """ source = self return Observable(lambda on_next: source.subscribe(lambda a: fn(a).subscribe(on_next)))
python
def bind(self, fn: Callable[[Any], 'Observable']) -> 'Observable': r"""Chain continuation passing functions. Haskell: m >>= k = Cont $ \c -> runCont m $ \a -> runCont (k a) c """ source = self return Observable(lambda on_next: source.subscribe(lambda a: fn(a).subscribe(on_next)))
['def', 'bind', '(', 'self', ',', 'fn', ':', 'Callable', '[', '[', 'Any', ']', ',', "'Observable'", ']', ')', '->', "'Observable'", ':', 'source', '=', 'self', 'return', 'Observable', '(', 'lambda', 'on_next', ':', 'source', '.', 'subscribe', '(', 'lambda', 'a', ':', 'fn', '(', 'a', ')', '.', 'subscribe', '(', 'on_next', ')', ')', ')']
r"""Chain continuation passing functions. Haskell: m >>= k = Cont $ \c -> runCont m $ \a -> runCont (k a) c
['r', 'Chain', 'continuation', 'passing', 'functions', '.']
train
https://github.com/dbrattli/OSlash/blob/ffdc714c5d454f7519f740254de89f70850929eb/oslash/observable.py#L47-L53
316
apple/turicreate
src/unity/python/turicreate/extensions.py
ext_import
def ext_import(soname, module_subpath=""): """ Loads a turicreate toolkit module (a shared library) into the tc.extensions namespace. Toolkit module created via SDK can either be directly imported, e.g. ``import example`` or via this function, e.g. ``turicreate.ext_import("example.so")``. Use ``ext_import`` when you need more namespace control, or when the shared library is not local, e.g. in http, s3 or hdfs. Parameters ---------- soname : string The filename of the shared library to load. This can be a URL, or a HDFS location. For instance if soname is somewhere/outthere/toolkit.so The functions in toolkit.so will appear in tc.extensions.toolkit.* module_subpath : string, optional Any additional module paths to prepend to the toolkit module after it is imported. For instance if soname is somewhere/outthere/toolkit.so, by default the functions in toolkit.so will appear in tc.extensions.toolkit.*. However, if I module_subpath="somewhere.outthere", the functions in toolkit.so will appear in tc.extensions.somewhere.outthere.toolkit.* Returns ------- out : a list of functions and classes loaded. Examples -------- For instance, given a module which implements the function "square_root", .. code-block:: c++ #include <cmath> #include <turicreate/sdk/toolkit_function_macros.hpp> double square_root(double a) { return sqrt(a); } BEGIN_FUNCTION_REGISTRATION REGISTER_FUNCTION(square_root, "a"); END_FUNCTION_REGISTRATION compiled into example.so >>> turicreate.ext_import('example1.so') ['example1.square_root'] >>> turicreate.extensions.example1.square_root(9) 3.0 We can customize the import location with module_subpath which can be used to avoid namespace conflicts when you have multiple toolkits with the same filename. >>> turicreate.ext_import('example1.so', 'math') ['math.example1.square_root'] >>> turicreate.extensions.math.example1.square_root(9) 3.0 The module can also be imported directly, but turicreate *must* be imported first. turicreate will intercept the module loading process to load the toolkit. >>> import turicreate >>> import example1 #searches for example1.so in all the python paths >>> example1.square_root(9) 3.0 """ unity = _get_unity() import os if os.path.exists(soname): soname = os.path.abspath(soname) else: soname = _make_internal_url(soname) ret = unity.load_toolkit(soname, module_subpath) if len(ret) > 0: raise RuntimeError(ret) _publish() # push the functions into the corresponding module namespace return unity.list_toolkit_functions_in_dynamic_module(soname) + unity.list_toolkit_classes_in_dynamic_module(soname)
python
def ext_import(soname, module_subpath=""): """ Loads a turicreate toolkit module (a shared library) into the tc.extensions namespace. Toolkit module created via SDK can either be directly imported, e.g. ``import example`` or via this function, e.g. ``turicreate.ext_import("example.so")``. Use ``ext_import`` when you need more namespace control, or when the shared library is not local, e.g. in http, s3 or hdfs. Parameters ---------- soname : string The filename of the shared library to load. This can be a URL, or a HDFS location. For instance if soname is somewhere/outthere/toolkit.so The functions in toolkit.so will appear in tc.extensions.toolkit.* module_subpath : string, optional Any additional module paths to prepend to the toolkit module after it is imported. For instance if soname is somewhere/outthere/toolkit.so, by default the functions in toolkit.so will appear in tc.extensions.toolkit.*. However, if I module_subpath="somewhere.outthere", the functions in toolkit.so will appear in tc.extensions.somewhere.outthere.toolkit.* Returns ------- out : a list of functions and classes loaded. Examples -------- For instance, given a module which implements the function "square_root", .. code-block:: c++ #include <cmath> #include <turicreate/sdk/toolkit_function_macros.hpp> double square_root(double a) { return sqrt(a); } BEGIN_FUNCTION_REGISTRATION REGISTER_FUNCTION(square_root, "a"); END_FUNCTION_REGISTRATION compiled into example.so >>> turicreate.ext_import('example1.so') ['example1.square_root'] >>> turicreate.extensions.example1.square_root(9) 3.0 We can customize the import location with module_subpath which can be used to avoid namespace conflicts when you have multiple toolkits with the same filename. >>> turicreate.ext_import('example1.so', 'math') ['math.example1.square_root'] >>> turicreate.extensions.math.example1.square_root(9) 3.0 The module can also be imported directly, but turicreate *must* be imported first. turicreate will intercept the module loading process to load the toolkit. >>> import turicreate >>> import example1 #searches for example1.so in all the python paths >>> example1.square_root(9) 3.0 """ unity = _get_unity() import os if os.path.exists(soname): soname = os.path.abspath(soname) else: soname = _make_internal_url(soname) ret = unity.load_toolkit(soname, module_subpath) if len(ret) > 0: raise RuntimeError(ret) _publish() # push the functions into the corresponding module namespace return unity.list_toolkit_functions_in_dynamic_module(soname) + unity.list_toolkit_classes_in_dynamic_module(soname)
['def', 'ext_import', '(', 'soname', ',', 'module_subpath', '=', '""', ')', ':', 'unity', '=', '_get_unity', '(', ')', 'import', 'os', 'if', 'os', '.', 'path', '.', 'exists', '(', 'soname', ')', ':', 'soname', '=', 'os', '.', 'path', '.', 'abspath', '(', 'soname', ')', 'else', ':', 'soname', '=', '_make_internal_url', '(', 'soname', ')', 'ret', '=', 'unity', '.', 'load_toolkit', '(', 'soname', ',', 'module_subpath', ')', 'if', 'len', '(', 'ret', ')', '>', '0', ':', 'raise', 'RuntimeError', '(', 'ret', ')', '_publish', '(', ')', '# push the functions into the corresponding module namespace', 'return', 'unity', '.', 'list_toolkit_functions_in_dynamic_module', '(', 'soname', ')', '+', 'unity', '.', 'list_toolkit_classes_in_dynamic_module', '(', 'soname', ')']
Loads a turicreate toolkit module (a shared library) into the tc.extensions namespace. Toolkit module created via SDK can either be directly imported, e.g. ``import example`` or via this function, e.g. ``turicreate.ext_import("example.so")``. Use ``ext_import`` when you need more namespace control, or when the shared library is not local, e.g. in http, s3 or hdfs. Parameters ---------- soname : string The filename of the shared library to load. This can be a URL, or a HDFS location. For instance if soname is somewhere/outthere/toolkit.so The functions in toolkit.so will appear in tc.extensions.toolkit.* module_subpath : string, optional Any additional module paths to prepend to the toolkit module after it is imported. For instance if soname is somewhere/outthere/toolkit.so, by default the functions in toolkit.so will appear in tc.extensions.toolkit.*. However, if I module_subpath="somewhere.outthere", the functions in toolkit.so will appear in tc.extensions.somewhere.outthere.toolkit.* Returns ------- out : a list of functions and classes loaded. Examples -------- For instance, given a module which implements the function "square_root", .. code-block:: c++ #include <cmath> #include <turicreate/sdk/toolkit_function_macros.hpp> double square_root(double a) { return sqrt(a); } BEGIN_FUNCTION_REGISTRATION REGISTER_FUNCTION(square_root, "a"); END_FUNCTION_REGISTRATION compiled into example.so >>> turicreate.ext_import('example1.so') ['example1.square_root'] >>> turicreate.extensions.example1.square_root(9) 3.0 We can customize the import location with module_subpath which can be used to avoid namespace conflicts when you have multiple toolkits with the same filename. >>> turicreate.ext_import('example1.so', 'math') ['math.example1.square_root'] >>> turicreate.extensions.math.example1.square_root(9) 3.0 The module can also be imported directly, but turicreate *must* be imported first. turicreate will intercept the module loading process to load the toolkit. >>> import turicreate >>> import example1 #searches for example1.so in all the python paths >>> example1.square_root(9) 3.0
['Loads', 'a', 'turicreate', 'toolkit', 'module', '(', 'a', 'shared', 'library', ')', 'into', 'the', 'tc', '.', 'extensions', 'namespace', '.']
train
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/extensions.py#L501-L584
317
gwastro/pycbc
pycbc/tmpltbank/lattice_utils.py
generate_anstar_3d_lattice
def generate_anstar_3d_lattice(maxv1, minv1, maxv2, minv2, maxv3, minv3, \ mindist): """ This function calls into LAL routines to generate a 3-dimensional array of points using the An^* lattice. Parameters ----------- maxv1 : float Largest value in the 1st dimension to cover minv1 : float Smallest value in the 1st dimension to cover maxv2 : float Largest value in the 2nd dimension to cover minv2 : float Smallest value in the 2nd dimension to cover maxv3 : float Largest value in the 3rd dimension to cover minv3 : float Smallest value in the 3rd dimension to cover mindist : float Maximum allowed mismatch between a point in the parameter space and the generated bank of points. Returns -------- v1s : numpy.array Array of positions in the first dimension v2s : numpy.array Array of positions in the second dimension v3s : numpy.array Array of positions in the second dimension """ # Lalpulsar not a requirement for the rest of pycbc, so check if we have it # here in this function. try: import lalpulsar except: raise ImportError("A SWIG-wrapped install of lalpulsar is needed to use the anstar tiling functionality.") tiling = lalpulsar.CreateLatticeTiling(3) lalpulsar.SetLatticeTilingConstantBound(tiling, 0, minv1, maxv1) lalpulsar.SetLatticeTilingConstantBound(tiling, 1, minv2, maxv2) lalpulsar.SetLatticeTilingConstantBound(tiling, 2, minv3, maxv3) # Make a 3x3 Euclidean lattice a = lal.gsl_matrix(3,3) a.data[0,0] = 1 a.data[1,1] = 1 a.data[2,2] = 1 try: # old versions of lalpulsar used an enumeration lattice = lalpulsar.TILING_LATTICE_ANSTAR except AttributeError: # newer versions of lalpulsar use a string lattice = 'An-star' lalpulsar.SetTilingLatticeAndMetric(tiling, lattice, a, mindist) try: iterator = lalpulsar.CreateLatticeTilingIterator(tiling, 3) except TypeError: # old versions of lalpulsar required the flags argument # (set to 0 for defaults) iterator = lalpulsar.CreateLatticeTilingIterator(tiling, 3, 0) vs1 = [] vs2 = [] vs3 = [] curr_point = lal.gsl_vector(3) while (lalpulsar.NextLatticeTilingPoint(iterator, curr_point) > 0): vs1.append(curr_point.data[0]) vs2.append(curr_point.data[1]) vs3.append(curr_point.data[2]) return vs1, vs2, vs3
python
def generate_anstar_3d_lattice(maxv1, minv1, maxv2, minv2, maxv3, minv3, \ mindist): """ This function calls into LAL routines to generate a 3-dimensional array of points using the An^* lattice. Parameters ----------- maxv1 : float Largest value in the 1st dimension to cover minv1 : float Smallest value in the 1st dimension to cover maxv2 : float Largest value in the 2nd dimension to cover minv2 : float Smallest value in the 2nd dimension to cover maxv3 : float Largest value in the 3rd dimension to cover minv3 : float Smallest value in the 3rd dimension to cover mindist : float Maximum allowed mismatch between a point in the parameter space and the generated bank of points. Returns -------- v1s : numpy.array Array of positions in the first dimension v2s : numpy.array Array of positions in the second dimension v3s : numpy.array Array of positions in the second dimension """ # Lalpulsar not a requirement for the rest of pycbc, so check if we have it # here in this function. try: import lalpulsar except: raise ImportError("A SWIG-wrapped install of lalpulsar is needed to use the anstar tiling functionality.") tiling = lalpulsar.CreateLatticeTiling(3) lalpulsar.SetLatticeTilingConstantBound(tiling, 0, minv1, maxv1) lalpulsar.SetLatticeTilingConstantBound(tiling, 1, minv2, maxv2) lalpulsar.SetLatticeTilingConstantBound(tiling, 2, minv3, maxv3) # Make a 3x3 Euclidean lattice a = lal.gsl_matrix(3,3) a.data[0,0] = 1 a.data[1,1] = 1 a.data[2,2] = 1 try: # old versions of lalpulsar used an enumeration lattice = lalpulsar.TILING_LATTICE_ANSTAR except AttributeError: # newer versions of lalpulsar use a string lattice = 'An-star' lalpulsar.SetTilingLatticeAndMetric(tiling, lattice, a, mindist) try: iterator = lalpulsar.CreateLatticeTilingIterator(tiling, 3) except TypeError: # old versions of lalpulsar required the flags argument # (set to 0 for defaults) iterator = lalpulsar.CreateLatticeTilingIterator(tiling, 3, 0) vs1 = [] vs2 = [] vs3 = [] curr_point = lal.gsl_vector(3) while (lalpulsar.NextLatticeTilingPoint(iterator, curr_point) > 0): vs1.append(curr_point.data[0]) vs2.append(curr_point.data[1]) vs3.append(curr_point.data[2]) return vs1, vs2, vs3
['def', 'generate_anstar_3d_lattice', '(', 'maxv1', ',', 'minv1', ',', 'maxv2', ',', 'minv2', ',', 'maxv3', ',', 'minv3', ',', 'mindist', ')', ':', '# Lalpulsar not a requirement for the rest of pycbc, so check if we have it', '# here in this function.', 'try', ':', 'import', 'lalpulsar', 'except', ':', 'raise', 'ImportError', '(', '"A SWIG-wrapped install of lalpulsar is needed to use the anstar tiling functionality."', ')', 'tiling', '=', 'lalpulsar', '.', 'CreateLatticeTiling', '(', '3', ')', 'lalpulsar', '.', 'SetLatticeTilingConstantBound', '(', 'tiling', ',', '0', ',', 'minv1', ',', 'maxv1', ')', 'lalpulsar', '.', 'SetLatticeTilingConstantBound', '(', 'tiling', ',', '1', ',', 'minv2', ',', 'maxv2', ')', 'lalpulsar', '.', 'SetLatticeTilingConstantBound', '(', 'tiling', ',', '2', ',', 'minv3', ',', 'maxv3', ')', '# Make a 3x3 Euclidean lattice', 'a', '=', 'lal', '.', 'gsl_matrix', '(', '3', ',', '3', ')', 'a', '.', 'data', '[', '0', ',', '0', ']', '=', '1', 'a', '.', 'data', '[', '1', ',', '1', ']', '=', '1', 'a', '.', 'data', '[', '2', ',', '2', ']', '=', '1', 'try', ':', '# old versions of lalpulsar used an enumeration', 'lattice', '=', 'lalpulsar', '.', 'TILING_LATTICE_ANSTAR', 'except', 'AttributeError', ':', '# newer versions of lalpulsar use a string', 'lattice', '=', "'An-star'", 'lalpulsar', '.', 'SetTilingLatticeAndMetric', '(', 'tiling', ',', 'lattice', ',', 'a', ',', 'mindist', ')', 'try', ':', 'iterator', '=', 'lalpulsar', '.', 'CreateLatticeTilingIterator', '(', 'tiling', ',', '3', ')', 'except', 'TypeError', ':', '# old versions of lalpulsar required the flags argument', '# (set to 0 for defaults)', 'iterator', '=', 'lalpulsar', '.', 'CreateLatticeTilingIterator', '(', 'tiling', ',', '3', ',', '0', ')', 'vs1', '=', '[', ']', 'vs2', '=', '[', ']', 'vs3', '=', '[', ']', 'curr_point', '=', 'lal', '.', 'gsl_vector', '(', '3', ')', 'while', '(', 'lalpulsar', '.', 'NextLatticeTilingPoint', '(', 'iterator', ',', 'curr_point', ')', '>', '0', ')', ':', 'vs1', '.', 'append', '(', 'curr_point', '.', 'data', '[', '0', ']', ')', 'vs2', '.', 'append', '(', 'curr_point', '.', 'data', '[', '1', ']', ')', 'vs3', '.', 'append', '(', 'curr_point', '.', 'data', '[', '2', ']', ')', 'return', 'vs1', ',', 'vs2', ',', 'vs3']
This function calls into LAL routines to generate a 3-dimensional array of points using the An^* lattice. Parameters ----------- maxv1 : float Largest value in the 1st dimension to cover minv1 : float Smallest value in the 1st dimension to cover maxv2 : float Largest value in the 2nd dimension to cover minv2 : float Smallest value in the 2nd dimension to cover maxv3 : float Largest value in the 3rd dimension to cover minv3 : float Smallest value in the 3rd dimension to cover mindist : float Maximum allowed mismatch between a point in the parameter space and the generated bank of points. Returns -------- v1s : numpy.array Array of positions in the first dimension v2s : numpy.array Array of positions in the second dimension v3s : numpy.array Array of positions in the second dimension
['This', 'function', 'calls', 'into', 'LAL', 'routines', 'to', 'generate', 'a', '3', '-', 'dimensional', 'array', 'of', 'points', 'using', 'the', 'An^', '*', 'lattice', '.']
train
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/tmpltbank/lattice_utils.py#L88-L159
318
mitsei/dlkit
dlkit/json_/learning/objects.py
ObjectiveForm.clear_cognitive_process
def clear_cognitive_process(self): """Clears the cognitive process. raise: NoAccess - ``Metadata.isRequired()`` or ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for osid.resource.ResourceForm.clear_avatar_template if (self.get_cognitive_process_metadata().is_read_only() or self.get_cognitive_process_metadata().is_required()): raise errors.NoAccess() self._my_map['cognitiveProcessId'] = self._cognitive_process_default
python
def clear_cognitive_process(self): """Clears the cognitive process. raise: NoAccess - ``Metadata.isRequired()`` or ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for osid.resource.ResourceForm.clear_avatar_template if (self.get_cognitive_process_metadata().is_read_only() or self.get_cognitive_process_metadata().is_required()): raise errors.NoAccess() self._my_map['cognitiveProcessId'] = self._cognitive_process_default
['def', 'clear_cognitive_process', '(', 'self', ')', ':', '# Implemented from template for osid.resource.ResourceForm.clear_avatar_template', 'if', '(', 'self', '.', 'get_cognitive_process_metadata', '(', ')', '.', 'is_read_only', '(', ')', 'or', 'self', '.', 'get_cognitive_process_metadata', '(', ')', '.', 'is_required', '(', ')', ')', ':', 'raise', 'errors', '.', 'NoAccess', '(', ')', 'self', '.', '_my_map', '[', "'cognitiveProcessId'", ']', '=', 'self', '.', '_cognitive_process_default']
Clears the cognitive process. raise: NoAccess - ``Metadata.isRequired()`` or ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.*
['Clears', 'the', 'cognitive', 'process', '.']
train
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/learning/objects.py#L375-L387
319
TheRealLink/pylgtv
pylgtv/webos_client.py
WebOsClient.get_channels
def get_channels(self): """Get all tv channels.""" self.request(EP_GET_TV_CHANNELS) return {} if self.last_response is None else self.last_response.get('payload').get('channelList')
python
def get_channels(self): """Get all tv channels.""" self.request(EP_GET_TV_CHANNELS) return {} if self.last_response is None else self.last_response.get('payload').get('channelList')
['def', 'get_channels', '(', 'self', ')', ':', 'self', '.', 'request', '(', 'EP_GET_TV_CHANNELS', ')', 'return', '{', '}', 'if', 'self', '.', 'last_response', 'is', 'None', 'else', 'self', '.', 'last_response', '.', 'get', '(', "'payload'", ')', '.', 'get', '(', "'channelList'", ')']
Get all tv channels.
['Get', 'all', 'tv', 'channels', '.']
train
https://github.com/TheRealLink/pylgtv/blob/a7d9ad87ce47e77180fe9262da785465219f4ed6/pylgtv/webos_client.py#L343-L346
320
olsoneric/pedemath
pedemath/vec3.py
point_to_line
def point_to_line(point, segment_start, segment_end): """Given a point and a line segment, return the vector from the point to the closest point on the segment. """ # TODO: Needs unittests. segment_vec = segment_end - segment_start # t is distance along line t = -(segment_start - point).dot(segment_vec) / ( segment_vec.length_squared()) closest_point = segment_start + scale_v3(segment_vec, t) return point - closest_point
python
def point_to_line(point, segment_start, segment_end): """Given a point and a line segment, return the vector from the point to the closest point on the segment. """ # TODO: Needs unittests. segment_vec = segment_end - segment_start # t is distance along line t = -(segment_start - point).dot(segment_vec) / ( segment_vec.length_squared()) closest_point = segment_start + scale_v3(segment_vec, t) return point - closest_point
['def', 'point_to_line', '(', 'point', ',', 'segment_start', ',', 'segment_end', ')', ':', '# TODO: Needs unittests.', 'segment_vec', '=', 'segment_end', '-', 'segment_start', '# t is distance along line', 't', '=', '-', '(', 'segment_start', '-', 'point', ')', '.', 'dot', '(', 'segment_vec', ')', '/', '(', 'segment_vec', '.', 'length_squared', '(', ')', ')', 'closest_point', '=', 'segment_start', '+', 'scale_v3', '(', 'segment_vec', ',', 't', ')', 'return', 'point', '-', 'closest_point']
Given a point and a line segment, return the vector from the point to the closest point on the segment.
['Given', 'a', 'point', 'and', 'a', 'line', 'segment', 'return', 'the', 'vector', 'from', 'the', 'point', 'to', 'the', 'closest', 'point', 'on', 'the', 'segment', '.']
train
https://github.com/olsoneric/pedemath/blob/4bffcfe7089e421d603eb0a9708b84789c2d16be/pedemath/vec3.py#L105-L117
321
maaku/python-bitcoin
bitcoin/tools.py
icmp
def icmp(a, b): "Like cmp(), but for any iterator." for xa in a: try: xb = next(b) d = cmp(xa, xb) if d: return d except StopIteration: return 1 try: next(b) return -1 except StopIteration: return 0
python
def icmp(a, b): "Like cmp(), but for any iterator." for xa in a: try: xb = next(b) d = cmp(xa, xb) if d: return d except StopIteration: return 1 try: next(b) return -1 except StopIteration: return 0
['def', 'icmp', '(', 'a', ',', 'b', ')', ':', 'for', 'xa', 'in', 'a', ':', 'try', ':', 'xb', '=', 'next', '(', 'b', ')', 'd', '=', 'cmp', '(', 'xa', ',', 'xb', ')', 'if', 'd', ':', 'return', 'd', 'except', 'StopIteration', ':', 'return', '1', 'try', ':', 'next', '(', 'b', ')', 'return', '-', '1', 'except', 'StopIteration', ':', 'return', '0']
Like cmp(), but for any iterator.
['Like', 'cmp', '()', 'but', 'for', 'any', 'iterator', '.']
train
https://github.com/maaku/python-bitcoin/blob/1b80c284170fd3f547cc45f4700ce169f3f99641/bitcoin/tools.py#L145-L158
322
DataDog/integrations-core
tokumx/datadog_checks/tokumx/vendor/pymongo/command_cursor.py
CommandCursor.batch_size
def batch_size(self, batch_size): """Limits the number of documents returned in one batch. Each batch requires a round trip to the server. It can be adjusted to optimize performance and limit data transfer. .. note:: batch_size can not override MongoDB's internal limits on the amount of data it will return to the client in a single batch (i.e if you set batch size to 1,000,000,000, MongoDB will currently only return 4-16MB of results per batch). Raises :exc:`TypeError` if `batch_size` is not an integer. Raises :exc:`ValueError` if `batch_size` is less than ``0``. :Parameters: - `batch_size`: The size of each batch of results requested. """ if not isinstance(batch_size, integer_types): raise TypeError("batch_size must be an integer") if batch_size < 0: raise ValueError("batch_size must be >= 0") self.__batch_size = batch_size == 1 and 2 or batch_size return self
python
def batch_size(self, batch_size): """Limits the number of documents returned in one batch. Each batch requires a round trip to the server. It can be adjusted to optimize performance and limit data transfer. .. note:: batch_size can not override MongoDB's internal limits on the amount of data it will return to the client in a single batch (i.e if you set batch size to 1,000,000,000, MongoDB will currently only return 4-16MB of results per batch). Raises :exc:`TypeError` if `batch_size` is not an integer. Raises :exc:`ValueError` if `batch_size` is less than ``0``. :Parameters: - `batch_size`: The size of each batch of results requested. """ if not isinstance(batch_size, integer_types): raise TypeError("batch_size must be an integer") if batch_size < 0: raise ValueError("batch_size must be >= 0") self.__batch_size = batch_size == 1 and 2 or batch_size return self
['def', 'batch_size', '(', 'self', ',', 'batch_size', ')', ':', 'if', 'not', 'isinstance', '(', 'batch_size', ',', 'integer_types', ')', ':', 'raise', 'TypeError', '(', '"batch_size must be an integer"', ')', 'if', 'batch_size', '<', '0', ':', 'raise', 'ValueError', '(', '"batch_size must be >= 0"', ')', 'self', '.', '__batch_size', '=', 'batch_size', '==', '1', 'and', '2', 'or', 'batch_size', 'return', 'self']
Limits the number of documents returned in one batch. Each batch requires a round trip to the server. It can be adjusted to optimize performance and limit data transfer. .. note:: batch_size can not override MongoDB's internal limits on the amount of data it will return to the client in a single batch (i.e if you set batch size to 1,000,000,000, MongoDB will currently only return 4-16MB of results per batch). Raises :exc:`TypeError` if `batch_size` is not an integer. Raises :exc:`ValueError` if `batch_size` is less than ``0``. :Parameters: - `batch_size`: The size of each batch of results requested.
['Limits', 'the', 'number', 'of', 'documents', 'returned', 'in', 'one', 'batch', '.', 'Each', 'batch', 'requires', 'a', 'round', 'trip', 'to', 'the', 'server', '.', 'It', 'can', 'be', 'adjusted', 'to', 'optimize', 'performance', 'and', 'limit', 'data', 'transfer', '.']
train
https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/tokumx/datadog_checks/tokumx/vendor/pymongo/command_cursor.py#L70-L92
323
GNS3/gns3-server
gns3server/controller/project.py
Project.remove_allocated_node_name
def remove_allocated_node_name(self, name): """ Removes an allocated node name :param name: allocated node name """ if name in self._allocated_node_names: self._allocated_node_names.remove(name)
python
def remove_allocated_node_name(self, name): """ Removes an allocated node name :param name: allocated node name """ if name in self._allocated_node_names: self._allocated_node_names.remove(name)
['def', 'remove_allocated_node_name', '(', 'self', ',', 'name', ')', ':', 'if', 'name', 'in', 'self', '.', '_allocated_node_names', ':', 'self', '.', '_allocated_node_names', '.', 'remove', '(', 'name', ')']
Removes an allocated node name :param name: allocated node name
['Removes', 'an', 'allocated', 'node', 'name']
train
https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/controller/project.py#L349-L357
324
mongolab/mongoctl
mongoctl/commands/server/start.py
prepare_mongod_server
def prepare_mongod_server(server): """ Contains post start server operations """ log_info("Preparing server '%s' for use as configured..." % server.id) cluster = server.get_cluster() # setup the local users if server supports that if server.supports_local_users(): users.setup_server_local_users(server) if not server.is_cluster_member() or server.is_standalone_config_server(): users.setup_server_users(server) if cluster and server.is_primary(): users.setup_cluster_users(cluster, server)
python
def prepare_mongod_server(server): """ Contains post start server operations """ log_info("Preparing server '%s' for use as configured..." % server.id) cluster = server.get_cluster() # setup the local users if server supports that if server.supports_local_users(): users.setup_server_local_users(server) if not server.is_cluster_member() or server.is_standalone_config_server(): users.setup_server_users(server) if cluster and server.is_primary(): users.setup_cluster_users(cluster, server)
['def', 'prepare_mongod_server', '(', 'server', ')', ':', 'log_info', '(', '"Preparing server \'%s\' for use as configured..."', '%', 'server', '.', 'id', ')', 'cluster', '=', 'server', '.', 'get_cluster', '(', ')', '# setup the local users if server supports that', 'if', 'server', '.', 'supports_local_users', '(', ')', ':', 'users', '.', 'setup_server_local_users', '(', 'server', ')', 'if', 'not', 'server', '.', 'is_cluster_member', '(', ')', 'or', 'server', '.', 'is_standalone_config_server', '(', ')', ':', 'users', '.', 'setup_server_users', '(', 'server', ')', 'if', 'cluster', 'and', 'server', '.', 'is_primary', '(', ')', ':', 'users', '.', 'setup_cluster_users', '(', 'cluster', ',', 'server', ')']
Contains post start server operations
['Contains', 'post', 'start', 'server', 'operations']
train
https://github.com/mongolab/mongoctl/blob/fab15216127ad4bf8ea9aa8a95d75504c0ef01a2/mongoctl/commands/server/start.py#L254-L270
325
pandas-dev/pandas
pandas/core/dtypes/common.py
classes_and_not_datetimelike
def classes_and_not_datetimelike(*klasses): """ evaluate if the tipo is a subclass of the klasses and not a datetimelike """ return lambda tipo: (issubclass(tipo, klasses) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
python
def classes_and_not_datetimelike(*klasses): """ evaluate if the tipo is a subclass of the klasses and not a datetimelike """ return lambda tipo: (issubclass(tipo, klasses) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
['def', 'classes_and_not_datetimelike', '(', '*', 'klasses', ')', ':', 'return', 'lambda', 'tipo', ':', '(', 'issubclass', '(', 'tipo', ',', 'klasses', ')', 'and', 'not', 'issubclass', '(', 'tipo', ',', '(', 'np', '.', 'datetime64', ',', 'np', '.', 'timedelta64', ')', ')', ')']
evaluate if the tipo is a subclass of the klasses and not a datetimelike
['evaluate', 'if', 'the', 'tipo', 'is', 'a', 'subclass', 'of', 'the', 'klasses', 'and', 'not', 'a', 'datetimelike']
train
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L122-L128
326
senaite/senaite.core
bika/lims/browser/referencesample.py
ReferenceResultsView.get_reference_results
def get_reference_results(self): """Return a mapping of Analysis Service -> Reference Results """ referenceresults = self.context.getReferenceResults() return dict(map(lambda rr: (rr.get("uid"), rr), referenceresults))
python
def get_reference_results(self): """Return a mapping of Analysis Service -> Reference Results """ referenceresults = self.context.getReferenceResults() return dict(map(lambda rr: (rr.get("uid"), rr), referenceresults))
['def', 'get_reference_results', '(', 'self', ')', ':', 'referenceresults', '=', 'self', '.', 'context', '.', 'getReferenceResults', '(', ')', 'return', 'dict', '(', 'map', '(', 'lambda', 'rr', ':', '(', 'rr', '.', 'get', '(', '"uid"', ')', ',', 'rr', ')', ',', 'referenceresults', ')', ')']
Return a mapping of Analysis Service -> Reference Results
['Return', 'a', 'mapping', 'of', 'Analysis', 'Service', '-', '>', 'Reference', 'Results']
train
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/browser/referencesample.py#L315-L319
327
mongodb/mongo-python-driver
pymongo/cursor.py
Cursor.count
def count(self, with_limit_and_skip=False): """**DEPRECATED** - Get the size of the results set for this query. The :meth:`count` method is deprecated and **not** supported in a transaction. Please use :meth:`~pymongo.collection.Collection.count_documents` instead. Returns the number of documents in the results set for this query. Does not take :meth:`limit` and :meth:`skip` into account by default - set `with_limit_and_skip` to ``True`` if that is the desired behavior. Raises :class:`~pymongo.errors.OperationFailure` on a database error. When used with MongoDB >= 2.6, :meth:`~count` uses any :meth:`~hint` applied to the query. In the following example the hint is passed to the count command: collection.find({'field': 'value'}).hint('field_1').count() The :meth:`count` method obeys the :attr:`~pymongo.collection.Collection.read_preference` of the :class:`~pymongo.collection.Collection` instance on which :meth:`~pymongo.collection.Collection.find` was called. :Parameters: - `with_limit_and_skip` (optional): take any :meth:`limit` or :meth:`skip` that has been applied to this cursor into account when getting the count .. note:: The `with_limit_and_skip` parameter requires server version **>= 1.1.4-** .. versionchanged:: 3.7 Deprecated. .. versionchanged:: 2.8 The :meth:`~count` method now supports :meth:`~hint`. """ warnings.warn("count is deprecated. Use Collection.count_documents " "instead.", DeprecationWarning, stacklevel=2) validate_boolean("with_limit_and_skip", with_limit_and_skip) cmd = SON([("count", self.__collection.name), ("query", self.__spec)]) if self.__max_time_ms is not None: cmd["maxTimeMS"] = self.__max_time_ms if self.__comment: cmd["comment"] = self.__comment if self.__hint is not None: cmd["hint"] = self.__hint if with_limit_and_skip: if self.__limit: cmd["limit"] = self.__limit if self.__skip: cmd["skip"] = self.__skip return self.__collection._count( cmd, self.__collation, session=self.__session)
python
def count(self, with_limit_and_skip=False): """**DEPRECATED** - Get the size of the results set for this query. The :meth:`count` method is deprecated and **not** supported in a transaction. Please use :meth:`~pymongo.collection.Collection.count_documents` instead. Returns the number of documents in the results set for this query. Does not take :meth:`limit` and :meth:`skip` into account by default - set `with_limit_and_skip` to ``True`` if that is the desired behavior. Raises :class:`~pymongo.errors.OperationFailure` on a database error. When used with MongoDB >= 2.6, :meth:`~count` uses any :meth:`~hint` applied to the query. In the following example the hint is passed to the count command: collection.find({'field': 'value'}).hint('field_1').count() The :meth:`count` method obeys the :attr:`~pymongo.collection.Collection.read_preference` of the :class:`~pymongo.collection.Collection` instance on which :meth:`~pymongo.collection.Collection.find` was called. :Parameters: - `with_limit_and_skip` (optional): take any :meth:`limit` or :meth:`skip` that has been applied to this cursor into account when getting the count .. note:: The `with_limit_and_skip` parameter requires server version **>= 1.1.4-** .. versionchanged:: 3.7 Deprecated. .. versionchanged:: 2.8 The :meth:`~count` method now supports :meth:`~hint`. """ warnings.warn("count is deprecated. Use Collection.count_documents " "instead.", DeprecationWarning, stacklevel=2) validate_boolean("with_limit_and_skip", with_limit_and_skip) cmd = SON([("count", self.__collection.name), ("query", self.__spec)]) if self.__max_time_ms is not None: cmd["maxTimeMS"] = self.__max_time_ms if self.__comment: cmd["comment"] = self.__comment if self.__hint is not None: cmd["hint"] = self.__hint if with_limit_and_skip: if self.__limit: cmd["limit"] = self.__limit if self.__skip: cmd["skip"] = self.__skip return self.__collection._count( cmd, self.__collation, session=self.__session)
['def', 'count', '(', 'self', ',', 'with_limit_and_skip', '=', 'False', ')', ':', 'warnings', '.', 'warn', '(', '"count is deprecated. Use Collection.count_documents "', '"instead."', ',', 'DeprecationWarning', ',', 'stacklevel', '=', '2', ')', 'validate_boolean', '(', '"with_limit_and_skip"', ',', 'with_limit_and_skip', ')', 'cmd', '=', 'SON', '(', '[', '(', '"count"', ',', 'self', '.', '__collection', '.', 'name', ')', ',', '(', '"query"', ',', 'self', '.', '__spec', ')', ']', ')', 'if', 'self', '.', '__max_time_ms', 'is', 'not', 'None', ':', 'cmd', '[', '"maxTimeMS"', ']', '=', 'self', '.', '__max_time_ms', 'if', 'self', '.', '__comment', ':', 'cmd', '[', '"comment"', ']', '=', 'self', '.', '__comment', 'if', 'self', '.', '__hint', 'is', 'not', 'None', ':', 'cmd', '[', '"hint"', ']', '=', 'self', '.', '__hint', 'if', 'with_limit_and_skip', ':', 'if', 'self', '.', '__limit', ':', 'cmd', '[', '"limit"', ']', '=', 'self', '.', '__limit', 'if', 'self', '.', '__skip', ':', 'cmd', '[', '"skip"', ']', '=', 'self', '.', '__skip', 'return', 'self', '.', '__collection', '.', '_count', '(', 'cmd', ',', 'self', '.', '__collation', ',', 'session', '=', 'self', '.', '__session', ')']
**DEPRECATED** - Get the size of the results set for this query. The :meth:`count` method is deprecated and **not** supported in a transaction. Please use :meth:`~pymongo.collection.Collection.count_documents` instead. Returns the number of documents in the results set for this query. Does not take :meth:`limit` and :meth:`skip` into account by default - set `with_limit_and_skip` to ``True`` if that is the desired behavior. Raises :class:`~pymongo.errors.OperationFailure` on a database error. When used with MongoDB >= 2.6, :meth:`~count` uses any :meth:`~hint` applied to the query. In the following example the hint is passed to the count command: collection.find({'field': 'value'}).hint('field_1').count() The :meth:`count` method obeys the :attr:`~pymongo.collection.Collection.read_preference` of the :class:`~pymongo.collection.Collection` instance on which :meth:`~pymongo.collection.Collection.find` was called. :Parameters: - `with_limit_and_skip` (optional): take any :meth:`limit` or :meth:`skip` that has been applied to this cursor into account when getting the count .. note:: The `with_limit_and_skip` parameter requires server version **>= 1.1.4-** .. versionchanged:: 3.7 Deprecated. .. versionchanged:: 2.8 The :meth:`~count` method now supports :meth:`~hint`.
['**', 'DEPRECATED', '**', '-', 'Get', 'the', 'size', 'of', 'the', 'results', 'set', 'for', 'this', 'query', '.']
train
https://github.com/mongodb/mongo-python-driver/blob/c29c21449e3aae74154207058cf85fd94018d4cd/pymongo/cursor.py#L723-L780
328
jmcgeheeiv/pyfakefs
pyfakefs/helpers.py
FakeStatResult.st_atime
def st_atime(self): """Return the access time in seconds.""" atime = self._st_atime_ns / 1e9 return atime if self.use_float else int(atime)
python
def st_atime(self): """Return the access time in seconds.""" atime = self._st_atime_ns / 1e9 return atime if self.use_float else int(atime)
['def', 'st_atime', '(', 'self', ')', ':', 'atime', '=', 'self', '.', '_st_atime_ns', '/', '1e9', 'return', 'atime', 'if', 'self', '.', 'use_float', 'else', 'int', '(', 'atime', ')']
Return the access time in seconds.
['Return', 'the', 'access', 'time', 'in', 'seconds', '.']
train
https://github.com/jmcgeheeiv/pyfakefs/blob/6c36fb8987108107fc861fc3013620d46c7d2f9c/pyfakefs/helpers.py#L169-L172
329
delfick/gitmit
gitmit/prefix_tree.py
PrefixTree.fill
def fill(self, paths): """ Initialise the tree. paths is a list of strings where each string is the relative path to some file. """ for path in paths: tree = self.tree parts = tuple(path.split('/')) dir_parts = parts[:-1] built = () for part in dir_parts: self.cache[built] = tree built += (part, ) parent = tree tree = parent.folders.get(part, empty) if tree is empty: tree = parent.folders[part] = TreeItem(name=built, folders={}, files=set(), parent=parent) self.cache[dir_parts] = tree tree.files.add(parts[-1])
python
def fill(self, paths): """ Initialise the tree. paths is a list of strings where each string is the relative path to some file. """ for path in paths: tree = self.tree parts = tuple(path.split('/')) dir_parts = parts[:-1] built = () for part in dir_parts: self.cache[built] = tree built += (part, ) parent = tree tree = parent.folders.get(part, empty) if tree is empty: tree = parent.folders[part] = TreeItem(name=built, folders={}, files=set(), parent=parent) self.cache[dir_parts] = tree tree.files.add(parts[-1])
['def', 'fill', '(', 'self', ',', 'paths', ')', ':', 'for', 'path', 'in', 'paths', ':', 'tree', '=', 'self', '.', 'tree', 'parts', '=', 'tuple', '(', 'path', '.', 'split', '(', "'/'", ')', ')', 'dir_parts', '=', 'parts', '[', ':', '-', '1', ']', 'built', '=', '(', ')', 'for', 'part', 'in', 'dir_parts', ':', 'self', '.', 'cache', '[', 'built', ']', '=', 'tree', 'built', '+=', '(', 'part', ',', ')', 'parent', '=', 'tree', 'tree', '=', 'parent', '.', 'folders', '.', 'get', '(', 'part', ',', 'empty', ')', 'if', 'tree', 'is', 'empty', ':', 'tree', '=', 'parent', '.', 'folders', '[', 'part', ']', '=', 'TreeItem', '(', 'name', '=', 'built', ',', 'folders', '=', '{', '}', ',', 'files', '=', 'set', '(', ')', ',', 'parent', '=', 'parent', ')', 'self', '.', 'cache', '[', 'dir_parts', ']', '=', 'tree', 'tree', '.', 'files', '.', 'add', '(', 'parts', '[', '-', '1', ']', ')']
Initialise the tree. paths is a list of strings where each string is the relative path to some file.
['Initialise', 'the', 'tree', '.']
train
https://github.com/delfick/gitmit/blob/ae0aef14a06b25ad2811f8f47cc97e68a0910eae/gitmit/prefix_tree.py#L59-L80
330
pymc-devs/pymc
pymc/distributions.py
exponweib_like
def exponweib_like(x, alpha, k, loc=0, scale=1): R""" Exponentiated Weibull log-likelihood. The exponentiated Weibull distribution is a generalization of the Weibull family. Its value lies in being able to model monotone and non-monotone failure rates. .. math:: f(x \mid \alpha,k,loc,scale) & = \frac{\alpha k}{scale} (1-e^{-z^k})^{\alpha-1} e^{-z^k} z^{k-1} \\ z & = \frac{x-loc}{scale} :Parameters: - `x` : x > 0 - `alpha` : Shape parameter - `k` : k > 0 - `loc` : Location parameter - `scale` : Scale parameter (scale > 0). """ return flib.exponweib(x, alpha, k, loc, scale)
python
def exponweib_like(x, alpha, k, loc=0, scale=1): R""" Exponentiated Weibull log-likelihood. The exponentiated Weibull distribution is a generalization of the Weibull family. Its value lies in being able to model monotone and non-monotone failure rates. .. math:: f(x \mid \alpha,k,loc,scale) & = \frac{\alpha k}{scale} (1-e^{-z^k})^{\alpha-1} e^{-z^k} z^{k-1} \\ z & = \frac{x-loc}{scale} :Parameters: - `x` : x > 0 - `alpha` : Shape parameter - `k` : k > 0 - `loc` : Location parameter - `scale` : Scale parameter (scale > 0). """ return flib.exponweib(x, alpha, k, loc, scale)
['def', 'exponweib_like', '(', 'x', ',', 'alpha', ',', 'k', ',', 'loc', '=', '0', ',', 'scale', '=', '1', ')', ':', 'return', 'flib', '.', 'exponweib', '(', 'x', ',', 'alpha', ',', 'k', ',', 'loc', ',', 'scale', ')']
R""" Exponentiated Weibull log-likelihood. The exponentiated Weibull distribution is a generalization of the Weibull family. Its value lies in being able to model monotone and non-monotone failure rates. .. math:: f(x \mid \alpha,k,loc,scale) & = \frac{\alpha k}{scale} (1-e^{-z^k})^{\alpha-1} e^{-z^k} z^{k-1} \\ z & = \frac{x-loc}{scale} :Parameters: - `x` : x > 0 - `alpha` : Shape parameter - `k` : k > 0 - `loc` : Location parameter - `scale` : Scale parameter (scale > 0).
['R', 'Exponentiated', 'Weibull', 'log', '-', 'likelihood', '.']
train
https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/distributions.py#L1241-L1261
331
myint/unify
unify.py
format_file
def format_file(filename, args, standard_out): """Run format_code() on a file. Returns `True` if any changes are needed and they are not being done in-place. """ encoding = detect_encoding(filename) with open_with_encoding(filename, encoding=encoding) as input_file: source = input_file.read() formatted_source = format_code( source, preferred_quote=args.quote) if source != formatted_source: if args.in_place: with open_with_encoding(filename, mode='w', encoding=encoding) as output_file: output_file.write(formatted_source) else: import difflib diff = difflib.unified_diff( source.splitlines(), formatted_source.splitlines(), 'before/' + filename, 'after/' + filename, lineterm='') standard_out.write('\n'.join(list(diff) + [''])) return True
python
def format_file(filename, args, standard_out): """Run format_code() on a file. Returns `True` if any changes are needed and they are not being done in-place. """ encoding = detect_encoding(filename) with open_with_encoding(filename, encoding=encoding) as input_file: source = input_file.read() formatted_source = format_code( source, preferred_quote=args.quote) if source != formatted_source: if args.in_place: with open_with_encoding(filename, mode='w', encoding=encoding) as output_file: output_file.write(formatted_source) else: import difflib diff = difflib.unified_diff( source.splitlines(), formatted_source.splitlines(), 'before/' + filename, 'after/' + filename, lineterm='') standard_out.write('\n'.join(list(diff) + [''])) return True
['def', 'format_file', '(', 'filename', ',', 'args', ',', 'standard_out', ')', ':', 'encoding', '=', 'detect_encoding', '(', 'filename', ')', 'with', 'open_with_encoding', '(', 'filename', ',', 'encoding', '=', 'encoding', ')', 'as', 'input_file', ':', 'source', '=', 'input_file', '.', 'read', '(', ')', 'formatted_source', '=', 'format_code', '(', 'source', ',', 'preferred_quote', '=', 'args', '.', 'quote', ')', 'if', 'source', '!=', 'formatted_source', ':', 'if', 'args', '.', 'in_place', ':', 'with', 'open_with_encoding', '(', 'filename', ',', 'mode', '=', "'w'", ',', 'encoding', '=', 'encoding', ')', 'as', 'output_file', ':', 'output_file', '.', 'write', '(', 'formatted_source', ')', 'else', ':', 'import', 'difflib', 'diff', '=', 'difflib', '.', 'unified_diff', '(', 'source', '.', 'splitlines', '(', ')', ',', 'formatted_source', '.', 'splitlines', '(', ')', ',', "'before/'", '+', 'filename', ',', "'after/'", '+', 'filename', ',', 'lineterm', '=', "''", ')', 'standard_out', '.', 'write', '(', "'\\n'", '.', 'join', '(', 'list', '(', 'diff', ')', '+', '[', "''", ']', ')', ')', 'return', 'True']
Run format_code() on a file. Returns `True` if any changes are needed and they are not being done in-place.
['Run', 'format_code', '()', 'on', 'a', 'file', '.']
train
https://github.com/myint/unify/blob/ae699f5980a715cadc4a2f07bf16d11083c59401/unify.py#L135-L164
332
bitesofcode/projexui
projexui/widgets/xorbcolumnnavigator.py
XOrbColumnItem.load
def load(self): """ Loads the children for this item. """ if self._loaded: return self.setChildIndicatorPolicy(self.DontShowIndicatorWhenChildless) self._loaded = True column = self.schemaColumn() if not column.isReference(): return ref = column.referenceModel() if not ref: return columns = sorted(ref.schema().columns(), key=lambda x: x.name().strip('_')) for column in columns: XOrbColumnItem(self, column)
python
def load(self): """ Loads the children for this item. """ if self._loaded: return self.setChildIndicatorPolicy(self.DontShowIndicatorWhenChildless) self._loaded = True column = self.schemaColumn() if not column.isReference(): return ref = column.referenceModel() if not ref: return columns = sorted(ref.schema().columns(), key=lambda x: x.name().strip('_')) for column in columns: XOrbColumnItem(self, column)
['def', 'load', '(', 'self', ')', ':', 'if', 'self', '.', '_loaded', ':', 'return', 'self', '.', 'setChildIndicatorPolicy', '(', 'self', '.', 'DontShowIndicatorWhenChildless', ')', 'self', '.', '_loaded', '=', 'True', 'column', '=', 'self', '.', 'schemaColumn', '(', ')', 'if', 'not', 'column', '.', 'isReference', '(', ')', ':', 'return', 'ref', '=', 'column', '.', 'referenceModel', '(', ')', 'if', 'not', 'ref', ':', 'return', 'columns', '=', 'sorted', '(', 'ref', '.', 'schema', '(', ')', '.', 'columns', '(', ')', ',', 'key', '=', 'lambda', 'x', ':', 'x', '.', 'name', '(', ')', '.', 'strip', '(', "'_'", ')', ')', 'for', 'column', 'in', 'columns', ':', 'XOrbColumnItem', '(', 'self', ',', 'column', ')']
Loads the children for this item.
['Loads', 'the', 'children', 'for', 'this', 'item', '.']
train
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xorbcolumnnavigator.py#L49-L70
333
EconForge/dolo
dolo/misc/decorators.py
deprecated
def deprecated(func): '''This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.''' import warnings @functools.wraps(func) def new_func(*args, **kwargs): if is_python_3: code = func.__code__ else: code = func.func_code warnings.warn_explicit( "Call to deprecated function {}.".format(func.__name__), category=Warning, filename=code.co_filename, lineno=code.co_firstlineno + 1 ) return func(*args, **kwargs) return new_func
python
def deprecated(func): '''This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.''' import warnings @functools.wraps(func) def new_func(*args, **kwargs): if is_python_3: code = func.__code__ else: code = func.func_code warnings.warn_explicit( "Call to deprecated function {}.".format(func.__name__), category=Warning, filename=code.co_filename, lineno=code.co_firstlineno + 1 ) return func(*args, **kwargs) return new_func
['def', 'deprecated', '(', 'func', ')', ':', 'import', 'warnings', '@', 'functools', '.', 'wraps', '(', 'func', ')', 'def', 'new_func', '(', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'if', 'is_python_3', ':', 'code', '=', 'func', '.', '__code__', 'else', ':', 'code', '=', 'func', '.', 'func_code', 'warnings', '.', 'warn_explicit', '(', '"Call to deprecated function {}."', '.', 'format', '(', 'func', '.', '__name__', ')', ',', 'category', '=', 'Warning', ',', 'filename', '=', 'code', '.', 'co_filename', ',', 'lineno', '=', 'code', '.', 'co_firstlineno', '+', '1', ')', 'return', 'func', '(', '*', 'args', ',', '*', '*', 'kwargs', ')', 'return', 'new_func']
This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.
['This', 'is', 'a', 'decorator', 'which', 'can', 'be', 'used', 'to', 'mark', 'functions', 'as', 'deprecated', '.', 'It', 'will', 'result', 'in', 'a', 'warning', 'being', 'emitted', 'when', 'the', 'function', 'is', 'used', '.']
train
https://github.com/EconForge/dolo/blob/d91ddf148b009bf79852d9aec70f3a1877e0f79a/dolo/misc/decorators.py#L8-L28
334
python-rope/rope
rope/base/prefs.py
Prefs.set
def set(self, key, value): """Set the value of `key` preference to `value`.""" if key in self.callbacks: self.callbacks[key](value) else: self.prefs[key] = value
python
def set(self, key, value): """Set the value of `key` preference to `value`.""" if key in self.callbacks: self.callbacks[key](value) else: self.prefs[key] = value
['def', 'set', '(', 'self', ',', 'key', ',', 'value', ')', ':', 'if', 'key', 'in', 'self', '.', 'callbacks', ':', 'self', '.', 'callbacks', '[', 'key', ']', '(', 'value', ')', 'else', ':', 'self', '.', 'prefs', '[', 'key', ']', '=', 'value']
Set the value of `key` preference to `value`.
['Set', 'the', 'value', 'of', 'key', 'preference', 'to', 'value', '.']
train
https://github.com/python-rope/rope/blob/1c9f9cd5964b099a99a9111e998f0dc728860688/rope/base/prefs.py#L7-L12
335
lextoumbourou/txstripe
txstripe/resource.py
Dispute.close
def close(self, idempotency_key=None): """Return a deferred.""" url = self.instance_url() + '/close' headers = populate_headers(idempotency_key) d = self.request('post', url, {}, headers) return d.addCallback(self.refresh_from).addCallback(lambda _: self)
python
def close(self, idempotency_key=None): """Return a deferred.""" url = self.instance_url() + '/close' headers = populate_headers(idempotency_key) d = self.request('post', url, {}, headers) return d.addCallback(self.refresh_from).addCallback(lambda _: self)
['def', 'close', '(', 'self', ',', 'idempotency_key', '=', 'None', ')', ':', 'url', '=', 'self', '.', 'instance_url', '(', ')', '+', "'/close'", 'headers', '=', 'populate_headers', '(', 'idempotency_key', ')', 'd', '=', 'self', '.', 'request', '(', "'post'", ',', 'url', ',', '{', '}', ',', 'headers', ')', 'return', 'd', '.', 'addCallback', '(', 'self', '.', 'refresh_from', ')', '.', 'addCallback', '(', 'lambda', '_', ':', 'self', ')']
Return a deferred.
['Return', 'a', 'deferred', '.']
train
https://github.com/lextoumbourou/txstripe/blob/a69e67f524258026fd1840655a0578311bba3b89/txstripe/resource.py#L350-L355
336
pyviz/holoviews
holoviews/core/boundingregion.py
BoundingBox.contains_exclusive
def contains_exclusive(self, x, y): """ Return True if the given point is contained within the bounding box, where the bottom and right boundaries are considered exclusive. """ left, bottom, right, top = self._aarect.lbrt() return (left <= x < right) and (bottom < y <= top)
python
def contains_exclusive(self, x, y): """ Return True if the given point is contained within the bounding box, where the bottom and right boundaries are considered exclusive. """ left, bottom, right, top = self._aarect.lbrt() return (left <= x < right) and (bottom < y <= top)
['def', 'contains_exclusive', '(', 'self', ',', 'x', ',', 'y', ')', ':', 'left', ',', 'bottom', ',', 'right', ',', 'top', '=', 'self', '.', '_aarect', '.', 'lbrt', '(', ')', 'return', '(', 'left', '<=', 'x', '<', 'right', ')', 'and', '(', 'bottom', '<', 'y', '<=', 'top', ')']
Return True if the given point is contained within the bounding box, where the bottom and right boundaries are considered exclusive.
['Return', 'True', 'if', 'the', 'given', 'point', 'is', 'contained', 'within', 'the', 'bounding', 'box', 'where', 'the', 'bottom', 'and', 'right', 'boundaries', 'are', 'considered', 'exclusive', '.']
train
https://github.com/pyviz/holoviews/blob/ae0dd2f3de448b0ca5e9065aabd6ef8d84c7e655/holoviews/core/boundingregion.py#L157-L164
337
NoneGG/aredis
aredis/commands/extra.py
ExtraCommandMixin.cache
def cache(self, name, cache_class=Cache, identity_generator_class=IdentityGenerator, compressor_class=Compressor, serializer_class=Serializer, *args, **kwargs): """ Return a cache object using default identity generator, serializer and compressor. ``name`` is used to identify the series of your cache ``cache_class`` Cache is for normal use and HerdCache is used in case of Thundering Herd Problem ``identity_generator_class`` is the class used to generate the real unique key in cache, can be overwritten to meet your special needs. It should provide `generate` API ``compressor_class`` is the class used to compress cache in redis, can be overwritten with API `compress` and `decompress` retained. ``serializer_class`` is the class used to serialize content before compress, can be overwritten with API `serialize` and `deserialize` retained. """ return cache_class(self, app=name, identity_generator_class=identity_generator_class, compressor_class=compressor_class, serializer_class=serializer_class, *args, **kwargs)
python
def cache(self, name, cache_class=Cache, identity_generator_class=IdentityGenerator, compressor_class=Compressor, serializer_class=Serializer, *args, **kwargs): """ Return a cache object using default identity generator, serializer and compressor. ``name`` is used to identify the series of your cache ``cache_class`` Cache is for normal use and HerdCache is used in case of Thundering Herd Problem ``identity_generator_class`` is the class used to generate the real unique key in cache, can be overwritten to meet your special needs. It should provide `generate` API ``compressor_class`` is the class used to compress cache in redis, can be overwritten with API `compress` and `decompress` retained. ``serializer_class`` is the class used to serialize content before compress, can be overwritten with API `serialize` and `deserialize` retained. """ return cache_class(self, app=name, identity_generator_class=identity_generator_class, compressor_class=compressor_class, serializer_class=serializer_class, *args, **kwargs)
['def', 'cache', '(', 'self', ',', 'name', ',', 'cache_class', '=', 'Cache', ',', 'identity_generator_class', '=', 'IdentityGenerator', ',', 'compressor_class', '=', 'Compressor', ',', 'serializer_class', '=', 'Serializer', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'return', 'cache_class', '(', 'self', ',', 'app', '=', 'name', ',', 'identity_generator_class', '=', 'identity_generator_class', ',', 'compressor_class', '=', 'compressor_class', ',', 'serializer_class', '=', 'serializer_class', ',', '*', 'args', ',', '*', '*', 'kwargs', ')']
Return a cache object using default identity generator, serializer and compressor. ``name`` is used to identify the series of your cache ``cache_class`` Cache is for normal use and HerdCache is used in case of Thundering Herd Problem ``identity_generator_class`` is the class used to generate the real unique key in cache, can be overwritten to meet your special needs. It should provide `generate` API ``compressor_class`` is the class used to compress cache in redis, can be overwritten with API `compress` and `decompress` retained. ``serializer_class`` is the class used to serialize content before compress, can be overwritten with API `serialize` and `deserialize` retained.
['Return', 'a', 'cache', 'object', 'using', 'default', 'identity', 'generator', 'serializer', 'and', 'compressor', '.']
train
https://github.com/NoneGG/aredis/blob/204caad740ac13e5760d46444a2ba7632982a046/aredis/commands/extra.py#L11-L35
338
brendonh/pyth
pyth/document.py
_PythBase.append
def append(self, item): """ Try to add an item to this element. If the item is of the wrong type, and if this element has a sub-type, then try to create such a sub-type and insert the item into that, instead. This happens recursively, so (in python-markup): L [ u'Foo' ] actually creates: L [ LE [ P [ T [ u'Foo' ] ] ] ] If that doesn't work, raise a TypeError. """ okay = True if not isinstance(item, self.contentType): if hasattr(self.contentType, 'contentType'): try: item = self.contentType(content=[item]) except TypeError: okay = False else: okay = False if not okay: raise TypeError("Wrong content type for %s: %s (%s)" % ( self.__class__.__name__, repr(type(item)), repr(item))) self.content.append(item)
python
def append(self, item): """ Try to add an item to this element. If the item is of the wrong type, and if this element has a sub-type, then try to create such a sub-type and insert the item into that, instead. This happens recursively, so (in python-markup): L [ u'Foo' ] actually creates: L [ LE [ P [ T [ u'Foo' ] ] ] ] If that doesn't work, raise a TypeError. """ okay = True if not isinstance(item, self.contentType): if hasattr(self.contentType, 'contentType'): try: item = self.contentType(content=[item]) except TypeError: okay = False else: okay = False if not okay: raise TypeError("Wrong content type for %s: %s (%s)" % ( self.__class__.__name__, repr(type(item)), repr(item))) self.content.append(item)
['def', 'append', '(', 'self', ',', 'item', ')', ':', 'okay', '=', 'True', 'if', 'not', 'isinstance', '(', 'item', ',', 'self', '.', 'contentType', ')', ':', 'if', 'hasattr', '(', 'self', '.', 'contentType', ',', "'contentType'", ')', ':', 'try', ':', 'item', '=', 'self', '.', 'contentType', '(', 'content', '=', '[', 'item', ']', ')', 'except', 'TypeError', ':', 'okay', '=', 'False', 'else', ':', 'okay', '=', 'False', 'if', 'not', 'okay', ':', 'raise', 'TypeError', '(', '"Wrong content type for %s: %s (%s)"', '%', '(', 'self', '.', '__class__', '.', '__name__', ',', 'repr', '(', 'type', '(', 'item', ')', ')', ',', 'repr', '(', 'item', ')', ')', ')', 'self', '.', 'content', '.', 'append', '(', 'item', ')']
Try to add an item to this element. If the item is of the wrong type, and if this element has a sub-type, then try to create such a sub-type and insert the item into that, instead. This happens recursively, so (in python-markup): L [ u'Foo' ] actually creates: L [ LE [ P [ T [ u'Foo' ] ] ] ] If that doesn't work, raise a TypeError.
['Try', 'to', 'add', 'an', 'item', 'to', 'this', 'element', '.']
train
https://github.com/brendonh/pyth/blob/f2a06fc8dc9b1cfc439ea14252d39b9845a7fa4b/pyth/document.py#L30-L59
339
PX4/pyulog
pyulog/core.py
ULog.get_version_info
def get_version_info(self, key_name='ver_sw_release'): """ get the (major, minor, patch, type) version information as tuple. Returns None if not found definition of type is: >= 0: development >= 64: alpha version >= 128: beta version >= 192: RC version == 255: release version """ if key_name in self._msg_info_dict: val = self._msg_info_dict[key_name] return ((val >> 24) & 0xff, (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff) return None
python
def get_version_info(self, key_name='ver_sw_release'): """ get the (major, minor, patch, type) version information as tuple. Returns None if not found definition of type is: >= 0: development >= 64: alpha version >= 128: beta version >= 192: RC version == 255: release version """ if key_name in self._msg_info_dict: val = self._msg_info_dict[key_name] return ((val >> 24) & 0xff, (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff) return None
['def', 'get_version_info', '(', 'self', ',', 'key_name', '=', "'ver_sw_release'", ')', ':', 'if', 'key_name', 'in', 'self', '.', '_msg_info_dict', ':', 'val', '=', 'self', '.', '_msg_info_dict', '[', 'key_name', ']', 'return', '(', '(', 'val', '>>', '24', ')', '&', '0xff', ',', '(', 'val', '>>', '16', ')', '&', '0xff', ',', '(', 'val', '>>', '8', ')', '&', '0xff', ',', 'val', '&', '0xff', ')', 'return', 'None']
get the (major, minor, patch, type) version information as tuple. Returns None if not found definition of type is: >= 0: development >= 64: alpha version >= 128: beta version >= 192: RC version == 255: release version
['get', 'the', '(', 'major', 'minor', 'patch', 'type', ')', 'version', 'information', 'as', 'tuple', '.', 'Returns', 'None', 'if', 'not', 'found', 'definition', 'of', 'type', 'is', ':', '>', '=', '0', ':', 'development', '>', '=', '64', ':', 'alpha', 'version', '>', '=', '128', ':', 'beta', 'version', '>', '=', '192', ':', 'RC', 'version', '==', '255', ':', 'release', 'version']
train
https://github.com/PX4/pyulog/blob/3bc4f9338d30e2e0a0dfbed58f54d200967e5056/pyulog/core.py#L614-L628
340
hasgeek/coaster
coaster/nlp.py
extract_named_entities
def extract_named_entities(text_blocks): """ Return a list of named entities extracted from provided text blocks (list of text strings). """ sentences = [] for text in text_blocks: sentences.extend(nltk.sent_tokenize(text)) tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences] tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences] chunked_sentences = nltk.ne_chunk_sents(tagged_sentences, binary=True) def extract_entity_names(t): entity_names = [] if hasattr(t, 'label'): if t.label() == 'NE': entity_names.append(' '.join([child[0] for child in t])) else: for child in t: entity_names.extend(extract_entity_names(child)) return entity_names entity_names = [] for tree in chunked_sentences: entity_names.extend(extract_entity_names(tree)) return set(entity_names)
python
def extract_named_entities(text_blocks): """ Return a list of named entities extracted from provided text blocks (list of text strings). """ sentences = [] for text in text_blocks: sentences.extend(nltk.sent_tokenize(text)) tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences] tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences] chunked_sentences = nltk.ne_chunk_sents(tagged_sentences, binary=True) def extract_entity_names(t): entity_names = [] if hasattr(t, 'label'): if t.label() == 'NE': entity_names.append(' '.join([child[0] for child in t])) else: for child in t: entity_names.extend(extract_entity_names(child)) return entity_names entity_names = [] for tree in chunked_sentences: entity_names.extend(extract_entity_names(tree)) return set(entity_names)
['def', 'extract_named_entities', '(', 'text_blocks', ')', ':', 'sentences', '=', '[', ']', 'for', 'text', 'in', 'text_blocks', ':', 'sentences', '.', 'extend', '(', 'nltk', '.', 'sent_tokenize', '(', 'text', ')', ')', 'tokenized_sentences', '=', '[', 'nltk', '.', 'word_tokenize', '(', 'sentence', ')', 'for', 'sentence', 'in', 'sentences', ']', 'tagged_sentences', '=', '[', 'nltk', '.', 'pos_tag', '(', 'sentence', ')', 'for', 'sentence', 'in', 'tokenized_sentences', ']', 'chunked_sentences', '=', 'nltk', '.', 'ne_chunk_sents', '(', 'tagged_sentences', ',', 'binary', '=', 'True', ')', 'def', 'extract_entity_names', '(', 't', ')', ':', 'entity_names', '=', '[', ']', 'if', 'hasattr', '(', 't', ',', "'label'", ')', ':', 'if', 't', '.', 'label', '(', ')', '==', "'NE'", ':', 'entity_names', '.', 'append', '(', "' '", '.', 'join', '(', '[', 'child', '[', '0', ']', 'for', 'child', 'in', 't', ']', ')', ')', 'else', ':', 'for', 'child', 'in', 't', ':', 'entity_names', '.', 'extend', '(', 'extract_entity_names', '(', 'child', ')', ')', 'return', 'entity_names', 'entity_names', '=', '[', ']', 'for', 'tree', 'in', 'chunked_sentences', ':', 'entity_names', '.', 'extend', '(', 'extract_entity_names', '(', 'tree', ')', ')', 'return', 'set', '(', 'entity_names', ')']
Return a list of named entities extracted from provided text blocks (list of text strings).
['Return', 'a', 'list', 'of', 'named', 'entities', 'extracted', 'from', 'provided', 'text', 'blocks', '(', 'list', 'of', 'text', 'strings', ')', '.']
train
https://github.com/hasgeek/coaster/blob/07f7eb5d5f516e22fa14fdf4dc70e0ae13ee398d/coaster/nlp.py#L20-L48
341
watson-developer-cloud/python-sdk
ibm_watson/text_to_speech_v1.py
VoiceModel._from_dict
def _from_dict(cls, _dict): """Initialize a VoiceModel object from a json dictionary.""" args = {} if 'customization_id' in _dict: args['customization_id'] = _dict.get('customization_id') else: raise ValueError( 'Required property \'customization_id\' not present in VoiceModel JSON' ) if 'name' in _dict: args['name'] = _dict.get('name') if 'language' in _dict: args['language'] = _dict.get('language') if 'owner' in _dict: args['owner'] = _dict.get('owner') if 'created' in _dict: args['created'] = _dict.get('created') if 'last_modified' in _dict: args['last_modified'] = _dict.get('last_modified') if 'description' in _dict: args['description'] = _dict.get('description') if 'words' in _dict: args['words'] = [Word._from_dict(x) for x in (_dict.get('words'))] return cls(**args)
python
def _from_dict(cls, _dict): """Initialize a VoiceModel object from a json dictionary.""" args = {} if 'customization_id' in _dict: args['customization_id'] = _dict.get('customization_id') else: raise ValueError( 'Required property \'customization_id\' not present in VoiceModel JSON' ) if 'name' in _dict: args['name'] = _dict.get('name') if 'language' in _dict: args['language'] = _dict.get('language') if 'owner' in _dict: args['owner'] = _dict.get('owner') if 'created' in _dict: args['created'] = _dict.get('created') if 'last_modified' in _dict: args['last_modified'] = _dict.get('last_modified') if 'description' in _dict: args['description'] = _dict.get('description') if 'words' in _dict: args['words'] = [Word._from_dict(x) for x in (_dict.get('words'))] return cls(**args)
['def', '_from_dict', '(', 'cls', ',', '_dict', ')', ':', 'args', '=', '{', '}', 'if', "'customization_id'", 'in', '_dict', ':', 'args', '[', "'customization_id'", ']', '=', '_dict', '.', 'get', '(', "'customization_id'", ')', 'else', ':', 'raise', 'ValueError', '(', "'Required property \\'customization_id\\' not present in VoiceModel JSON'", ')', 'if', "'name'", 'in', '_dict', ':', 'args', '[', "'name'", ']', '=', '_dict', '.', 'get', '(', "'name'", ')', 'if', "'language'", 'in', '_dict', ':', 'args', '[', "'language'", ']', '=', '_dict', '.', 'get', '(', "'language'", ')', 'if', "'owner'", 'in', '_dict', ':', 'args', '[', "'owner'", ']', '=', '_dict', '.', 'get', '(', "'owner'", ')', 'if', "'created'", 'in', '_dict', ':', 'args', '[', "'created'", ']', '=', '_dict', '.', 'get', '(', "'created'", ')', 'if', "'last_modified'", 'in', '_dict', ':', 'args', '[', "'last_modified'", ']', '=', '_dict', '.', 'get', '(', "'last_modified'", ')', 'if', "'description'", 'in', '_dict', ':', 'args', '[', "'description'", ']', '=', '_dict', '.', 'get', '(', "'description'", ')', 'if', "'words'", 'in', '_dict', ':', 'args', '[', "'words'", ']', '=', '[', 'Word', '.', '_from_dict', '(', 'x', ')', 'for', 'x', 'in', '(', '_dict', '.', 'get', '(', "'words'", ')', ')', ']', 'return', 'cls', '(', '*', '*', 'args', ')']
Initialize a VoiceModel object from a json dictionary.
['Initialize', 'a', 'VoiceModel', 'object', 'from', 'a', 'json', 'dictionary', '.']
train
https://github.com/watson-developer-cloud/python-sdk/blob/4c2c9df4466fcde88975da9ecd834e6ba95eb353/ibm_watson/text_to_speech_v1.py#L1306-L1329
342
openstack/proliantutils
proliantutils/redfish/resources/system/storage/storage.py
Storage.has_rotational
def has_rotational(self): """Return true if any of the drive is HDD""" for member in self._drives_list(): if member.media_type == constants.MEDIA_TYPE_HDD: return True return False
python
def has_rotational(self): """Return true if any of the drive is HDD""" for member in self._drives_list(): if member.media_type == constants.MEDIA_TYPE_HDD: return True return False
['def', 'has_rotational', '(', 'self', ')', ':', 'for', 'member', 'in', 'self', '.', '_drives_list', '(', ')', ':', 'if', 'member', '.', 'media_type', '==', 'constants', '.', 'MEDIA_TYPE_HDD', ':', 'return', 'True', 'return', 'False']
Return true if any of the drive is HDD
['Return', 'true', 'if', 'any', 'of', 'the', 'drive', 'is', 'HDD']
train
https://github.com/openstack/proliantutils/blob/86ef3b47b4eca97c221577e3570b0240d6a25f22/proliantutils/redfish/resources/system/storage/storage.py#L87-L92
343
klmitch/turnstile
turnstile/config.py
Config.get
def get(self, key, default=None): """ Retrieve the given configuration option. Configuration options that can be queried this way are those that are specified without prefix in the paste.ini file, or which are specified in the '[turnstile]' section of the configuration file. Returns the default value (None if not specified) if the given option does not exist. """ return self._config.get(None, {}).get(key, default)
python
def get(self, key, default=None): """ Retrieve the given configuration option. Configuration options that can be queried this way are those that are specified without prefix in the paste.ini file, or which are specified in the '[turnstile]' section of the configuration file. Returns the default value (None if not specified) if the given option does not exist. """ return self._config.get(None, {}).get(key, default)
['def', 'get', '(', 'self', ',', 'key', ',', 'default', '=', 'None', ')', ':', 'return', 'self', '.', '_config', '.', 'get', '(', 'None', ',', '{', '}', ')', '.', 'get', '(', 'key', ',', 'default', ')']
Retrieve the given configuration option. Configuration options that can be queried this way are those that are specified without prefix in the paste.ini file, or which are specified in the '[turnstile]' section of the configuration file. Returns the default value (None if not specified) if the given option does not exist.
['Retrieve', 'the', 'given', 'configuration', 'option', '.', 'Configuration', 'options', 'that', 'can', 'be', 'queried', 'this', 'way', 'are', 'those', 'that', 'are', 'specified', 'without', 'prefix', 'in', 'the', 'paste', '.', 'ini', 'file', 'or', 'which', 'are', 'specified', 'in', 'the', '[', 'turnstile', ']', 'section', 'of', 'the', 'configuration', 'file', '.', 'Returns', 'the', 'default', 'value', '(', 'None', 'if', 'not', 'specified', ')', 'if', 'the', 'given', 'option', 'does', 'not', 'exist', '.']
train
https://github.com/klmitch/turnstile/blob/8fe9a359b45e505d3192ab193ecf9be177ab1a17/turnstile/config.py#L174-L184
344
gwastro/pycbc-glue
pycbc_glue/pipeline.py
CondorJob.write_sub_file
def write_sub_file(self): """ Write a submit file for this Condor job. """ if not self.__log_file: raise CondorSubmitError, "Log file not specified." if not self.__err_file: raise CondorSubmitError, "Error file not specified." if not self.__out_file: raise CondorSubmitError, "Output file not specified." if not self.__sub_file_path: raise CondorSubmitError, 'No path for submit file.' try: subfile = open(self.__sub_file_path, 'w') except: raise CondorSubmitError, "Cannot open file " + self.__sub_file_path if self.__universe == 'grid': if self.__grid_type == None: raise CondorSubmitError, 'No grid type specified.' elif self.__grid_type == 'gt2': if self.__grid_server == None: raise CondorSubmitError, 'No server specified for grid resource.' elif self.__grid_type == 'gt4': if self.__grid_server == None: raise CondorSubmitError, 'No server specified for grid resource.' if self.__grid_scheduler == None: raise CondorSubmitError, 'No scheduler specified for grid resource.' else: raise CondorSubmitError, 'Unsupported grid resource.' subfile.write( 'universe = ' + self.__universe + '\n' ) subfile.write( 'executable = ' + self.__executable + '\n' ) if self.__universe == 'grid': if self.__grid_type == 'gt2': subfile.write('grid_resource = %s %s\n' % (self.__grid_type, self.__grid_server)) if self.__grid_type == 'gt4': subfile.write('grid_resource = %s %s %s\n' % (self.__grid_type, self.__grid_server, self.__grid_scheduler)) if self.__universe == 'grid': subfile.write('when_to_transfer_output = ON_EXIT\n') subfile.write('transfer_output_files = $(macrooutput)\n') subfile.write('transfer_input_files = $(macroinput)\n') if self.__options.keys() or self.__short_options.keys() or self.__arguments: subfile.write( 'arguments = "' ) for c in self.__options.keys(): if self.__options[c]: subfile.write( ' --' + c + ' ' + self.__options[c] ) else: subfile.write( ' --' + c ) for c in self.__short_options.keys(): if self.__short_options[c]: subfile.write( ' -' + c + ' ' + self.__short_options[c] ) else: subfile.write( ' -' + c ) for c in self.__arguments: subfile.write( ' ' + c ) subfile.write( ' "\n' ) for cmd in self.__condor_cmds.keys(): subfile.write( str(cmd) + " = " + str(self.__condor_cmds[cmd]) + '\n' ) subfile.write( 'log = ' + self.__log_file + '\n' ) if self.__in_file is not None: subfile.write( 'input = ' + self.__in_file + '\n' ) subfile.write( 'error = ' + self.__err_file + '\n' ) subfile.write( 'output = ' + self.__out_file + '\n' ) if self.__notification: subfile.write( 'notification = ' + self.__notification + '\n' ) subfile.write( 'queue ' + str(self.__queue) + '\n' ) subfile.close()
python
def write_sub_file(self): """ Write a submit file for this Condor job. """ if not self.__log_file: raise CondorSubmitError, "Log file not specified." if not self.__err_file: raise CondorSubmitError, "Error file not specified." if not self.__out_file: raise CondorSubmitError, "Output file not specified." if not self.__sub_file_path: raise CondorSubmitError, 'No path for submit file.' try: subfile = open(self.__sub_file_path, 'w') except: raise CondorSubmitError, "Cannot open file " + self.__sub_file_path if self.__universe == 'grid': if self.__grid_type == None: raise CondorSubmitError, 'No grid type specified.' elif self.__grid_type == 'gt2': if self.__grid_server == None: raise CondorSubmitError, 'No server specified for grid resource.' elif self.__grid_type == 'gt4': if self.__grid_server == None: raise CondorSubmitError, 'No server specified for grid resource.' if self.__grid_scheduler == None: raise CondorSubmitError, 'No scheduler specified for grid resource.' else: raise CondorSubmitError, 'Unsupported grid resource.' subfile.write( 'universe = ' + self.__universe + '\n' ) subfile.write( 'executable = ' + self.__executable + '\n' ) if self.__universe == 'grid': if self.__grid_type == 'gt2': subfile.write('grid_resource = %s %s\n' % (self.__grid_type, self.__grid_server)) if self.__grid_type == 'gt4': subfile.write('grid_resource = %s %s %s\n' % (self.__grid_type, self.__grid_server, self.__grid_scheduler)) if self.__universe == 'grid': subfile.write('when_to_transfer_output = ON_EXIT\n') subfile.write('transfer_output_files = $(macrooutput)\n') subfile.write('transfer_input_files = $(macroinput)\n') if self.__options.keys() or self.__short_options.keys() or self.__arguments: subfile.write( 'arguments = "' ) for c in self.__options.keys(): if self.__options[c]: subfile.write( ' --' + c + ' ' + self.__options[c] ) else: subfile.write( ' --' + c ) for c in self.__short_options.keys(): if self.__short_options[c]: subfile.write( ' -' + c + ' ' + self.__short_options[c] ) else: subfile.write( ' -' + c ) for c in self.__arguments: subfile.write( ' ' + c ) subfile.write( ' "\n' ) for cmd in self.__condor_cmds.keys(): subfile.write( str(cmd) + " = " + str(self.__condor_cmds[cmd]) + '\n' ) subfile.write( 'log = ' + self.__log_file + '\n' ) if self.__in_file is not None: subfile.write( 'input = ' + self.__in_file + '\n' ) subfile.write( 'error = ' + self.__err_file + '\n' ) subfile.write( 'output = ' + self.__out_file + '\n' ) if self.__notification: subfile.write( 'notification = ' + self.__notification + '\n' ) subfile.write( 'queue ' + str(self.__queue) + '\n' ) subfile.close()
['def', 'write_sub_file', '(', 'self', ')', ':', 'if', 'not', 'self', '.', '__log_file', ':', 'raise', 'CondorSubmitError', ',', '"Log file not specified."', 'if', 'not', 'self', '.', '__err_file', ':', 'raise', 'CondorSubmitError', ',', '"Error file not specified."', 'if', 'not', 'self', '.', '__out_file', ':', 'raise', 'CondorSubmitError', ',', '"Output file not specified."', 'if', 'not', 'self', '.', '__sub_file_path', ':', 'raise', 'CondorSubmitError', ',', "'No path for submit file.'", 'try', ':', 'subfile', '=', 'open', '(', 'self', '.', '__sub_file_path', ',', "'w'", ')', 'except', ':', 'raise', 'CondorSubmitError', ',', '"Cannot open file "', '+', 'self', '.', '__sub_file_path', 'if', 'self', '.', '__universe', '==', "'grid'", ':', 'if', 'self', '.', '__grid_type', '==', 'None', ':', 'raise', 'CondorSubmitError', ',', "'No grid type specified.'", 'elif', 'self', '.', '__grid_type', '==', "'gt2'", ':', 'if', 'self', '.', '__grid_server', '==', 'None', ':', 'raise', 'CondorSubmitError', ',', "'No server specified for grid resource.'", 'elif', 'self', '.', '__grid_type', '==', "'gt4'", ':', 'if', 'self', '.', '__grid_server', '==', 'None', ':', 'raise', 'CondorSubmitError', ',', "'No server specified for grid resource.'", 'if', 'self', '.', '__grid_scheduler', '==', 'None', ':', 'raise', 'CondorSubmitError', ',', "'No scheduler specified for grid resource.'", 'else', ':', 'raise', 'CondorSubmitError', ',', "'Unsupported grid resource.'", 'subfile', '.', 'write', '(', "'universe = '", '+', 'self', '.', '__universe', '+', "'\\n'", ')', 'subfile', '.', 'write', '(', "'executable = '", '+', 'self', '.', '__executable', '+', "'\\n'", ')', 'if', 'self', '.', '__universe', '==', "'grid'", ':', 'if', 'self', '.', '__grid_type', '==', "'gt2'", ':', 'subfile', '.', 'write', '(', "'grid_resource = %s %s\\n'", '%', '(', 'self', '.', '__grid_type', ',', 'self', '.', '__grid_server', ')', ')', 'if', 'self', '.', '__grid_type', '==', "'gt4'", ':', 'subfile', '.', 'write', '(', "'grid_resource = %s %s %s\\n'", '%', '(', 'self', '.', '__grid_type', ',', 'self', '.', '__grid_server', ',', 'self', '.', '__grid_scheduler', ')', ')', 'if', 'self', '.', '__universe', '==', "'grid'", ':', 'subfile', '.', 'write', '(', "'when_to_transfer_output = ON_EXIT\\n'", ')', 'subfile', '.', 'write', '(', "'transfer_output_files = $(macrooutput)\\n'", ')', 'subfile', '.', 'write', '(', "'transfer_input_files = $(macroinput)\\n'", ')', 'if', 'self', '.', '__options', '.', 'keys', '(', ')', 'or', 'self', '.', '__short_options', '.', 'keys', '(', ')', 'or', 'self', '.', '__arguments', ':', 'subfile', '.', 'write', '(', '\'arguments = "\'', ')', 'for', 'c', 'in', 'self', '.', '__options', '.', 'keys', '(', ')', ':', 'if', 'self', '.', '__options', '[', 'c', ']', ':', 'subfile', '.', 'write', '(', "' --'", '+', 'c', '+', "' '", '+', 'self', '.', '__options', '[', 'c', ']', ')', 'else', ':', 'subfile', '.', 'write', '(', "' --'", '+', 'c', ')', 'for', 'c', 'in', 'self', '.', '__short_options', '.', 'keys', '(', ')', ':', 'if', 'self', '.', '__short_options', '[', 'c', ']', ':', 'subfile', '.', 'write', '(', "' -'", '+', 'c', '+', "' '", '+', 'self', '.', '__short_options', '[', 'c', ']', ')', 'else', ':', 'subfile', '.', 'write', '(', "' -'", '+', 'c', ')', 'for', 'c', 'in', 'self', '.', '__arguments', ':', 'subfile', '.', 'write', '(', "' '", '+', 'c', ')', 'subfile', '.', 'write', '(', '\' "\\n\'', ')', 'for', 'cmd', 'in', 'self', '.', '__condor_cmds', '.', 'keys', '(', ')', ':', 'subfile', '.', 'write', '(', 'str', '(', 'cmd', ')', '+', '" = "', '+', 'str', '(', 'self', '.', '__condor_cmds', '[', 'cmd', ']', ')', '+', "'\\n'", ')', 'subfile', '.', 'write', '(', "'log = '", '+', 'self', '.', '__log_file', '+', "'\\n'", ')', 'if', 'self', '.', '__in_file', 'is', 'not', 'None', ':', 'subfile', '.', 'write', '(', "'input = '", '+', 'self', '.', '__in_file', '+', "'\\n'", ')', 'subfile', '.', 'write', '(', "'error = '", '+', 'self', '.', '__err_file', '+', "'\\n'", ')', 'subfile', '.', 'write', '(', "'output = '", '+', 'self', '.', '__out_file', '+', "'\\n'", ')', 'if', 'self', '.', '__notification', ':', 'subfile', '.', 'write', '(', "'notification = '", '+', 'self', '.', '__notification', '+', "'\\n'", ')', 'subfile', '.', 'write', '(', "'queue '", '+', 'str', '(', 'self', '.', '__queue', ')', '+', "'\\n'", ')', 'subfile', '.', 'close', '(', ')']
Write a submit file for this Condor job.
['Write', 'a', 'submit', 'file', 'for', 'this', 'Condor', 'job', '.']
train
https://github.com/gwastro/pycbc-glue/blob/a3e906bae59fbfd707c3ff82e5d008d939ec5e24/pycbc_glue/pipeline.py#L710-L786
345
SBRG/ssbio
ssbio/io/__init__.py
save_json
def save_json(obj, outfile, allow_nan=True, compression=False): """Save an ssbio object as a JSON file using json_tricks""" if compression: with open(outfile, 'wb') as f: dump(obj, f, allow_nan=allow_nan, compression=compression) else: with open(outfile, 'w') as f: dump(obj, f, allow_nan=allow_nan, compression=compression) log.info('Saved {} (id: {}) to {}'.format(type(obj), obj.id, outfile))
python
def save_json(obj, outfile, allow_nan=True, compression=False): """Save an ssbio object as a JSON file using json_tricks""" if compression: with open(outfile, 'wb') as f: dump(obj, f, allow_nan=allow_nan, compression=compression) else: with open(outfile, 'w') as f: dump(obj, f, allow_nan=allow_nan, compression=compression) log.info('Saved {} (id: {}) to {}'.format(type(obj), obj.id, outfile))
['def', 'save_json', '(', 'obj', ',', 'outfile', ',', 'allow_nan', '=', 'True', ',', 'compression', '=', 'False', ')', ':', 'if', 'compression', ':', 'with', 'open', '(', 'outfile', ',', "'wb'", ')', 'as', 'f', ':', 'dump', '(', 'obj', ',', 'f', ',', 'allow_nan', '=', 'allow_nan', ',', 'compression', '=', 'compression', ')', 'else', ':', 'with', 'open', '(', 'outfile', ',', "'w'", ')', 'as', 'f', ':', 'dump', '(', 'obj', ',', 'f', ',', 'allow_nan', '=', 'allow_nan', ',', 'compression', '=', 'compression', ')', 'log', '.', 'info', '(', "'Saved {} (id: {}) to {}'", '.', 'format', '(', 'type', '(', 'obj', ')', ',', 'obj', '.', 'id', ',', 'outfile', ')', ')']
Save an ssbio object as a JSON file using json_tricks
['Save', 'an', 'ssbio', 'object', 'as', 'a', 'JSON', 'file', 'using', 'json_tricks']
train
https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/io/__init__.py#L9-L17
346
saltstack/salt
salt/modules/netscaler.py
server_enabled
def server_enabled(s_name, **connection_args): ''' Check if a server is enabled globally CLI Example: .. code-block:: bash salt '*' netscaler.server_enabled 'serverName' ''' server = _server_get(s_name, **connection_args) return server is not None and server.get_state() == 'ENABLED'
python
def server_enabled(s_name, **connection_args): ''' Check if a server is enabled globally CLI Example: .. code-block:: bash salt '*' netscaler.server_enabled 'serverName' ''' server = _server_get(s_name, **connection_args) return server is not None and server.get_state() == 'ENABLED'
['def', 'server_enabled', '(', 's_name', ',', '*', '*', 'connection_args', ')', ':', 'server', '=', '_server_get', '(', 's_name', ',', '*', '*', 'connection_args', ')', 'return', 'server', 'is', 'not', 'None', 'and', 'server', '.', 'get_state', '(', ')', '==', "'ENABLED'"]
Check if a server is enabled globally CLI Example: .. code-block:: bash salt '*' netscaler.server_enabled 'serverName'
['Check', 'if', 'a', 'server', 'is', 'enabled', 'globally']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/netscaler.py#L642-L653
347
drj11/pypng
code/png.py
is_natural
def is_natural(x): """A non-negative integer.""" try: is_integer = int(x) == x except (TypeError, ValueError): return False return is_integer and x >= 0
python
def is_natural(x): """A non-negative integer.""" try: is_integer = int(x) == x except (TypeError, ValueError): return False return is_integer and x >= 0
['def', 'is_natural', '(', 'x', ')', ':', 'try', ':', 'is_integer', '=', 'int', '(', 'x', ')', '==', 'x', 'except', '(', 'TypeError', ',', 'ValueError', ')', ':', 'return', 'False', 'return', 'is_integer', 'and', 'x', '>=', '0']
A non-negative integer.
['A', 'non', '-', 'negative', 'integer', '.']
train
https://github.com/drj11/pypng/blob/b8220ca9f58e4c5bc1d507e713744fcb8c049225/code/png.py#L2203-L2209
348
icometrix/dicom2nifti
dicom2nifti/common.py
set_fd_value
def set_fd_value(tag, value): """ Setters for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('d', value) tag.value = value
python
def set_fd_value(tag, value): """ Setters for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('d', value) tag.value = value
['def', 'set_fd_value', '(', 'tag', ',', 'value', ')', ':', 'if', 'tag', '.', 'VR', '==', "'OB'", 'or', 'tag', '.', 'VR', '==', "'UN'", ':', 'value', '=', 'struct', '.', 'pack', '(', "'d'", ',', 'value', ')', 'tag', '.', 'value', '=', 'value']
Setters for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read
['Setters', 'for', 'data', 'that', 'also', 'work', 'with', 'implicit', 'transfersyntax']
train
https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L309-L318
349
fastai/fastai
fastai/torch_core.py
set_bn_eval
def set_bn_eval(m:nn.Module)->None: "Set bn layers in eval mode for all recursive children of `m`." for l in m.children(): if isinstance(l, bn_types) and not next(l.parameters()).requires_grad: l.eval() set_bn_eval(l)
python
def set_bn_eval(m:nn.Module)->None: "Set bn layers in eval mode for all recursive children of `m`." for l in m.children(): if isinstance(l, bn_types) and not next(l.parameters()).requires_grad: l.eval() set_bn_eval(l)
['def', 'set_bn_eval', '(', 'm', ':', 'nn', '.', 'Module', ')', '->', 'None', ':', 'for', 'l', 'in', 'm', '.', 'children', '(', ')', ':', 'if', 'isinstance', '(', 'l', ',', 'bn_types', ')', 'and', 'not', 'next', '(', 'l', '.', 'parameters', '(', ')', ')', '.', 'requires_grad', ':', 'l', '.', 'eval', '(', ')', 'set_bn_eval', '(', 'l', ')']
Set bn layers in eval mode for all recursive children of `m`.
['Set', 'bn', 'layers', 'in', 'eval', 'mode', 'for', 'all', 'recursive', 'children', 'of', 'm', '.']
train
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/torch_core.py#L216-L221
350
mitsei/dlkit
dlkit/records/osid/base_records.py
FileRecord.has_file_url
def has_file_url(self): """stub""" return bool(self._get_asset_content( Id(self.my_osid_object._my_map['fileId']['assetId']), self.my_osid_object._my_map['fileId']['assetContentTypeId']).has_url())
python
def has_file_url(self): """stub""" return bool(self._get_asset_content( Id(self.my_osid_object._my_map['fileId']['assetId']), self.my_osid_object._my_map['fileId']['assetContentTypeId']).has_url())
['def', 'has_file_url', '(', 'self', ')', ':', 'return', 'bool', '(', 'self', '.', '_get_asset_content', '(', 'Id', '(', 'self', '.', 'my_osid_object', '.', '_my_map', '[', "'fileId'", ']', '[', "'assetId'", ']', ')', ',', 'self', '.', 'my_osid_object', '.', '_my_map', '[', "'fileId'", ']', '[', "'assetContentTypeId'", ']', ')', '.', 'has_url', '(', ')', ')']
stub
['stub']
train
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/records/osid/base_records.py#L2151-L2155
351
lotabout/pymustache
pymustache/mustache.py
Variable._render
def _render(self, contexts, partials): """render variable""" value = self._lookup(self.value, contexts) # lambda if callable(value): value = inner_render(str(value()), contexts, partials) return self._escape(value)
python
def _render(self, contexts, partials): """render variable""" value = self._lookup(self.value, contexts) # lambda if callable(value): value = inner_render(str(value()), contexts, partials) return self._escape(value)
['def', '_render', '(', 'self', ',', 'contexts', ',', 'partials', ')', ':', 'value', '=', 'self', '.', '_lookup', '(', 'self', '.', 'value', ',', 'contexts', ')', '# lambda', 'if', 'callable', '(', 'value', ')', ':', 'value', '=', 'inner_render', '(', 'str', '(', 'value', '(', ')', ')', ',', 'contexts', ',', 'partials', ')', 'return', 'self', '.', '_escape', '(', 'value', ')']
render variable
['render', 'variable']
train
https://github.com/lotabout/pymustache/blob/d4089e49cda01fc11bab0c986d95e25150a60bac/pymustache/mustache.py#L385-L393
352
mlperf/training
image_classification/tensorflow/official/resnet/imagenet_main.py
_get_block_sizes
def _get_block_sizes(resnet_size): """Retrieve the size of each block_layer in the ResNet model. The number of block layers used for the Resnet model varies according to the size of the model. This helper grabs the layer set we want, throwing an error if a non-standard size has been selected. Args: resnet_size: The number of convolutional layers needed in the model. Returns: A list of block sizes to use in building the model. Raises: KeyError: if invalid resnet_size is received. """ choices = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3] } try: return choices[resnet_size] except KeyError: err = ('Could not find layers for selected Resnet size.\n' 'Size received: {}; sizes allowed: {}.'.format( resnet_size, choices.keys())) raise ValueError(err)
python
def _get_block_sizes(resnet_size): """Retrieve the size of each block_layer in the ResNet model. The number of block layers used for the Resnet model varies according to the size of the model. This helper grabs the layer set we want, throwing an error if a non-standard size has been selected. Args: resnet_size: The number of convolutional layers needed in the model. Returns: A list of block sizes to use in building the model. Raises: KeyError: if invalid resnet_size is received. """ choices = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3] } try: return choices[resnet_size] except KeyError: err = ('Could not find layers for selected Resnet size.\n' 'Size received: {}; sizes allowed: {}.'.format( resnet_size, choices.keys())) raise ValueError(err)
['def', '_get_block_sizes', '(', 'resnet_size', ')', ':', 'choices', '=', '{', '18', ':', '[', '2', ',', '2', ',', '2', ',', '2', ']', ',', '34', ':', '[', '3', ',', '4', ',', '6', ',', '3', ']', ',', '50', ':', '[', '3', ',', '4', ',', '6', ',', '3', ']', ',', '101', ':', '[', '3', ',', '4', ',', '23', ',', '3', ']', ',', '152', ':', '[', '3', ',', '8', ',', '36', ',', '3', ']', ',', '200', ':', '[', '3', ',', '24', ',', '36', ',', '3', ']', '}', 'try', ':', 'return', 'choices', '[', 'resnet_size', ']', 'except', 'KeyError', ':', 'err', '=', '(', "'Could not find layers for selected Resnet size.\\n'", "'Size received: {}; sizes allowed: {}.'", '.', 'format', '(', 'resnet_size', ',', 'choices', '.', 'keys', '(', ')', ')', ')', 'raise', 'ValueError', '(', 'err', ')']
Retrieve the size of each block_layer in the ResNet model. The number of block layers used for the Resnet model varies according to the size of the model. This helper grabs the layer set we want, throwing an error if a non-standard size has been selected. Args: resnet_size: The number of convolutional layers needed in the model. Returns: A list of block sizes to use in building the model. Raises: KeyError: if invalid resnet_size is received.
['Retrieve', 'the', 'size', 'of', 'each', 'block_layer', 'in', 'the', 'ResNet', 'model', '.']
train
https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/image_classification/tensorflow/official/resnet/imagenet_main.py#L242-L273
353
baruwa-enterprise/BaruwaAPI
BaruwaAPI/resource.py
BaruwaAPIClient.update_fallbackserver
def update_fallbackserver(self, serverid, data): """Update Fallback server""" return self.api_call( ENDPOINTS['fallbackservers']['update'], dict(serverid=serverid), body=data)
python
def update_fallbackserver(self, serverid, data): """Update Fallback server""" return self.api_call( ENDPOINTS['fallbackservers']['update'], dict(serverid=serverid), body=data)
['def', 'update_fallbackserver', '(', 'self', ',', 'serverid', ',', 'data', ')', ':', 'return', 'self', '.', 'api_call', '(', 'ENDPOINTS', '[', "'fallbackservers'", ']', '[', "'update'", ']', ',', 'dict', '(', 'serverid', '=', 'serverid', ')', ',', 'body', '=', 'data', ')']
Update Fallback server
['Update', 'Fallback', 'server']
train
https://github.com/baruwa-enterprise/BaruwaAPI/blob/53335b377ccfd388e42f4f240f181eed72f51180/BaruwaAPI/resource.py#L457-L462
354
revelc/pyaccumulo
pyaccumulo/proxy/AccumuloProxy.py
Client.changeLocalUserPassword
def changeLocalUserPassword(self, login, user, password): """ Parameters: - login - user - password """ self.send_changeLocalUserPassword(login, user, password) self.recv_changeLocalUserPassword()
python
def changeLocalUserPassword(self, login, user, password): """ Parameters: - login - user - password """ self.send_changeLocalUserPassword(login, user, password) self.recv_changeLocalUserPassword()
['def', 'changeLocalUserPassword', '(', 'self', ',', 'login', ',', 'user', ',', 'password', ')', ':', 'self', '.', 'send_changeLocalUserPassword', '(', 'login', ',', 'user', ',', 'password', ')', 'self', '.', 'recv_changeLocalUserPassword', '(', ')']
Parameters: - login - user - password
['Parameters', ':', '-', 'login', '-', 'user', '-', 'password']
train
https://github.com/revelc/pyaccumulo/blob/8adcf535bb82ba69c749efce785c9efc487e85de/pyaccumulo/proxy/AccumuloProxy.py#L2407-L2415
355
PolyJIT/benchbuild
benchbuild/utils/schema.py
exceptions
def exceptions(error_is_fatal=True, error_messages=None): """ Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message. """ def exception_decorator(func): nonlocal error_messages @functools.wraps(func) def exc_wrapper(*args, **kwargs): nonlocal error_messages try: result = func(*args, **kwargs) except sa.exc.SQLAlchemyError as err: result = None details = None err_type = err.__class__ if error_messages and err_type in error_messages: details = error_messages[err_type] if details: LOG.error(details) LOG.error("For developers: (%s) %s", err.__class__, str(err)) if error_is_fatal: sys.exit("Abort, SQL operation failed.") if not ui.ask( "I can continue at your own risk, do you want that?"): raise err return result return exc_wrapper return exception_decorator
python
def exceptions(error_is_fatal=True, error_messages=None): """ Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message. """ def exception_decorator(func): nonlocal error_messages @functools.wraps(func) def exc_wrapper(*args, **kwargs): nonlocal error_messages try: result = func(*args, **kwargs) except sa.exc.SQLAlchemyError as err: result = None details = None err_type = err.__class__ if error_messages and err_type in error_messages: details = error_messages[err_type] if details: LOG.error(details) LOG.error("For developers: (%s) %s", err.__class__, str(err)) if error_is_fatal: sys.exit("Abort, SQL operation failed.") if not ui.ask( "I can continue at your own risk, do you want that?"): raise err return result return exc_wrapper return exception_decorator
['def', 'exceptions', '(', 'error_is_fatal', '=', 'True', ',', 'error_messages', '=', 'None', ')', ':', 'def', 'exception_decorator', '(', 'func', ')', ':', 'nonlocal', 'error_messages', '@', 'functools', '.', 'wraps', '(', 'func', ')', 'def', 'exc_wrapper', '(', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'nonlocal', 'error_messages', 'try', ':', 'result', '=', 'func', '(', '*', 'args', ',', '*', '*', 'kwargs', ')', 'except', 'sa', '.', 'exc', '.', 'SQLAlchemyError', 'as', 'err', ':', 'result', '=', 'None', 'details', '=', 'None', 'err_type', '=', 'err', '.', '__class__', 'if', 'error_messages', 'and', 'err_type', 'in', 'error_messages', ':', 'details', '=', 'error_messages', '[', 'err_type', ']', 'if', 'details', ':', 'LOG', '.', 'error', '(', 'details', ')', 'LOG', '.', 'error', '(', '"For developers: (%s) %s"', ',', 'err', '.', '__class__', ',', 'str', '(', 'err', ')', ')', 'if', 'error_is_fatal', ':', 'sys', '.', 'exit', '(', '"Abort, SQL operation failed."', ')', 'if', 'not', 'ui', '.', 'ask', '(', '"I can continue at your own risk, do you want that?"', ')', ':', 'raise', 'err', 'return', 'result', 'return', 'exc_wrapper', 'return', 'exception_decorator']
Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message.
['Handle', 'SQLAlchemy', 'exceptions', 'in', 'a', 'sane', 'way', '.']
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L50-L89
356
arne-cl/discoursegraphs
src/discoursegraphs/discoursegraph.py
select_nodes_by_attribute
def select_nodes_by_attribute(docgraph, attribute=None, value=None, data=False): """ Get all nodes with the given attribute (and attribute value). Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted attribute : str or None Name of the node attribute that all nodes must posess. If None, returns all nodes. value : str or collection of str or None Value of the node attribute that all nodes must posess. If None, returns all nodes with the given node attribute key . data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of node (IDs) that posess the given attribute. If data is True, a generator of (node ID, node attrib dict) tuples. """ for node_id, node_attribs in docgraph.nodes_iter(data=True): if attribute is None: has_attrib = True # don't filter nodes else: has_attrib = attribute in node_attribs if has_attrib: if value is None: has_value = True elif isinstance(value, basestring): has_value = node_attribs.get(attribute) == value else: # ``value`` is a list/set/dict of values has_value = any(node_attribs.get(attribute) == v for v in value) if has_value: if data: yield (node_id, node_attribs) else: yield node_id
python
def select_nodes_by_attribute(docgraph, attribute=None, value=None, data=False): """ Get all nodes with the given attribute (and attribute value). Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted attribute : str or None Name of the node attribute that all nodes must posess. If None, returns all nodes. value : str or collection of str or None Value of the node attribute that all nodes must posess. If None, returns all nodes with the given node attribute key . data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of node (IDs) that posess the given attribute. If data is True, a generator of (node ID, node attrib dict) tuples. """ for node_id, node_attribs in docgraph.nodes_iter(data=True): if attribute is None: has_attrib = True # don't filter nodes else: has_attrib = attribute in node_attribs if has_attrib: if value is None: has_value = True elif isinstance(value, basestring): has_value = node_attribs.get(attribute) == value else: # ``value`` is a list/set/dict of values has_value = any(node_attribs.get(attribute) == v for v in value) if has_value: if data: yield (node_id, node_attribs) else: yield node_id
['def', 'select_nodes_by_attribute', '(', 'docgraph', ',', 'attribute', '=', 'None', ',', 'value', '=', 'None', ',', 'data', '=', 'False', ')', ':', 'for', 'node_id', ',', 'node_attribs', 'in', 'docgraph', '.', 'nodes_iter', '(', 'data', '=', 'True', ')', ':', 'if', 'attribute', 'is', 'None', ':', 'has_attrib', '=', 'True', "# don't filter nodes", 'else', ':', 'has_attrib', '=', 'attribute', 'in', 'node_attribs', 'if', 'has_attrib', ':', 'if', 'value', 'is', 'None', ':', 'has_value', '=', 'True', 'elif', 'isinstance', '(', 'value', ',', 'basestring', ')', ':', 'has_value', '=', 'node_attribs', '.', 'get', '(', 'attribute', ')', '==', 'value', 'else', ':', '# ``value`` is a list/set/dict of values', 'has_value', '=', 'any', '(', 'node_attribs', '.', 'get', '(', 'attribute', ')', '==', 'v', 'for', 'v', 'in', 'value', ')', 'if', 'has_value', ':', 'if', 'data', ':', 'yield', '(', 'node_id', ',', 'node_attribs', ')', 'else', ':', 'yield', 'node_id']
Get all nodes with the given attribute (and attribute value). Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted attribute : str or None Name of the node attribute that all nodes must posess. If None, returns all nodes. value : str or collection of str or None Value of the node attribute that all nodes must posess. If None, returns all nodes with the given node attribute key . data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of node (IDs) that posess the given attribute. If data is True, a generator of (node ID, node attrib dict) tuples.
['Get', 'all', 'nodes', 'with', 'the', 'given', 'attribute', '(', 'and', 'attribute', 'value', ')', '.']
train
https://github.com/arne-cl/discoursegraphs/blob/842f0068a3190be2c75905754521b176b25a54fb/src/discoursegraphs/discoursegraph.py#L1146-L1188
357
sammchardy/python-kucoin
kucoin/client.py
Client.get_deposit_address
def get_deposit_address(self, currency): """Get deposit address for a currency https://docs.kucoin.com/#get-deposit-address :param currency: Name of currency :type currency: string .. code:: python address = client.get_deposit_address('NEO') :returns: ApiResponse .. code:: python { "address": "0x78d3ad1c0aa1bf068e19c94a2d7b16c9c0fcd8b1", "memo": "5c247c8a03aa677cea2a251d" } :raises: KucoinResponseException, KucoinAPIException """ data = { 'currency': currency } return self._get('deposit-addresses', True, data=data)
python
def get_deposit_address(self, currency): """Get deposit address for a currency https://docs.kucoin.com/#get-deposit-address :param currency: Name of currency :type currency: string .. code:: python address = client.get_deposit_address('NEO') :returns: ApiResponse .. code:: python { "address": "0x78d3ad1c0aa1bf068e19c94a2d7b16c9c0fcd8b1", "memo": "5c247c8a03aa677cea2a251d" } :raises: KucoinResponseException, KucoinAPIException """ data = { 'currency': currency } return self._get('deposit-addresses', True, data=data)
['def', 'get_deposit_address', '(', 'self', ',', 'currency', ')', ':', 'data', '=', '{', "'currency'", ':', 'currency', '}', 'return', 'self', '.', '_get', '(', "'deposit-addresses'", ',', 'True', ',', 'data', '=', 'data', ')']
Get deposit address for a currency https://docs.kucoin.com/#get-deposit-address :param currency: Name of currency :type currency: string .. code:: python address = client.get_deposit_address('NEO') :returns: ApiResponse .. code:: python { "address": "0x78d3ad1c0aa1bf068e19c94a2d7b16c9c0fcd8b1", "memo": "5c247c8a03aa677cea2a251d" } :raises: KucoinResponseException, KucoinAPIException
['Get', 'deposit', 'address', 'for', 'a', 'currency']
train
https://github.com/sammchardy/python-kucoin/blob/a4cacde413804784bd313f27a0ad37234888be29/kucoin/client.py#L592-L621
358
opennode/waldur-core
waldur_core/core/models.py
ReversionMixin.get_version_fields
def get_version_fields(self): """ Get field that are tracked in object history versions. """ options = reversion._get_options(self) return options.fields or [f.name for f in self._meta.fields if f not in options.exclude]
python
def get_version_fields(self): """ Get field that are tracked in object history versions. """ options = reversion._get_options(self) return options.fields or [f.name for f in self._meta.fields if f not in options.exclude]
['def', 'get_version_fields', '(', 'self', ')', ':', 'options', '=', 'reversion', '.', '_get_options', '(', 'self', ')', 'return', 'options', '.', 'fields', 'or', '[', 'f', '.', 'name', 'for', 'f', 'in', 'self', '.', '_meta', '.', 'fields', 'if', 'f', 'not', 'in', 'options', '.', 'exclude', ']']
Get field that are tracked in object history versions.
['Get', 'field', 'that', 'are', 'tracked', 'in', 'object', 'history', 'versions', '.']
train
https://github.com/opennode/waldur-core/blob/d6c17a9592bb6c49c33567542eef8d099605a46a/waldur_core/core/models.py#L380-L383
359
rraadd88/rohan
rohan/dandage/stat/corr.py
corrdfs
def corrdfs(df1,df2,method): """ df1 in columns df2 in rows """ dcorr=pd.DataFrame(columns=df1.columns,index=df2.columns) dpval=pd.DataFrame(columns=df1.columns,index=df2.columns) for c1 in df1: for c2 in df2: if method=='spearman': dcorr.loc[c2,c1],dpval.loc[c2,c1]=spearmanr(df1[c1],df2[c2], nan_policy='omit' ) elif method=='pearson': dcorr.loc[c2,c1],dpval.loc[c2,c1]=pearsonr(df1[c1],df2[c2], # nan_policy='omit' ) if not df1.columns.name is None: dcorr.columns.name=df1.columns.name dpval.columns.name=df1.columns.name if not df2.columns.name is None: dcorr.index.name=df2.columns.name dpval.index.name=df2.columns.name return dcorr,dpval
python
def corrdfs(df1,df2,method): """ df1 in columns df2 in rows """ dcorr=pd.DataFrame(columns=df1.columns,index=df2.columns) dpval=pd.DataFrame(columns=df1.columns,index=df2.columns) for c1 in df1: for c2 in df2: if method=='spearman': dcorr.loc[c2,c1],dpval.loc[c2,c1]=spearmanr(df1[c1],df2[c2], nan_policy='omit' ) elif method=='pearson': dcorr.loc[c2,c1],dpval.loc[c2,c1]=pearsonr(df1[c1],df2[c2], # nan_policy='omit' ) if not df1.columns.name is None: dcorr.columns.name=df1.columns.name dpval.columns.name=df1.columns.name if not df2.columns.name is None: dcorr.index.name=df2.columns.name dpval.index.name=df2.columns.name return dcorr,dpval
['def', 'corrdfs', '(', 'df1', ',', 'df2', ',', 'method', ')', ':', 'dcorr', '=', 'pd', '.', 'DataFrame', '(', 'columns', '=', 'df1', '.', 'columns', ',', 'index', '=', 'df2', '.', 'columns', ')', 'dpval', '=', 'pd', '.', 'DataFrame', '(', 'columns', '=', 'df1', '.', 'columns', ',', 'index', '=', 'df2', '.', 'columns', ')', 'for', 'c1', 'in', 'df1', ':', 'for', 'c2', 'in', 'df2', ':', 'if', 'method', '==', "'spearman'", ':', 'dcorr', '.', 'loc', '[', 'c2', ',', 'c1', ']', ',', 'dpval', '.', 'loc', '[', 'c2', ',', 'c1', ']', '=', 'spearmanr', '(', 'df1', '[', 'c1', ']', ',', 'df2', '[', 'c2', ']', ',', 'nan_policy', '=', "'omit'", ')', 'elif', 'method', '==', "'pearson'", ':', 'dcorr', '.', 'loc', '[', 'c2', ',', 'c1', ']', ',', 'dpval', '.', 'loc', '[', 'c2', ',', 'c1', ']', '=', 'pearsonr', '(', 'df1', '[', 'c1', ']', ',', 'df2', '[', 'c2', ']', ',', "# nan_policy='omit'", ')', 'if', 'not', 'df1', '.', 'columns', '.', 'name', 'is', 'None', ':', 'dcorr', '.', 'columns', '.', 'name', '=', 'df1', '.', 'columns', '.', 'name', 'dpval', '.', 'columns', '.', 'name', '=', 'df1', '.', 'columns', '.', 'name', 'if', 'not', 'df2', '.', 'columns', '.', 'name', 'is', 'None', ':', 'dcorr', '.', 'index', '.', 'name', '=', 'df2', '.', 'columns', '.', 'name', 'dpval', '.', 'index', '.', 'name', '=', 'df2', '.', 'columns', '.', 'name', 'return', 'dcorr', ',', 'dpval']
df1 in columns df2 in rows
['df1', 'in', 'columns', 'df2', 'in', 'rows']
train
https://github.com/rraadd88/rohan/blob/b0643a3582a2fffc0165ace69fb80880d92bfb10/rohan/dandage/stat/corr.py#L8-L32
360
GearPlug/paymentsos-python
paymentsos/tokens.py
Token.create_token
def create_token(self, *, holder_name, card_number, credit_card_cvv, expiration_date, token_type='credit_card', identity_document=None, billing_address=None, additional_details=None): """ When creating a Token, remember to use the public-key header instead of the private-key header, and do not include the app-id header. Args: holder_name: Name of the credit card holder. card_number: Credit card number. credit_card_cvv: The CVV number on the card (3 or 4 digits) to be encrypted. expiration_date: Credit card expiration date. Possible formats: mm-yyyy, mm-yy, mm.yyyy, mm.yy, mm/yy, mm/yyyy, mm yyyy, or mm yy. token_type: The type of token billing_address: Address. identity_document: National identity document of the card holder. additional_details: Optional additional data stored with your token in key/value pairs. Returns: """ headers = self.client._get_public_headers() payload = { "token_type": token_type, "credit_card_cvv": credit_card_cvv, "card_number": card_number, "expiration_date": expiration_date, "holder_name": holder_name, "identity_document": identity_document, "billing_address": billing_address, "additional_details": additional_details, } endpoint = '/tokens' return self.client._post(self.client.URL_BASE + endpoint, json=payload, headers=headers)
python
def create_token(self, *, holder_name, card_number, credit_card_cvv, expiration_date, token_type='credit_card', identity_document=None, billing_address=None, additional_details=None): """ When creating a Token, remember to use the public-key header instead of the private-key header, and do not include the app-id header. Args: holder_name: Name of the credit card holder. card_number: Credit card number. credit_card_cvv: The CVV number on the card (3 or 4 digits) to be encrypted. expiration_date: Credit card expiration date. Possible formats: mm-yyyy, mm-yy, mm.yyyy, mm.yy, mm/yy, mm/yyyy, mm yyyy, or mm yy. token_type: The type of token billing_address: Address. identity_document: National identity document of the card holder. additional_details: Optional additional data stored with your token in key/value pairs. Returns: """ headers = self.client._get_public_headers() payload = { "token_type": token_type, "credit_card_cvv": credit_card_cvv, "card_number": card_number, "expiration_date": expiration_date, "holder_name": holder_name, "identity_document": identity_document, "billing_address": billing_address, "additional_details": additional_details, } endpoint = '/tokens' return self.client._post(self.client.URL_BASE + endpoint, json=payload, headers=headers)
['def', 'create_token', '(', 'self', ',', '*', ',', 'holder_name', ',', 'card_number', ',', 'credit_card_cvv', ',', 'expiration_date', ',', 'token_type', '=', "'credit_card'", ',', 'identity_document', '=', 'None', ',', 'billing_address', '=', 'None', ',', 'additional_details', '=', 'None', ')', ':', 'headers', '=', 'self', '.', 'client', '.', '_get_public_headers', '(', ')', 'payload', '=', '{', '"token_type"', ':', 'token_type', ',', '"credit_card_cvv"', ':', 'credit_card_cvv', ',', '"card_number"', ':', 'card_number', ',', '"expiration_date"', ':', 'expiration_date', ',', '"holder_name"', ':', 'holder_name', ',', '"identity_document"', ':', 'identity_document', ',', '"billing_address"', ':', 'billing_address', ',', '"additional_details"', ':', 'additional_details', ',', '}', 'endpoint', '=', "'/tokens'", 'return', 'self', '.', 'client', '.', '_post', '(', 'self', '.', 'client', '.', 'URL_BASE', '+', 'endpoint', ',', 'json', '=', 'payload', ',', 'headers', '=', 'headers', ')']
When creating a Token, remember to use the public-key header instead of the private-key header, and do not include the app-id header. Args: holder_name: Name of the credit card holder. card_number: Credit card number. credit_card_cvv: The CVV number on the card (3 or 4 digits) to be encrypted. expiration_date: Credit card expiration date. Possible formats: mm-yyyy, mm-yy, mm.yyyy, mm.yy, mm/yy, mm/yyyy, mm yyyy, or mm yy. token_type: The type of token billing_address: Address. identity_document: National identity document of the card holder. additional_details: Optional additional data stored with your token in key/value pairs. Returns:
['When', 'creating', 'a', 'Token', 'remember', 'to', 'use', 'the', 'public', '-', 'key', 'header', 'instead', 'of', 'the', 'private', '-', 'key', 'header', 'and', 'do', 'not', 'include', 'the', 'app', '-', 'id', 'header', '.']
train
https://github.com/GearPlug/paymentsos-python/blob/2f32ba83ae890c96799b71d49fc6740bc1081f89/paymentsos/tokens.py#L6-L38
361
ergo/ziggurat_foundations
ziggurat_foundations/models/services/__init__.py
BaseService.base_query
def base_query(cls, db_session=None): """ returns base query for specific service :param db_session: :return: query """ db_session = get_db_session(db_session) return db_session.query(cls.model)
python
def base_query(cls, db_session=None): """ returns base query for specific service :param db_session: :return: query """ db_session = get_db_session(db_session) return db_session.query(cls.model)
['def', 'base_query', '(', 'cls', ',', 'db_session', '=', 'None', ')', ':', 'db_session', '=', 'get_db_session', '(', 'db_session', ')', 'return', 'db_session', '.', 'query', '(', 'cls', '.', 'model', ')']
returns base query for specific service :param db_session: :return: query
['returns', 'base', 'query', 'for', 'specific', 'service']
train
https://github.com/ergo/ziggurat_foundations/blob/9eeec894d08e8d7defa60ddc04b63f69cd4cbeba/ziggurat_foundations/models/services/__init__.py#L26-L34
362
choderalab/pymbar
pymbar/mbar_solvers.py
mbar_gradient
def mbar_gradient(u_kn, N_k, f_k): """Gradient of MBAR objective function. Parameters ---------- u_kn : np.ndarray, shape=(n_states, n_samples), dtype='float' The reduced potential energies, i.e. -log unnormalized probabilities N_k : np.ndarray, shape=(n_states), dtype='int' The number of samples in each state f_k : np.ndarray, shape=(n_states), dtype='float' The reduced free energies of each state Returns ------- grad : np.ndarray, dtype=float, shape=(n_states) Gradient of mbar_objective Notes ----- This is equation C6 in the JCP MBAR paper. """ u_kn, N_k, f_k = validate_inputs(u_kn, N_k, f_k) log_denominator_n = logsumexp(f_k - u_kn.T, b=N_k, axis=1) log_numerator_k = logsumexp(-log_denominator_n - u_kn, axis=1) return -1 * N_k * (1.0 - np.exp(f_k + log_numerator_k))
python
def mbar_gradient(u_kn, N_k, f_k): """Gradient of MBAR objective function. Parameters ---------- u_kn : np.ndarray, shape=(n_states, n_samples), dtype='float' The reduced potential energies, i.e. -log unnormalized probabilities N_k : np.ndarray, shape=(n_states), dtype='int' The number of samples in each state f_k : np.ndarray, shape=(n_states), dtype='float' The reduced free energies of each state Returns ------- grad : np.ndarray, dtype=float, shape=(n_states) Gradient of mbar_objective Notes ----- This is equation C6 in the JCP MBAR paper. """ u_kn, N_k, f_k = validate_inputs(u_kn, N_k, f_k) log_denominator_n = logsumexp(f_k - u_kn.T, b=N_k, axis=1) log_numerator_k = logsumexp(-log_denominator_n - u_kn, axis=1) return -1 * N_k * (1.0 - np.exp(f_k + log_numerator_k))
['def', 'mbar_gradient', '(', 'u_kn', ',', 'N_k', ',', 'f_k', ')', ':', 'u_kn', ',', 'N_k', ',', 'f_k', '=', 'validate_inputs', '(', 'u_kn', ',', 'N_k', ',', 'f_k', ')', 'log_denominator_n', '=', 'logsumexp', '(', 'f_k', '-', 'u_kn', '.', 'T', ',', 'b', '=', 'N_k', ',', 'axis', '=', '1', ')', 'log_numerator_k', '=', 'logsumexp', '(', '-', 'log_denominator_n', '-', 'u_kn', ',', 'axis', '=', '1', ')', 'return', '-', '1', '*', 'N_k', '*', '(', '1.0', '-', 'np', '.', 'exp', '(', 'f_k', '+', 'log_numerator_k', ')', ')']
Gradient of MBAR objective function. Parameters ---------- u_kn : np.ndarray, shape=(n_states, n_samples), dtype='float' The reduced potential energies, i.e. -log unnormalized probabilities N_k : np.ndarray, shape=(n_states), dtype='int' The number of samples in each state f_k : np.ndarray, shape=(n_states), dtype='float' The reduced free energies of each state Returns ------- grad : np.ndarray, dtype=float, shape=(n_states) Gradient of mbar_objective Notes ----- This is equation C6 in the JCP MBAR paper.
['Gradient', 'of', 'MBAR', 'objective', 'function', '.']
train
https://github.com/choderalab/pymbar/blob/69d1f0ff680e9ac1c6a51a5a207ea28f3ed86740/pymbar/mbar_solvers.py#L80-L105
363
bitlabstudio/django-user-media
user_media/models.py
UserMediaImage.large_size
def large_size(self, as_string=True): """Returns a thumbnail's large size.""" size = getattr(settings, 'USER_MEDIA_THUMB_SIZE_LARGE', (150, 150)) if as_string: return u'{}x{}'.format(size[0], size[1]) return size
python
def large_size(self, as_string=True): """Returns a thumbnail's large size.""" size = getattr(settings, 'USER_MEDIA_THUMB_SIZE_LARGE', (150, 150)) if as_string: return u'{}x{}'.format(size[0], size[1]) return size
['def', 'large_size', '(', 'self', ',', 'as_string', '=', 'True', ')', ':', 'size', '=', 'getattr', '(', 'settings', ',', "'USER_MEDIA_THUMB_SIZE_LARGE'", ',', '(', '150', ',', '150', ')', ')', 'if', 'as_string', ':', 'return', "u'{}x{}'", '.', 'format', '(', 'size', '[', '0', ']', ',', 'size', '[', '1', ']', ')', 'return', 'size']
Returns a thumbnail's large size.
['Returns', 'a', 'thumbnail', 's', 'large', 'size', '.']
train
https://github.com/bitlabstudio/django-user-media/blob/63905aeb57640f116320ab8d7116e0ec35fde377/user_media/models.py#L122-L127
364
wright-group/WrightTools
WrightTools/artists/_colors.py
get_color_cycle
def get_color_cycle(n, cmap="rainbow", rotations=3): """Get a list of RGBA colors following a colormap. Useful for plotting lots of elements, keeping the color of each unique. Parameters ---------- n : integer The number of colors to return. cmap : string (optional) The colormap to use in the cycle. Default is rainbow. rotations : integer (optional) The number of times to repeat the colormap over the cycle. Default is 3. Returns ------- list List of RGBA lists. """ cmap = colormaps[cmap] if np.mod(n, rotations) == 0: per = np.floor_divide(n, rotations) else: per = np.floor_divide(n, rotations) + 1 vals = list(np.linspace(0, 1, per)) vals = vals * rotations vals = vals[:n] out = cmap(vals) return out
python
def get_color_cycle(n, cmap="rainbow", rotations=3): """Get a list of RGBA colors following a colormap. Useful for plotting lots of elements, keeping the color of each unique. Parameters ---------- n : integer The number of colors to return. cmap : string (optional) The colormap to use in the cycle. Default is rainbow. rotations : integer (optional) The number of times to repeat the colormap over the cycle. Default is 3. Returns ------- list List of RGBA lists. """ cmap = colormaps[cmap] if np.mod(n, rotations) == 0: per = np.floor_divide(n, rotations) else: per = np.floor_divide(n, rotations) + 1 vals = list(np.linspace(0, 1, per)) vals = vals * rotations vals = vals[:n] out = cmap(vals) return out
['def', 'get_color_cycle', '(', 'n', ',', 'cmap', '=', '"rainbow"', ',', 'rotations', '=', '3', ')', ':', 'cmap', '=', 'colormaps', '[', 'cmap', ']', 'if', 'np', '.', 'mod', '(', 'n', ',', 'rotations', ')', '==', '0', ':', 'per', '=', 'np', '.', 'floor_divide', '(', 'n', ',', 'rotations', ')', 'else', ':', 'per', '=', 'np', '.', 'floor_divide', '(', 'n', ',', 'rotations', ')', '+', '1', 'vals', '=', 'list', '(', 'np', '.', 'linspace', '(', '0', ',', '1', ',', 'per', ')', ')', 'vals', '=', 'vals', '*', 'rotations', 'vals', '=', 'vals', '[', ':', 'n', ']', 'out', '=', 'cmap', '(', 'vals', ')', 'return', 'out']
Get a list of RGBA colors following a colormap. Useful for plotting lots of elements, keeping the color of each unique. Parameters ---------- n : integer The number of colors to return. cmap : string (optional) The colormap to use in the cycle. Default is rainbow. rotations : integer (optional) The number of times to repeat the colormap over the cycle. Default is 3. Returns ------- list List of RGBA lists.
['Get', 'a', 'list', 'of', 'RGBA', 'colors', 'following', 'a', 'colormap', '.']
train
https://github.com/wright-group/WrightTools/blob/80d3ddd5074d8d5c1bc03fd5a0e0f10d4b424aeb/WrightTools/artists/_colors.py#L253-L281
365
liampauling/betfair
betfairlightweight/utils.py
check_status_code
def check_status_code(response, codes=None): """ Checks response.status_code is in codes. :param requests.request response: Requests response :param list codes: List of accepted codes or callable :raises: StatusCodeError if code invalid """ codes = codes or [200] if response.status_code not in codes: raise StatusCodeError(response.status_code)
python
def check_status_code(response, codes=None): """ Checks response.status_code is in codes. :param requests.request response: Requests response :param list codes: List of accepted codes or callable :raises: StatusCodeError if code invalid """ codes = codes or [200] if response.status_code not in codes: raise StatusCodeError(response.status_code)
['def', 'check_status_code', '(', 'response', ',', 'codes', '=', 'None', ')', ':', 'codes', '=', 'codes', 'or', '[', '200', ']', 'if', 'response', '.', 'status_code', 'not', 'in', 'codes', ':', 'raise', 'StatusCodeError', '(', 'response', '.', 'status_code', ')']
Checks response.status_code is in codes. :param requests.request response: Requests response :param list codes: List of accepted codes or callable :raises: StatusCodeError if code invalid
['Checks', 'response', '.', 'status_code', 'is', 'in', 'codes', '.']
train
https://github.com/liampauling/betfair/blob/8479392eb4849c525d78d43497c32c0bb108e977/betfairlightweight/utils.py#L7-L17
366
kwikteam/phy
phy/gui/widgets.py
HTMLWidget.eval_js
def eval_js(self, expr): """Evaluate a Javascript expression.""" if not self.is_built(): self._pending_js_eval.append(expr) return logger.log(5, "Evaluate Javascript: `%s`.", expr) out = self.page().mainFrame().evaluateJavaScript(expr) return _to_py(out)
python
def eval_js(self, expr): """Evaluate a Javascript expression.""" if not self.is_built(): self._pending_js_eval.append(expr) return logger.log(5, "Evaluate Javascript: `%s`.", expr) out = self.page().mainFrame().evaluateJavaScript(expr) return _to_py(out)
['def', 'eval_js', '(', 'self', ',', 'expr', ')', ':', 'if', 'not', 'self', '.', 'is_built', '(', ')', ':', 'self', '.', '_pending_js_eval', '.', 'append', '(', 'expr', ')', 'return', 'logger', '.', 'log', '(', '5', ',', '"Evaluate Javascript: `%s`."', ',', 'expr', ')', 'out', '=', 'self', '.', 'page', '(', ')', '.', 'mainFrame', '(', ')', '.', 'evaluateJavaScript', '(', 'expr', ')', 'return', '_to_py', '(', 'out', ')']
Evaluate a Javascript expression.
['Evaluate', 'a', 'Javascript', 'expression', '.']
train
https://github.com/kwikteam/phy/blob/7e9313dc364304b7d2bd03b92938347343703003/phy/gui/widgets.py#L190-L197
367
pywbem/pywbem
pywbem_mock/_resolvermixin.py
ResolverMixin._resolve_objects
def _resolve_objects(self, new_objects, superclass_objects, new_class, superclass, classrepo, qualifier_repo, type_str, verbose=None): """ Resolve a dictionary of objects where the objects can be CIMProperty, CIMMethod, or CIMParameter. This method resolves each of the objects in the dictionary, using the superclass if it is defined. """ if new_objects: # TODO Future REMOVE. This is test code assert isinstance(new_objects, (dict, NocaseDict)) keys = new_objects.keys() assert isinstance(new_objects[keys[0]], (CIMMethod, CIMProperty, CIMParameter)) if not superclass: for new_obj in six.itervalues(new_objects): self._set_new_object(new_obj, None, new_class, None, qualifier_repo, False, type_str) return # process objects if superclass exists for oname, new_obj in six.iteritems(new_objects): if oname not in superclass_objects: self._set_new_object(new_obj, None, new_class, superclass, qualifier_repo, False, type_str) continue # oname in superclass_objects # TODO: We may have object naming because of override. if 'Override' not in new_objects[oname].qualifiers: if not isinstance(new_objects[oname], CIMParameter): raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("{0} {1!A} in {2!A} duplicates {0} in " "{3!A} without override.", type_str, oname, new_class.classname, superclass.classname)) # TODO need to finish this. For now just let # parameter slide. Keep the new one. continue # process object override # get override name override_name = new_objects[oname].qualifiers["override"].value if isinstance(new_obj, (CIMParameter, CIMProperty)): if new_obj.type == 'reference': if override_name != oname: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class reference " "{0} {1!A}. in class {2!A}" "Override must not change {0} " "name but override name is {3!A}", type_str, oname, superclass.classname, override_name)) try: super_obj = superclass_objects[override_name] except KeyError: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class override {0} {1!A}. in class " "{2!A}. Override name {3!A}} not found in {3!A}.", type_str, oname, new_class.classname, override_name, superclass.classname)) # Test if new object characteristics consistent with # requirements for that object type if isinstance(super_obj, CIMProperty): if super_obj.type != new_obj.type \ or super_obj.is_array != new_obj.is_array \ or super_obj.embedded_object != \ new_obj.embedded_object: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class property {0!A}. " "Does not match overridden property " "{1!A} in class {2!A}", oname, super_obj.name, superclass.classname)) elif isinstance(super_obj, CIMMethod): if super_obj.return_type != new_obj.return_type: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class method {0!A}. " "Mismatch method return typein " "class {1!A}.", oname, superclass.classname)) elif isinstance(super_obj, CIMParameter): if super_obj.type != new_obj.type or \ super_obj.is_array != new_obj.is_array or \ super_obj.array_size != new_obj.array_size or \ super_obj.embedded_object != new_obj.embedded_object: mname = None raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class parameter " "{0!A} param {1|A}. " "Does not match signature of " "overridden method parameters " "in class {2!A}.", mname, oname, superclass.classname)) else: assert True, "Invalid Type {0}" .format(type(super_obj)) self._set_new_object(new_obj, super_obj, new_class, superclass, qualifier_repo, True, type_str) # if type is method, resolve the parameters. if isinstance(new_obj, CIMMethod): self._resolve_objects( new_obj.parameters, superclass_objects[new_obj.name].parameters, new_class, superclass, classrepo, qualifier_repo, "Parameter", verbose=verbose) # Copy objects from from superclass that are not in new_class # Placed after loop with items in new_object so they are not part # of that loop. for oname, ovalue in six.iteritems(superclass_objects): if oname not in new_objects: new_value = ovalue.copy() new_value.propagated = True assert ovalue.class_origin new_value.class_origin = ovalue.class_origin for qualifier in new_value.qualifiers.values(): qualifier.propagated = True new_objects[oname] = new_value
python
def _resolve_objects(self, new_objects, superclass_objects, new_class, superclass, classrepo, qualifier_repo, type_str, verbose=None): """ Resolve a dictionary of objects where the objects can be CIMProperty, CIMMethod, or CIMParameter. This method resolves each of the objects in the dictionary, using the superclass if it is defined. """ if new_objects: # TODO Future REMOVE. This is test code assert isinstance(new_objects, (dict, NocaseDict)) keys = new_objects.keys() assert isinstance(new_objects[keys[0]], (CIMMethod, CIMProperty, CIMParameter)) if not superclass: for new_obj in six.itervalues(new_objects): self._set_new_object(new_obj, None, new_class, None, qualifier_repo, False, type_str) return # process objects if superclass exists for oname, new_obj in six.iteritems(new_objects): if oname not in superclass_objects: self._set_new_object(new_obj, None, new_class, superclass, qualifier_repo, False, type_str) continue # oname in superclass_objects # TODO: We may have object naming because of override. if 'Override' not in new_objects[oname].qualifiers: if not isinstance(new_objects[oname], CIMParameter): raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("{0} {1!A} in {2!A} duplicates {0} in " "{3!A} without override.", type_str, oname, new_class.classname, superclass.classname)) # TODO need to finish this. For now just let # parameter slide. Keep the new one. continue # process object override # get override name override_name = new_objects[oname].qualifiers["override"].value if isinstance(new_obj, (CIMParameter, CIMProperty)): if new_obj.type == 'reference': if override_name != oname: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class reference " "{0} {1!A}. in class {2!A}" "Override must not change {0} " "name but override name is {3!A}", type_str, oname, superclass.classname, override_name)) try: super_obj = superclass_objects[override_name] except KeyError: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class override {0} {1!A}. in class " "{2!A}. Override name {3!A}} not found in {3!A}.", type_str, oname, new_class.classname, override_name, superclass.classname)) # Test if new object characteristics consistent with # requirements for that object type if isinstance(super_obj, CIMProperty): if super_obj.type != new_obj.type \ or super_obj.is_array != new_obj.is_array \ or super_obj.embedded_object != \ new_obj.embedded_object: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class property {0!A}. " "Does not match overridden property " "{1!A} in class {2!A}", oname, super_obj.name, superclass.classname)) elif isinstance(super_obj, CIMMethod): if super_obj.return_type != new_obj.return_type: raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class method {0!A}. " "Mismatch method return typein " "class {1!A}.", oname, superclass.classname)) elif isinstance(super_obj, CIMParameter): if super_obj.type != new_obj.type or \ super_obj.is_array != new_obj.is_array or \ super_obj.array_size != new_obj.array_size or \ super_obj.embedded_object != new_obj.embedded_object: mname = None raise CIMError( CIM_ERR_INVALID_PARAMETER, _format("Invalid new_class parameter " "{0!A} param {1|A}. " "Does not match signature of " "overridden method parameters " "in class {2!A}.", mname, oname, superclass.classname)) else: assert True, "Invalid Type {0}" .format(type(super_obj)) self._set_new_object(new_obj, super_obj, new_class, superclass, qualifier_repo, True, type_str) # if type is method, resolve the parameters. if isinstance(new_obj, CIMMethod): self._resolve_objects( new_obj.parameters, superclass_objects[new_obj.name].parameters, new_class, superclass, classrepo, qualifier_repo, "Parameter", verbose=verbose) # Copy objects from from superclass that are not in new_class # Placed after loop with items in new_object so they are not part # of that loop. for oname, ovalue in six.iteritems(superclass_objects): if oname not in new_objects: new_value = ovalue.copy() new_value.propagated = True assert ovalue.class_origin new_value.class_origin = ovalue.class_origin for qualifier in new_value.qualifiers.values(): qualifier.propagated = True new_objects[oname] = new_value
['def', '_resolve_objects', '(', 'self', ',', 'new_objects', ',', 'superclass_objects', ',', 'new_class', ',', 'superclass', ',', 'classrepo', ',', 'qualifier_repo', ',', 'type_str', ',', 'verbose', '=', 'None', ')', ':', 'if', 'new_objects', ':', '# TODO Future REMOVE. This is test code', 'assert', 'isinstance', '(', 'new_objects', ',', '(', 'dict', ',', 'NocaseDict', ')', ')', 'keys', '=', 'new_objects', '.', 'keys', '(', ')', 'assert', 'isinstance', '(', 'new_objects', '[', 'keys', '[', '0', ']', ']', ',', '(', 'CIMMethod', ',', 'CIMProperty', ',', 'CIMParameter', ')', ')', 'if', 'not', 'superclass', ':', 'for', 'new_obj', 'in', 'six', '.', 'itervalues', '(', 'new_objects', ')', ':', 'self', '.', '_set_new_object', '(', 'new_obj', ',', 'None', ',', 'new_class', ',', 'None', ',', 'qualifier_repo', ',', 'False', ',', 'type_str', ')', 'return', '# process objects if superclass exists', 'for', 'oname', ',', 'new_obj', 'in', 'six', '.', 'iteritems', '(', 'new_objects', ')', ':', 'if', 'oname', 'not', 'in', 'superclass_objects', ':', 'self', '.', '_set_new_object', '(', 'new_obj', ',', 'None', ',', 'new_class', ',', 'superclass', ',', 'qualifier_repo', ',', 'False', ',', 'type_str', ')', 'continue', '# oname in superclass_objects', '# TODO: We may have object naming because of override.', 'if', "'Override'", 'not', 'in', 'new_objects', '[', 'oname', ']', '.', 'qualifiers', ':', 'if', 'not', 'isinstance', '(', 'new_objects', '[', 'oname', ']', ',', 'CIMParameter', ')', ':', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"{0} {1!A} in {2!A} duplicates {0} in "', '"{3!A} without override."', ',', 'type_str', ',', 'oname', ',', 'new_class', '.', 'classname', ',', 'superclass', '.', 'classname', ')', ')', '# TODO need to finish this. For now just let', '# parameter slide. Keep the new one.', 'continue', '# process object override', '# get override name', 'override_name', '=', 'new_objects', '[', 'oname', ']', '.', 'qualifiers', '[', '"override"', ']', '.', 'value', 'if', 'isinstance', '(', 'new_obj', ',', '(', 'CIMParameter', ',', 'CIMProperty', ')', ')', ':', 'if', 'new_obj', '.', 'type', '==', "'reference'", ':', 'if', 'override_name', '!=', 'oname', ':', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"Invalid new_class reference "', '"{0} {1!A}. in class {2!A}"', '"Override must not change {0} "', '"name but override name is {3!A}"', ',', 'type_str', ',', 'oname', ',', 'superclass', '.', 'classname', ',', 'override_name', ')', ')', 'try', ':', 'super_obj', '=', 'superclass_objects', '[', 'override_name', ']', 'except', 'KeyError', ':', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"Invalid new_class override {0} {1!A}. in class "', '"{2!A}. Override name {3!A}} not found in {3!A}."', ',', 'type_str', ',', 'oname', ',', 'new_class', '.', 'classname', ',', 'override_name', ',', 'superclass', '.', 'classname', ')', ')', '# Test if new object characteristics consistent with', '# requirements for that object type', 'if', 'isinstance', '(', 'super_obj', ',', 'CIMProperty', ')', ':', 'if', 'super_obj', '.', 'type', '!=', 'new_obj', '.', 'type', 'or', 'super_obj', '.', 'is_array', '!=', 'new_obj', '.', 'is_array', 'or', 'super_obj', '.', 'embedded_object', '!=', 'new_obj', '.', 'embedded_object', ':', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"Invalid new_class property {0!A}. "', '"Does not match overridden property "', '"{1!A} in class {2!A}"', ',', 'oname', ',', 'super_obj', '.', 'name', ',', 'superclass', '.', 'classname', ')', ')', 'elif', 'isinstance', '(', 'super_obj', ',', 'CIMMethod', ')', ':', 'if', 'super_obj', '.', 'return_type', '!=', 'new_obj', '.', 'return_type', ':', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"Invalid new_class method {0!A}. "', '"Mismatch method return typein "', '"class {1!A}."', ',', 'oname', ',', 'superclass', '.', 'classname', ')', ')', 'elif', 'isinstance', '(', 'super_obj', ',', 'CIMParameter', ')', ':', 'if', 'super_obj', '.', 'type', '!=', 'new_obj', '.', 'type', 'or', 'super_obj', '.', 'is_array', '!=', 'new_obj', '.', 'is_array', 'or', 'super_obj', '.', 'array_size', '!=', 'new_obj', '.', 'array_size', 'or', 'super_obj', '.', 'embedded_object', '!=', 'new_obj', '.', 'embedded_object', ':', 'mname', '=', 'None', 'raise', 'CIMError', '(', 'CIM_ERR_INVALID_PARAMETER', ',', '_format', '(', '"Invalid new_class parameter "', '"{0!A} param {1|A}. "', '"Does not match signature of "', '"overridden method parameters "', '"in class {2!A}."', ',', 'mname', ',', 'oname', ',', 'superclass', '.', 'classname', ')', ')', 'else', ':', 'assert', 'True', ',', '"Invalid Type {0}"', '.', 'format', '(', 'type', '(', 'super_obj', ')', ')', 'self', '.', '_set_new_object', '(', 'new_obj', ',', 'super_obj', ',', 'new_class', ',', 'superclass', ',', 'qualifier_repo', ',', 'True', ',', 'type_str', ')', '# if type is method, resolve the parameters.', 'if', 'isinstance', '(', 'new_obj', ',', 'CIMMethod', ')', ':', 'self', '.', '_resolve_objects', '(', 'new_obj', '.', 'parameters', ',', 'superclass_objects', '[', 'new_obj', '.', 'name', ']', '.', 'parameters', ',', 'new_class', ',', 'superclass', ',', 'classrepo', ',', 'qualifier_repo', ',', '"Parameter"', ',', 'verbose', '=', 'verbose', ')', '# Copy objects from from superclass that are not in new_class', '# Placed after loop with items in new_object so they are not part', '# of that loop.', 'for', 'oname', ',', 'ovalue', 'in', 'six', '.', 'iteritems', '(', 'superclass_objects', ')', ':', 'if', 'oname', 'not', 'in', 'new_objects', ':', 'new_value', '=', 'ovalue', '.', 'copy', '(', ')', 'new_value', '.', 'propagated', '=', 'True', 'assert', 'ovalue', '.', 'class_origin', 'new_value', '.', 'class_origin', '=', 'ovalue', '.', 'class_origin', 'for', 'qualifier', 'in', 'new_value', '.', 'qualifiers', '.', 'values', '(', ')', ':', 'qualifier', '.', 'propagated', '=', 'True', 'new_objects', '[', 'oname', ']', '=', 'new_value']
Resolve a dictionary of objects where the objects can be CIMProperty, CIMMethod, or CIMParameter. This method resolves each of the objects in the dictionary, using the superclass if it is defined.
['Resolve', 'a', 'dictionary', 'of', 'objects', 'where', 'the', 'objects', 'can', 'be', 'CIMProperty', 'CIMMethod', 'or', 'CIMParameter', '.', 'This', 'method', 'resolves', 'each', 'of', 'the', 'objects', 'in', 'the', 'dictionary', 'using', 'the', 'superclass', 'if', 'it', 'is', 'defined', '.']
train
https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/pywbem_mock/_resolvermixin.py#L163-L295
368
karjaljo/hiisi
hiisi/hiisi.py
HiisiHDF.groups
def groups(self): """Method returns a list of all goup paths Examples -------- >>> for group in h5f.groups(): print(group) '/' '/dataset1' '/dataset1/data1' '/dataset1/data2' """ HiisiHDF._clear_cache() self.CACHE['group_paths'].append('/') self.visititems(HiisiHDF._is_group) return HiisiHDF.CACHE['group_paths']
python
def groups(self): """Method returns a list of all goup paths Examples -------- >>> for group in h5f.groups(): print(group) '/' '/dataset1' '/dataset1/data1' '/dataset1/data2' """ HiisiHDF._clear_cache() self.CACHE['group_paths'].append('/') self.visititems(HiisiHDF._is_group) return HiisiHDF.CACHE['group_paths']
['def', 'groups', '(', 'self', ')', ':', 'HiisiHDF', '.', '_clear_cache', '(', ')', 'self', '.', 'CACHE', '[', "'group_paths'", ']', '.', 'append', '(', "'/'", ')', 'self', '.', 'visititems', '(', 'HiisiHDF', '.', '_is_group', ')', 'return', 'HiisiHDF', '.', 'CACHE', '[', "'group_paths'", ']']
Method returns a list of all goup paths Examples -------- >>> for group in h5f.groups(): print(group) '/' '/dataset1' '/dataset1/data1' '/dataset1/data2'
['Method', 'returns', 'a', 'list', 'of', 'all', 'goup', 'paths', 'Examples', '--------', '>>>', 'for', 'group', 'in', 'h5f', '.', 'groups', '()', ':', 'print', '(', 'group', ')', '/', '/', 'dataset1', '/', 'dataset1', '/', 'data1', '/', 'dataset1', '/', 'data2']
train
https://github.com/karjaljo/hiisi/blob/de6a64df5dcbcb37d5d3d5468663e65a7794f9a8/hiisi/hiisi.py#L85-L100
369
Opentrons/opentrons
api/src/opentrons/hardware_control/__init__.py
API.home_plunger
async def home_plunger(self, mount: top_types.Mount): """ Home the plunger motor for a mount, and then return it to the 'bottom' position. :param mount: the mount associated with the target plunger :type mount: :py:class:`.top_types.Mount` """ instr = self._attached_instruments[mount] if instr: await self.home([Axis.of_plunger(mount)]) await self._move_plunger(mount, instr.config.bottom)
python
async def home_plunger(self, mount: top_types.Mount): """ Home the plunger motor for a mount, and then return it to the 'bottom' position. :param mount: the mount associated with the target plunger :type mount: :py:class:`.top_types.Mount` """ instr = self._attached_instruments[mount] if instr: await self.home([Axis.of_plunger(mount)]) await self._move_plunger(mount, instr.config.bottom)
['async', 'def', 'home_plunger', '(', 'self', ',', 'mount', ':', 'top_types', '.', 'Mount', ')', ':', 'instr', '=', 'self', '.', '_attached_instruments', '[', 'mount', ']', 'if', 'instr', ':', 'await', 'self', '.', 'home', '(', '[', 'Axis', '.', 'of_plunger', '(', 'mount', ')', ']', ')', 'await', 'self', '.', '_move_plunger', '(', 'mount', ',', 'instr', '.', 'config', '.', 'bottom', ')']
Home the plunger motor for a mount, and then return it to the 'bottom' position. :param mount: the mount associated with the target plunger :type mount: :py:class:`.top_types.Mount`
['Home', 'the', 'plunger', 'motor', 'for', 'a', 'mount', 'and', 'then', 'return', 'it', 'to', 'the', 'bottom', 'position', '.']
train
https://github.com/Opentrons/opentrons/blob/a7c15cc2636ecb64ab56c7edc1d8a57163aaeadf/api/src/opentrons/hardware_control/__init__.py#L383-L395
370
VonStruddle/PyHunter
pyhunter/pyhunter.py
PyHunter.get_leads_lists
def get_leads_lists(self, offset=None, limit=None): """ Gives back all the leads lists saved on your account. :param offset: Number of lists to skip. :param limit: Maximum number of lists to return. :return: Leads lists found as a dict. """ params = self.base_params if offset: params['offset'] = offset if limit: params['limit'] = limit endpoint = self.base_endpoint.format('leads_lists') return self._query_hunter(endpoint, params)
python
def get_leads_lists(self, offset=None, limit=None): """ Gives back all the leads lists saved on your account. :param offset: Number of lists to skip. :param limit: Maximum number of lists to return. :return: Leads lists found as a dict. """ params = self.base_params if offset: params['offset'] = offset if limit: params['limit'] = limit endpoint = self.base_endpoint.format('leads_lists') return self._query_hunter(endpoint, params)
['def', 'get_leads_lists', '(', 'self', ',', 'offset', '=', 'None', ',', 'limit', '=', 'None', ')', ':', 'params', '=', 'self', '.', 'base_params', 'if', 'offset', ':', 'params', '[', "'offset'", ']', '=', 'offset', 'if', 'limit', ':', 'params', '[', "'limit'", ']', '=', 'limit', 'endpoint', '=', 'self', '.', 'base_endpoint', '.', 'format', '(', "'leads_lists'", ')', 'return', 'self', '.', '_query_hunter', '(', 'endpoint', ',', 'params', ')']
Gives back all the leads lists saved on your account. :param offset: Number of lists to skip. :param limit: Maximum number of lists to return. :return: Leads lists found as a dict.
['Gives', 'back', 'all', 'the', 'leads', 'lists', 'saved', 'on', 'your', 'account', '.']
train
https://github.com/VonStruddle/PyHunter/blob/e14882d22527102515458cddeb8e0aa1c02da549/pyhunter/pyhunter.py#L385-L404
371
cloud-custodian/cloud-custodian
tools/c7n_logexporter/c7n_logexporter/exporter.py
export
def export(group, bucket, prefix, start, end, role, poll_period=120, session=None, name="", region=None): """export a given log group to s3""" start = start and isinstance(start, six.string_types) and parse(start) or start end = (end and isinstance(start, six.string_types) and parse(end) or end or datetime.now()) start = start.replace(tzinfo=tzlocal()).astimezone(tzutc()) end = end.replace(tzinfo=tzlocal()).astimezone(tzutc()) if session is None: session = get_session(role, region) client = session.client('logs') paginator = client.get_paginator('describe_log_groups') for p in paginator.paginate(): found = False for _group in p['logGroups']: if _group['logGroupName'] == group: group = _group found = True break if found: break if not found: raise ValueError("Log group %s not found." % group) if prefix: prefix = "%s/%s" % (prefix.rstrip('/'), group['logGroupName'].strip('/')) else: prefix = group['logGroupName'] named_group = "%s:%s" % (name, group['logGroupName']) log.info( "Log exporting group:%s start:%s end:%s bucket:%s prefix:%s size:%s", named_group, start.strftime('%Y/%m/%d'), end.strftime('%Y/%m/%d'), bucket, prefix, group['storedBytes']) t = time.time() days = [( start + timedelta(i)).replace(minute=0, hour=0, second=0, microsecond=0) for i in range((end - start).days)] day_count = len(days) s3 = boto3.Session().client('s3') days = filter_extant_exports(s3, bucket, prefix, days, start, end) log.info("Group:%s filtering s3 extant keys from %d to %d start:%s end:%s", named_group, day_count, len(days), days[0] if days else '', days[-1] if days else '') t = time.time() retry = get_retry(('SlowDown',)) for idx, d in enumerate(days): date = d.replace(minute=0, microsecond=0, hour=0) export_prefix = "%s%s" % (prefix, date.strftime("/%Y/%m/%d")) params = { 'taskName': "%s-%s" % ("c7n-log-exporter", date.strftime("%Y-%m-%d")), 'logGroupName': group['logGroupName'], 'fromTime': int(time.mktime( date.replace( minute=0, microsecond=0, hour=0).timetuple()) * 1000), 'to': int(time.mktime( date.replace( minute=59, hour=23, microsecond=0).timetuple()) * 1000), 'destination': bucket, 'destinationPrefix': export_prefix } # if stream_prefix: # params['logStreamPrefix'] = stream_prefix try: s3.head_object(Bucket=bucket, Key=prefix) except ClientError as e: if e.response['Error']['Code'] != '404': # Not Found raise s3.put_object( Bucket=bucket, Key=prefix, Body=json.dumps({}), ACL="bucket-owner-full-control", ServerSideEncryption="AES256") t = time.time() counter = 0 while True: counter += 1 try: result = client.create_export_task(**params) except ClientError as e: if e.response['Error']['Code'] == 'LimitExceededException': time.sleep(poll_period) # log every 30m of export waiting if counter % 6 == 0: log.debug( "group:%s day:%s waiting for %0.2f minutes", named_group, d.strftime('%Y-%m-%d'), (counter * poll_period) / 60.0) continue raise retry( s3.put_object_tagging, Bucket=bucket, Key=prefix, Tagging={ 'TagSet': [{ 'Key': 'LastExport', 'Value': d.isoformat()}]}) break log.info( "Log export time:%0.2f group:%s day:%s bucket:%s prefix:%s task:%s", time.time() - t, named_group, d.strftime("%Y-%m-%d"), bucket, params['destinationPrefix'], result['taskId']) log.info( ("Exported log group:%s time:%0.2f days:%d start:%s" " end:%s bucket:%s prefix:%s"), named_group, time.time() - t, len(days), start.strftime('%Y/%m/%d'), end.strftime('%Y/%m/%d'), bucket, prefix)
python
def export(group, bucket, prefix, start, end, role, poll_period=120, session=None, name="", region=None): """export a given log group to s3""" start = start and isinstance(start, six.string_types) and parse(start) or start end = (end and isinstance(start, six.string_types) and parse(end) or end or datetime.now()) start = start.replace(tzinfo=tzlocal()).astimezone(tzutc()) end = end.replace(tzinfo=tzlocal()).astimezone(tzutc()) if session is None: session = get_session(role, region) client = session.client('logs') paginator = client.get_paginator('describe_log_groups') for p in paginator.paginate(): found = False for _group in p['logGroups']: if _group['logGroupName'] == group: group = _group found = True break if found: break if not found: raise ValueError("Log group %s not found." % group) if prefix: prefix = "%s/%s" % (prefix.rstrip('/'), group['logGroupName'].strip('/')) else: prefix = group['logGroupName'] named_group = "%s:%s" % (name, group['logGroupName']) log.info( "Log exporting group:%s start:%s end:%s bucket:%s prefix:%s size:%s", named_group, start.strftime('%Y/%m/%d'), end.strftime('%Y/%m/%d'), bucket, prefix, group['storedBytes']) t = time.time() days = [( start + timedelta(i)).replace(minute=0, hour=0, second=0, microsecond=0) for i in range((end - start).days)] day_count = len(days) s3 = boto3.Session().client('s3') days = filter_extant_exports(s3, bucket, prefix, days, start, end) log.info("Group:%s filtering s3 extant keys from %d to %d start:%s end:%s", named_group, day_count, len(days), days[0] if days else '', days[-1] if days else '') t = time.time() retry = get_retry(('SlowDown',)) for idx, d in enumerate(days): date = d.replace(minute=0, microsecond=0, hour=0) export_prefix = "%s%s" % (prefix, date.strftime("/%Y/%m/%d")) params = { 'taskName': "%s-%s" % ("c7n-log-exporter", date.strftime("%Y-%m-%d")), 'logGroupName': group['logGroupName'], 'fromTime': int(time.mktime( date.replace( minute=0, microsecond=0, hour=0).timetuple()) * 1000), 'to': int(time.mktime( date.replace( minute=59, hour=23, microsecond=0).timetuple()) * 1000), 'destination': bucket, 'destinationPrefix': export_prefix } # if stream_prefix: # params['logStreamPrefix'] = stream_prefix try: s3.head_object(Bucket=bucket, Key=prefix) except ClientError as e: if e.response['Error']['Code'] != '404': # Not Found raise s3.put_object( Bucket=bucket, Key=prefix, Body=json.dumps({}), ACL="bucket-owner-full-control", ServerSideEncryption="AES256") t = time.time() counter = 0 while True: counter += 1 try: result = client.create_export_task(**params) except ClientError as e: if e.response['Error']['Code'] == 'LimitExceededException': time.sleep(poll_period) # log every 30m of export waiting if counter % 6 == 0: log.debug( "group:%s day:%s waiting for %0.2f minutes", named_group, d.strftime('%Y-%m-%d'), (counter * poll_period) / 60.0) continue raise retry( s3.put_object_tagging, Bucket=bucket, Key=prefix, Tagging={ 'TagSet': [{ 'Key': 'LastExport', 'Value': d.isoformat()}]}) break log.info( "Log export time:%0.2f group:%s day:%s bucket:%s prefix:%s task:%s", time.time() - t, named_group, d.strftime("%Y-%m-%d"), bucket, params['destinationPrefix'], result['taskId']) log.info( ("Exported log group:%s time:%0.2f days:%d start:%s" " end:%s bucket:%s prefix:%s"), named_group, time.time() - t, len(days), start.strftime('%Y/%m/%d'), end.strftime('%Y/%m/%d'), bucket, prefix)
['def', 'export', '(', 'group', ',', 'bucket', ',', 'prefix', ',', 'start', ',', 'end', ',', 'role', ',', 'poll_period', '=', '120', ',', 'session', '=', 'None', ',', 'name', '=', '""', ',', 'region', '=', 'None', ')', ':', 'start', '=', 'start', 'and', 'isinstance', '(', 'start', ',', 'six', '.', 'string_types', ')', 'and', 'parse', '(', 'start', ')', 'or', 'start', 'end', '=', '(', 'end', 'and', 'isinstance', '(', 'start', ',', 'six', '.', 'string_types', ')', 'and', 'parse', '(', 'end', ')', 'or', 'end', 'or', 'datetime', '.', 'now', '(', ')', ')', 'start', '=', 'start', '.', 'replace', '(', 'tzinfo', '=', 'tzlocal', '(', ')', ')', '.', 'astimezone', '(', 'tzutc', '(', ')', ')', 'end', '=', 'end', '.', 'replace', '(', 'tzinfo', '=', 'tzlocal', '(', ')', ')', '.', 'astimezone', '(', 'tzutc', '(', ')', ')', 'if', 'session', 'is', 'None', ':', 'session', '=', 'get_session', '(', 'role', ',', 'region', ')', 'client', '=', 'session', '.', 'client', '(', "'logs'", ')', 'paginator', '=', 'client', '.', 'get_paginator', '(', "'describe_log_groups'", ')', 'for', 'p', 'in', 'paginator', '.', 'paginate', '(', ')', ':', 'found', '=', 'False', 'for', '_group', 'in', 'p', '[', "'logGroups'", ']', ':', 'if', '_group', '[', "'logGroupName'", ']', '==', 'group', ':', 'group', '=', '_group', 'found', '=', 'True', 'break', 'if', 'found', ':', 'break', 'if', 'not', 'found', ':', 'raise', 'ValueError', '(', '"Log group %s not found."', '%', 'group', ')', 'if', 'prefix', ':', 'prefix', '=', '"%s/%s"', '%', '(', 'prefix', '.', 'rstrip', '(', "'/'", ')', ',', 'group', '[', "'logGroupName'", ']', '.', 'strip', '(', "'/'", ')', ')', 'else', ':', 'prefix', '=', 'group', '[', "'logGroupName'", ']', 'named_group', '=', '"%s:%s"', '%', '(', 'name', ',', 'group', '[', "'logGroupName'", ']', ')', 'log', '.', 'info', '(', '"Log exporting group:%s start:%s end:%s bucket:%s prefix:%s size:%s"', ',', 'named_group', ',', 'start', '.', 'strftime', '(', "'%Y/%m/%d'", ')', ',', 'end', '.', 'strftime', '(', "'%Y/%m/%d'", ')', ',', 'bucket', ',', 'prefix', ',', 'group', '[', "'storedBytes'", ']', ')', 't', '=', 'time', '.', 'time', '(', ')', 'days', '=', '[', '(', 'start', '+', 'timedelta', '(', 'i', ')', ')', '.', 'replace', '(', 'minute', '=', '0', ',', 'hour', '=', '0', ',', 'second', '=', '0', ',', 'microsecond', '=', '0', ')', 'for', 'i', 'in', 'range', '(', '(', 'end', '-', 'start', ')', '.', 'days', ')', ']', 'day_count', '=', 'len', '(', 'days', ')', 's3', '=', 'boto3', '.', 'Session', '(', ')', '.', 'client', '(', "'s3'", ')', 'days', '=', 'filter_extant_exports', '(', 's3', ',', 'bucket', ',', 'prefix', ',', 'days', ',', 'start', ',', 'end', ')', 'log', '.', 'info', '(', '"Group:%s filtering s3 extant keys from %d to %d start:%s end:%s"', ',', 'named_group', ',', 'day_count', ',', 'len', '(', 'days', ')', ',', 'days', '[', '0', ']', 'if', 'days', 'else', "''", ',', 'days', '[', '-', '1', ']', 'if', 'days', 'else', "''", ')', 't', '=', 'time', '.', 'time', '(', ')', 'retry', '=', 'get_retry', '(', '(', "'SlowDown'", ',', ')', ')', 'for', 'idx', ',', 'd', 'in', 'enumerate', '(', 'days', ')', ':', 'date', '=', 'd', '.', 'replace', '(', 'minute', '=', '0', ',', 'microsecond', '=', '0', ',', 'hour', '=', '0', ')', 'export_prefix', '=', '"%s%s"', '%', '(', 'prefix', ',', 'date', '.', 'strftime', '(', '"/%Y/%m/%d"', ')', ')', 'params', '=', '{', "'taskName'", ':', '"%s-%s"', '%', '(', '"c7n-log-exporter"', ',', 'date', '.', 'strftime', '(', '"%Y-%m-%d"', ')', ')', ',', "'logGroupName'", ':', 'group', '[', "'logGroupName'", ']', ',', "'fromTime'", ':', 'int', '(', 'time', '.', 'mktime', '(', 'date', '.', 'replace', '(', 'minute', '=', '0', ',', 'microsecond', '=', '0', ',', 'hour', '=', '0', ')', '.', 'timetuple', '(', ')', ')', '*', '1000', ')', ',', "'to'", ':', 'int', '(', 'time', '.', 'mktime', '(', 'date', '.', 'replace', '(', 'minute', '=', '59', ',', 'hour', '=', '23', ',', 'microsecond', '=', '0', ')', '.', 'timetuple', '(', ')', ')', '*', '1000', ')', ',', "'destination'", ':', 'bucket', ',', "'destinationPrefix'", ':', 'export_prefix', '}', '# if stream_prefix:', "# params['logStreamPrefix'] = stream_prefix", 'try', ':', 's3', '.', 'head_object', '(', 'Bucket', '=', 'bucket', ',', 'Key', '=', 'prefix', ')', 'except', 'ClientError', 'as', 'e', ':', 'if', 'e', '.', 'response', '[', "'Error'", ']', '[', "'Code'", ']', '!=', "'404'", ':', '# Not Found', 'raise', 's3', '.', 'put_object', '(', 'Bucket', '=', 'bucket', ',', 'Key', '=', 'prefix', ',', 'Body', '=', 'json', '.', 'dumps', '(', '{', '}', ')', ',', 'ACL', '=', '"bucket-owner-full-control"', ',', 'ServerSideEncryption', '=', '"AES256"', ')', 't', '=', 'time', '.', 'time', '(', ')', 'counter', '=', '0', 'while', 'True', ':', 'counter', '+=', '1', 'try', ':', 'result', '=', 'client', '.', 'create_export_task', '(', '*', '*', 'params', ')', 'except', 'ClientError', 'as', 'e', ':', 'if', 'e', '.', 'response', '[', "'Error'", ']', '[', "'Code'", ']', '==', "'LimitExceededException'", ':', 'time', '.', 'sleep', '(', 'poll_period', ')', '# log every 30m of export waiting', 'if', 'counter', '%', '6', '==', '0', ':', 'log', '.', 'debug', '(', '"group:%s day:%s waiting for %0.2f minutes"', ',', 'named_group', ',', 'd', '.', 'strftime', '(', "'%Y-%m-%d'", ')', ',', '(', 'counter', '*', 'poll_period', ')', '/', '60.0', ')', 'continue', 'raise', 'retry', '(', 's3', '.', 'put_object_tagging', ',', 'Bucket', '=', 'bucket', ',', 'Key', '=', 'prefix', ',', 'Tagging', '=', '{', "'TagSet'", ':', '[', '{', "'Key'", ':', "'LastExport'", ',', "'Value'", ':', 'd', '.', 'isoformat', '(', ')', '}', ']', '}', ')', 'break', 'log', '.', 'info', '(', '"Log export time:%0.2f group:%s day:%s bucket:%s prefix:%s task:%s"', ',', 'time', '.', 'time', '(', ')', '-', 't', ',', 'named_group', ',', 'd', '.', 'strftime', '(', '"%Y-%m-%d"', ')', ',', 'bucket', ',', 'params', '[', "'destinationPrefix'", ']', ',', 'result', '[', "'taskId'", ']', ')', 'log', '.', 'info', '(', '(', '"Exported log group:%s time:%0.2f days:%d start:%s"', '" end:%s bucket:%s prefix:%s"', ')', ',', 'named_group', ',', 'time', '.', 'time', '(', ')', '-', 't', ',', 'len', '(', 'days', ')', ',', 'start', '.', 'strftime', '(', "'%Y/%m/%d'", ')', ',', 'end', '.', 'strftime', '(', "'%Y/%m/%d'", ')', ',', 'bucket', ',', 'prefix', ')']
export a given log group to s3
['export', 'a', 'given', 'log', 'group', 'to', 's3']
train
https://github.com/cloud-custodian/cloud-custodian/blob/52ef732eb3d7bc939d1579faf519314814695c08/tools/c7n_logexporter/c7n_logexporter/exporter.py#L777-L910
372
ResidentMario/geoplot
geoplot/crs.py
Base.load
def load(self, df, centerings): """ A moderately mind-bendy meta-method which abstracts the internals of individual projections' load procedures. Parameters ---------- proj : geoplot.crs object instance A disguised reference to ``self``. df : GeoDataFrame The GeoDataFrame which has been passed as input to the plotter at the top level. This data is needed to calculate reasonable centering variables in cases in which the user does not already provide them; which is, incidentally, the reason behind all of this funny twice-instantiation loading in the first place. centerings: dct A dictionary containing names and centering methods. Certain projections have certain centering parameters whilst others lack them. For example, the geospatial projection contains both ``central_longitude`` and ``central_latitude`` instance parameter, which together control the center of the plot, while the North Pole Stereo projection has only a ``central_longitude`` instance parameter, implying that latitude is fixed (as indeed it is, as this projection is centered on the North Pole!). A top-level centerings method is provided in each of the ``geoplot`` top-level plot functions; each of the projection wrapper classes defined here in turn selects the functions from this list relevent to this particular instance and passes them to the ``_generic_load`` method here. We then in turn execute these functions to get defaults for our ``df`` and pass them off to our output ``cartopy.crs`` instance. Returns ------- crs : ``cartopy.crs`` object instance Returns a ``cartopy.crs`` object instance whose appropriate instance variables have been set to reasonable defaults wherever not already provided by the user. """ centering_variables = dict() if not df.empty and df.geometry.notna().any(): for key, func in centerings.items(): centering_variables[key] = func(df) return getattr(ccrs, self.__class__.__name__)(**{**centering_variables, **self.args})
python
def load(self, df, centerings): """ A moderately mind-bendy meta-method which abstracts the internals of individual projections' load procedures. Parameters ---------- proj : geoplot.crs object instance A disguised reference to ``self``. df : GeoDataFrame The GeoDataFrame which has been passed as input to the plotter at the top level. This data is needed to calculate reasonable centering variables in cases in which the user does not already provide them; which is, incidentally, the reason behind all of this funny twice-instantiation loading in the first place. centerings: dct A dictionary containing names and centering methods. Certain projections have certain centering parameters whilst others lack them. For example, the geospatial projection contains both ``central_longitude`` and ``central_latitude`` instance parameter, which together control the center of the plot, while the North Pole Stereo projection has only a ``central_longitude`` instance parameter, implying that latitude is fixed (as indeed it is, as this projection is centered on the North Pole!). A top-level centerings method is provided in each of the ``geoplot`` top-level plot functions; each of the projection wrapper classes defined here in turn selects the functions from this list relevent to this particular instance and passes them to the ``_generic_load`` method here. We then in turn execute these functions to get defaults for our ``df`` and pass them off to our output ``cartopy.crs`` instance. Returns ------- crs : ``cartopy.crs`` object instance Returns a ``cartopy.crs`` object instance whose appropriate instance variables have been set to reasonable defaults wherever not already provided by the user. """ centering_variables = dict() if not df.empty and df.geometry.notna().any(): for key, func in centerings.items(): centering_variables[key] = func(df) return getattr(ccrs, self.__class__.__name__)(**{**centering_variables, **self.args})
['def', 'load', '(', 'self', ',', 'df', ',', 'centerings', ')', ':', 'centering_variables', '=', 'dict', '(', ')', 'if', 'not', 'df', '.', 'empty', 'and', 'df', '.', 'geometry', '.', 'notna', '(', ')', '.', 'any', '(', ')', ':', 'for', 'key', ',', 'func', 'in', 'centerings', '.', 'items', '(', ')', ':', 'centering_variables', '[', 'key', ']', '=', 'func', '(', 'df', ')', 'return', 'getattr', '(', 'ccrs', ',', 'self', '.', '__class__', '.', '__name__', ')', '(', '*', '*', '{', '*', '*', 'centering_variables', ',', '*', '*', 'self', '.', 'args', '}', ')']
A moderately mind-bendy meta-method which abstracts the internals of individual projections' load procedures. Parameters ---------- proj : geoplot.crs object instance A disguised reference to ``self``. df : GeoDataFrame The GeoDataFrame which has been passed as input to the plotter at the top level. This data is needed to calculate reasonable centering variables in cases in which the user does not already provide them; which is, incidentally, the reason behind all of this funny twice-instantiation loading in the first place. centerings: dct A dictionary containing names and centering methods. Certain projections have certain centering parameters whilst others lack them. For example, the geospatial projection contains both ``central_longitude`` and ``central_latitude`` instance parameter, which together control the center of the plot, while the North Pole Stereo projection has only a ``central_longitude`` instance parameter, implying that latitude is fixed (as indeed it is, as this projection is centered on the North Pole!). A top-level centerings method is provided in each of the ``geoplot`` top-level plot functions; each of the projection wrapper classes defined here in turn selects the functions from this list relevent to this particular instance and passes them to the ``_generic_load`` method here. We then in turn execute these functions to get defaults for our ``df`` and pass them off to our output ``cartopy.crs`` instance. Returns ------- crs : ``cartopy.crs`` object instance Returns a ``cartopy.crs`` object instance whose appropriate instance variables have been set to reasonable defaults wherever not already provided by the user.
['A', 'moderately', 'mind', '-', 'bendy', 'meta', '-', 'method', 'which', 'abstracts', 'the', 'internals', 'of', 'individual', 'projections', 'load', 'procedures', '.']
train
https://github.com/ResidentMario/geoplot/blob/942b474878187a87a95a27fbe41285dfdc1d20ca/geoplot/crs.py#L26-L62
373
fitnr/convertdate
convertdate/hebrew.py
delay_1
def delay_1(year): '''Test for delay of start of new year and to avoid''' # Sunday, Wednesday, and Friday as start of the new year. months = trunc(((235 * year) - 234) / 19) parts = 12084 + (13753 * months) day = trunc((months * 29) + parts / 25920) if ((3 * (day + 1)) % 7) < 3: day += 1 return day
python
def delay_1(year): '''Test for delay of start of new year and to avoid''' # Sunday, Wednesday, and Friday as start of the new year. months = trunc(((235 * year) - 234) / 19) parts = 12084 + (13753 * months) day = trunc((months * 29) + parts / 25920) if ((3 * (day + 1)) % 7) < 3: day += 1 return day
['def', 'delay_1', '(', 'year', ')', ':', '# Sunday, Wednesday, and Friday as start of the new year.', 'months', '=', 'trunc', '(', '(', '(', '235', '*', 'year', ')', '-', '234', ')', '/', '19', ')', 'parts', '=', '12084', '+', '(', '13753', '*', 'months', ')', 'day', '=', 'trunc', '(', '(', 'months', '*', '29', ')', '+', 'parts', '/', '25920', ')', 'if', '(', '(', '3', '*', '(', 'day', '+', '1', ')', ')', '%', '7', ')', '<', '3', ':', 'day', '+=', '1', 'return', 'day']
Test for delay of start of new year and to avoid
['Test', 'for', 'delay', 'of', 'start', 'of', 'new', 'year', 'and', 'to', 'avoid']
train
https://github.com/fitnr/convertdate/blob/e920f168a87f99183b0aa7290d6c3af222582d43/convertdate/hebrew.py#L46-L56
374
saltstack/salt
salt/modules/azurearm_network.py
usages_list
def usages_list(location, **kwargs): ''' .. versionadded:: 2019.2.0 List subscription network usage for a location. :param location: The Azure location to query for network usage. CLI Example: .. code-block:: bash salt-call azurearm_network.usages_list westus ''' netconn = __utils__['azurearm.get_client']('network', **kwargs) try: result = __utils__['azurearm.paged_object_to_list'](netconn.usages.list(location)) except CloudError as exc: __utils__['azurearm.log_cloud_error']('network', str(exc), **kwargs) result = {'error': str(exc)} return result
python
def usages_list(location, **kwargs): ''' .. versionadded:: 2019.2.0 List subscription network usage for a location. :param location: The Azure location to query for network usage. CLI Example: .. code-block:: bash salt-call azurearm_network.usages_list westus ''' netconn = __utils__['azurearm.get_client']('network', **kwargs) try: result = __utils__['azurearm.paged_object_to_list'](netconn.usages.list(location)) except CloudError as exc: __utils__['azurearm.log_cloud_error']('network', str(exc), **kwargs) result = {'error': str(exc)} return result
['def', 'usages_list', '(', 'location', ',', '*', '*', 'kwargs', ')', ':', 'netconn', '=', '__utils__', '[', "'azurearm.get_client'", ']', '(', "'network'", ',', '*', '*', 'kwargs', ')', 'try', ':', 'result', '=', '__utils__', '[', "'azurearm.paged_object_to_list'", ']', '(', 'netconn', '.', 'usages', '.', 'list', '(', 'location', ')', ')', 'except', 'CloudError', 'as', 'exc', ':', '__utils__', '[', "'azurearm.log_cloud_error'", ']', '(', "'network'", ',', 'str', '(', 'exc', ')', ',', '*', '*', 'kwargs', ')', 'result', '=', '{', "'error'", ':', 'str', '(', 'exc', ')', '}', 'return', 'result']
.. versionadded:: 2019.2.0 List subscription network usage for a location. :param location: The Azure location to query for network usage. CLI Example: .. code-block:: bash salt-call azurearm_network.usages_list westus
['..', 'versionadded', '::', '2019', '.', '2', '.', '0']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/azurearm_network.py#L1359-L1381
375
RedHatInsights/insights-core
insights/core/__init__.py
LogFileOutput.parse_content
def parse_content(self, content): """ Use all the defined scanners to search the log file, setting the properties defined in the scanner. """ self.lines = content for scanner in self.scanners: scanner(self)
python
def parse_content(self, content): """ Use all the defined scanners to search the log file, setting the properties defined in the scanner. """ self.lines = content for scanner in self.scanners: scanner(self)
['def', 'parse_content', '(', 'self', ',', 'content', ')', ':', 'self', '.', 'lines', '=', 'content', 'for', 'scanner', 'in', 'self', '.', 'scanners', ':', 'scanner', '(', 'self', ')']
Use all the defined scanners to search the log file, setting the properties defined in the scanner.
['Use', 'all', 'the', 'defined', 'scanners', 'to', 'search', 'the', 'log', 'file', 'setting', 'the', 'properties', 'defined', 'in', 'the', 'scanner', '.']
train
https://github.com/RedHatInsights/insights-core/blob/b57cbf8ed7c089672426ede0441e0a4f789ef4a1/insights/core/__init__.py#L902-L909
376
klen/zeta-library
zetalibrary/scss/__init__.py
Scss._do_for
def _do_for(self, rule, p_selectors, p_parents, p_children, scope, media, c_lineno, c_property, c_codestr, code, name): """ Implements @for """ var, _, name = name.partition('from') frm, _, through = name.partition('through') if not through: frm, _, through = frm.partition('to') frm = self.calculate(frm, rule[CONTEXT], rule[OPTIONS], rule) through = self.calculate(through, rule[CONTEXT], rule[OPTIONS], rule) try: frm = int(float(frm)) through = int(float(through)) except ValueError: pass else: if frm > through: frm, through = through, frm rev = reversed else: rev = lambda x: x var = var.strip() var = self.do_glob_math( var, rule[CONTEXT], rule[OPTIONS], rule, True) for i in rev(range(frm, through + 1)): rule[CODESTR] = c_codestr rule[CONTEXT][var] = str(i) self.manage_children( rule, p_selectors, p_parents, p_children, scope, media)
python
def _do_for(self, rule, p_selectors, p_parents, p_children, scope, media, c_lineno, c_property, c_codestr, code, name): """ Implements @for """ var, _, name = name.partition('from') frm, _, through = name.partition('through') if not through: frm, _, through = frm.partition('to') frm = self.calculate(frm, rule[CONTEXT], rule[OPTIONS], rule) through = self.calculate(through, rule[CONTEXT], rule[OPTIONS], rule) try: frm = int(float(frm)) through = int(float(through)) except ValueError: pass else: if frm > through: frm, through = through, frm rev = reversed else: rev = lambda x: x var = var.strip() var = self.do_glob_math( var, rule[CONTEXT], rule[OPTIONS], rule, True) for i in rev(range(frm, through + 1)): rule[CODESTR] = c_codestr rule[CONTEXT][var] = str(i) self.manage_children( rule, p_selectors, p_parents, p_children, scope, media)
['def', '_do_for', '(', 'self', ',', 'rule', ',', 'p_selectors', ',', 'p_parents', ',', 'p_children', ',', 'scope', ',', 'media', ',', 'c_lineno', ',', 'c_property', ',', 'c_codestr', ',', 'code', ',', 'name', ')', ':', 'var', ',', '_', ',', 'name', '=', 'name', '.', 'partition', '(', "'from'", ')', 'frm', ',', '_', ',', 'through', '=', 'name', '.', 'partition', '(', "'through'", ')', 'if', 'not', 'through', ':', 'frm', ',', '_', ',', 'through', '=', 'frm', '.', 'partition', '(', "'to'", ')', 'frm', '=', 'self', '.', 'calculate', '(', 'frm', ',', 'rule', '[', 'CONTEXT', ']', ',', 'rule', '[', 'OPTIONS', ']', ',', 'rule', ')', 'through', '=', 'self', '.', 'calculate', '(', 'through', ',', 'rule', '[', 'CONTEXT', ']', ',', 'rule', '[', 'OPTIONS', ']', ',', 'rule', ')', 'try', ':', 'frm', '=', 'int', '(', 'float', '(', 'frm', ')', ')', 'through', '=', 'int', '(', 'float', '(', 'through', ')', ')', 'except', 'ValueError', ':', 'pass', 'else', ':', 'if', 'frm', '>', 'through', ':', 'frm', ',', 'through', '=', 'through', ',', 'frm', 'rev', '=', 'reversed', 'else', ':', 'rev', '=', 'lambda', 'x', ':', 'x', 'var', '=', 'var', '.', 'strip', '(', ')', 'var', '=', 'self', '.', 'do_glob_math', '(', 'var', ',', 'rule', '[', 'CONTEXT', ']', ',', 'rule', '[', 'OPTIONS', ']', ',', 'rule', ',', 'True', ')', 'for', 'i', 'in', 'rev', '(', 'range', '(', 'frm', ',', 'through', '+', '1', ')', ')', ':', 'rule', '[', 'CODESTR', ']', '=', 'c_codestr', 'rule', '[', 'CONTEXT', ']', '[', 'var', ']', '=', 'str', '(', 'i', ')', 'self', '.', 'manage_children', '(', 'rule', ',', 'p_selectors', ',', 'p_parents', ',', 'p_children', ',', 'scope', ',', 'media', ')']
Implements @for
['Implements']
train
https://github.com/klen/zeta-library/blob/b76f89000f467e10ddcc94aded3f6c6bf4a0e5bd/zetalibrary/scss/__init__.py#L1320-L1349
377
hardbyte/python-can
can/interfaces/ics_neovi/neovi_bus.py
NeoViBus.get_serial_number
def get_serial_number(device): """Decode (if needed) and return the ICS device serial string :param device: ics device :return: ics device serial string :rtype: str """ a0000 = 604661760 if device.SerialNumber >= a0000: return ics.base36enc(device.SerialNumber) return str(device.SerialNumber)
python
def get_serial_number(device): """Decode (if needed) and return the ICS device serial string :param device: ics device :return: ics device serial string :rtype: str """ a0000 = 604661760 if device.SerialNumber >= a0000: return ics.base36enc(device.SerialNumber) return str(device.SerialNumber)
['def', 'get_serial_number', '(', 'device', ')', ':', 'a0000', '=', '604661760', 'if', 'device', '.', 'SerialNumber', '>=', 'a0000', ':', 'return', 'ics', '.', 'base36enc', '(', 'device', '.', 'SerialNumber', ')', 'return', 'str', '(', 'device', '.', 'SerialNumber', ')']
Decode (if needed) and return the ICS device serial string :param device: ics device :return: ics device serial string :rtype: str
['Decode', '(', 'if', 'needed', ')', 'and', 'return', 'the', 'ICS', 'device', 'serial', 'string']
train
https://github.com/hardbyte/python-can/blob/cdc5254d96072df7739263623f3e920628a7d214/can/interfaces/ics_neovi/neovi_bus.py#L164-L174
378
vecnet/vecnet.openmalaria
vecnet/openmalaria/scenario/interventions.py
HumanInterventions.add
def add(self, intervention, id=None): """ Add an intervention to intervention/human section. intervention is either ElementTree or xml snippet """ if self.et is None: return assert isinstance(intervention, six.string_types) et = ElementTree.fromstring(intervention) component = None if et.find("ITN") is not None: component = ITN(et) elif et.find("GVI") is not None: component = GVI(et) elif et.find("MDA") is not None: component = MDA(et) elif et.find("TBV") is not None or et.find("PEV") is not None or et.find("BSV") is not None: component = Vaccine(et) else: return assert isinstance(component.name, six.string_types) if id is not None: assert isinstance(id, six.string_types) et.attrib["id"] = id index = len(self.et.findall("component")) self.et.insert(index, et)
python
def add(self, intervention, id=None): """ Add an intervention to intervention/human section. intervention is either ElementTree or xml snippet """ if self.et is None: return assert isinstance(intervention, six.string_types) et = ElementTree.fromstring(intervention) component = None if et.find("ITN") is not None: component = ITN(et) elif et.find("GVI") is not None: component = GVI(et) elif et.find("MDA") is not None: component = MDA(et) elif et.find("TBV") is not None or et.find("PEV") is not None or et.find("BSV") is not None: component = Vaccine(et) else: return assert isinstance(component.name, six.string_types) if id is not None: assert isinstance(id, six.string_types) et.attrib["id"] = id index = len(self.et.findall("component")) self.et.insert(index, et)
['def', 'add', '(', 'self', ',', 'intervention', ',', 'id', '=', 'None', ')', ':', 'if', 'self', '.', 'et', 'is', 'None', ':', 'return', 'assert', 'isinstance', '(', 'intervention', ',', 'six', '.', 'string_types', ')', 'et', '=', 'ElementTree', '.', 'fromstring', '(', 'intervention', ')', 'component', '=', 'None', 'if', 'et', '.', 'find', '(', '"ITN"', ')', 'is', 'not', 'None', ':', 'component', '=', 'ITN', '(', 'et', ')', 'elif', 'et', '.', 'find', '(', '"GVI"', ')', 'is', 'not', 'None', ':', 'component', '=', 'GVI', '(', 'et', ')', 'elif', 'et', '.', 'find', '(', '"MDA"', ')', 'is', 'not', 'None', ':', 'component', '=', 'MDA', '(', 'et', ')', 'elif', 'et', '.', 'find', '(', '"TBV"', ')', 'is', 'not', 'None', 'or', 'et', '.', 'find', '(', '"PEV"', ')', 'is', 'not', 'None', 'or', 'et', '.', 'find', '(', '"BSV"', ')', 'is', 'not', 'None', ':', 'component', '=', 'Vaccine', '(', 'et', ')', 'else', ':', 'return', 'assert', 'isinstance', '(', 'component', '.', 'name', ',', 'six', '.', 'string_types', ')', 'if', 'id', 'is', 'not', 'None', ':', 'assert', 'isinstance', '(', 'id', ',', 'six', '.', 'string_types', ')', 'et', '.', 'attrib', '[', '"id"', ']', '=', 'id', 'index', '=', 'len', '(', 'self', '.', 'et', '.', 'findall', '(', '"component"', ')', ')', 'self', '.', 'et', '.', 'insert', '(', 'index', ',', 'et', ')']
Add an intervention to intervention/human section. intervention is either ElementTree or xml snippet
['Add', 'an', 'intervention', 'to', 'intervention', '/', 'human', 'section', '.', 'intervention', 'is', 'either', 'ElementTree', 'or', 'xml', 'snippet']
train
https://github.com/vecnet/vecnet.openmalaria/blob/795bc9d1b81a6c664f14879edda7a7c41188e95a/vecnet/openmalaria/scenario/interventions.py#L690-L720
379
scanny/python-pptx
pptx/text/text.py
_Paragraph.clear
def clear(self): """ Remove all content from this paragraph. Paragraph properties are preserved. Content includes runs, line breaks, and fields. """ for elm in self._element.content_children: self._element.remove(elm) return self
python
def clear(self): """ Remove all content from this paragraph. Paragraph properties are preserved. Content includes runs, line breaks, and fields. """ for elm in self._element.content_children: self._element.remove(elm) return self
['def', 'clear', '(', 'self', ')', ':', 'for', 'elm', 'in', 'self', '.', '_element', '.', 'content_children', ':', 'self', '.', '_element', '.', 'remove', '(', 'elm', ')', 'return', 'self']
Remove all content from this paragraph. Paragraph properties are preserved. Content includes runs, line breaks, and fields.
['Remove', 'all', 'content', 'from', 'this', 'paragraph', '.', 'Paragraph', 'properties', 'are', 'preserved', '.', 'Content', 'includes', 'runs', 'line', 'breaks', 'and', 'fields', '.']
train
https://github.com/scanny/python-pptx/blob/d6ab8234f8b03953d2f831ff9394b1852db34130/pptx/text/text.py#L498-L505
380
twilio/twilio-python
twilio/rest/__init__.py
Client.chat
def chat(self): """ Access the Chat Twilio Domain :returns: Chat Twilio Domain :rtype: twilio.rest.chat.Chat """ if self._chat is None: from twilio.rest.chat import Chat self._chat = Chat(self) return self._chat
python
def chat(self): """ Access the Chat Twilio Domain :returns: Chat Twilio Domain :rtype: twilio.rest.chat.Chat """ if self._chat is None: from twilio.rest.chat import Chat self._chat = Chat(self) return self._chat
['def', 'chat', '(', 'self', ')', ':', 'if', 'self', '.', '_chat', 'is', 'None', ':', 'from', 'twilio', '.', 'rest', '.', 'chat', 'import', 'Chat', 'self', '.', '_chat', '=', 'Chat', '(', 'self', ')', 'return', 'self', '.', '_chat']
Access the Chat Twilio Domain :returns: Chat Twilio Domain :rtype: twilio.rest.chat.Chat
['Access', 'the', 'Chat', 'Twilio', 'Domain']
train
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/__init__.py#L185-L195
381
GGiecold/Cluster_Ensembles
src/Cluster_Ensembles/Cluster_Ensembles.py
one_to_max
def one_to_max(array_in): """Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities. """ x = np.asanyarray(array_in) N_in = x.size array_in = x.reshape(N_in) sorted_array = np.sort(array_in) sorting_indices = np.argsort(array_in) last = np.nan current_index = -1 for i in range(N_in): if last != sorted_array[i] or np.isnan(last): last = sorted_array[i] current_index += 1 sorted_array[i] = current_index result = np.empty(N_in, dtype = int) result[sorting_indices] = sorted_array return result
python
def one_to_max(array_in): """Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities. """ x = np.asanyarray(array_in) N_in = x.size array_in = x.reshape(N_in) sorted_array = np.sort(array_in) sorting_indices = np.argsort(array_in) last = np.nan current_index = -1 for i in range(N_in): if last != sorted_array[i] or np.isnan(last): last = sorted_array[i] current_index += 1 sorted_array[i] = current_index result = np.empty(N_in, dtype = int) result[sorting_indices] = sorted_array return result
['def', 'one_to_max', '(', 'array_in', ')', ':', 'x', '=', 'np', '.', 'asanyarray', '(', 'array_in', ')', 'N_in', '=', 'x', '.', 'size', 'array_in', '=', 'x', '.', 'reshape', '(', 'N_in', ')', 'sorted_array', '=', 'np', '.', 'sort', '(', 'array_in', ')', 'sorting_indices', '=', 'np', '.', 'argsort', '(', 'array_in', ')', 'last', '=', 'np', '.', 'nan', 'current_index', '=', '-', '1', 'for', 'i', 'in', 'range', '(', 'N_in', ')', ':', 'if', 'last', '!=', 'sorted_array', '[', 'i', ']', 'or', 'np', '.', 'isnan', '(', 'last', ')', ':', 'last', '=', 'sorted_array', '[', 'i', ']', 'current_index', '+=', '1', 'sorted_array', '[', 'i', ']', '=', 'current_index', 'result', '=', 'np', '.', 'empty', '(', 'N_in', ',', 'dtype', '=', 'int', ')', 'result', '[', 'sorting_indices', ']', '=', 'sorted_array', 'return', 'result']
Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities.
['Alter', 'a', 'vector', 'of', 'cluster', 'labels', 'to', 'a', 'dense', 'mapping', '.', 'Given', 'that', 'this', 'function', 'is', 'herein', 'always', 'called', 'after', 'passing', 'a', 'vector', 'to', 'the', 'function', 'checkcl', 'one_to_max', 'relies', 'on', 'the', 'assumption', 'that', 'cluster_run', 'does', 'not', 'contain', 'any', 'NaN', 'entries', '.']
train
https://github.com/GGiecold/Cluster_Ensembles/blob/d1b1ce9f541fc937ac7c677e964520e0e9163dc7/src/Cluster_Ensembles/Cluster_Ensembles.py#L433-L469
382
autokey/autokey
lib/autokey/scripting.py
Window.activate
def activate(self, title, switchDesktop=False, matchClass=False): """ Activate the specified window, giving it input focus Usage: C{window.activate(title, switchDesktop=False, matchClass=False)} If switchDesktop is False (default), the window will be moved to the current desktop and activated. Otherwise, switch to the window's current desktop and activate it there. @param title: window title to match against (as case-insensitive substring match) @param switchDesktop: whether or not to switch to the window's current desktop @param matchClass: if True, match on the window class instead of the title """ if switchDesktop: args = ["-a", title] else: args = ["-R", title] if matchClass: args += ["-x"] self._run_wmctrl(args)
python
def activate(self, title, switchDesktop=False, matchClass=False): """ Activate the specified window, giving it input focus Usage: C{window.activate(title, switchDesktop=False, matchClass=False)} If switchDesktop is False (default), the window will be moved to the current desktop and activated. Otherwise, switch to the window's current desktop and activate it there. @param title: window title to match against (as case-insensitive substring match) @param switchDesktop: whether or not to switch to the window's current desktop @param matchClass: if True, match on the window class instead of the title """ if switchDesktop: args = ["-a", title] else: args = ["-R", title] if matchClass: args += ["-x"] self._run_wmctrl(args)
['def', 'activate', '(', 'self', ',', 'title', ',', 'switchDesktop', '=', 'False', ',', 'matchClass', '=', 'False', ')', ':', 'if', 'switchDesktop', ':', 'args', '=', '[', '"-a"', ',', 'title', ']', 'else', ':', 'args', '=', '[', '"-R"', ',', 'title', ']', 'if', 'matchClass', ':', 'args', '+=', '[', '"-x"', ']', 'self', '.', '_run_wmctrl', '(', 'args', ')']
Activate the specified window, giving it input focus Usage: C{window.activate(title, switchDesktop=False, matchClass=False)} If switchDesktop is False (default), the window will be moved to the current desktop and activated. Otherwise, switch to the window's current desktop and activate it there. @param title: window title to match against (as case-insensitive substring match) @param switchDesktop: whether or not to switch to the window's current desktop @param matchClass: if True, match on the window class instead of the title
['Activate', 'the', 'specified', 'window', 'giving', 'it', 'input', 'focus']
train
https://github.com/autokey/autokey/blob/35decb72f286ce68cd2a1f09ace8891a520b58d1/lib/autokey/scripting.py#L963-L982
383
tmoerman/arboreto
arboreto/core.py
target_gene_indices
def target_gene_indices(gene_names, target_genes): """ :param gene_names: list of gene names. :param target_genes: either int (the top n), 'all', or a collection (subset of gene_names). :return: the (column) indices of the target genes in the expression_matrix. """ if isinstance(target_genes, list) and len(target_genes) == 0: return [] if isinstance(target_genes, str) and target_genes.upper() == 'ALL': return list(range(len(gene_names))) elif isinstance(target_genes, int): top_n = target_genes assert top_n > 0 return list(range(min(top_n, len(gene_names)))) elif isinstance(target_genes, list): if not target_genes: # target_genes is empty return target_genes elif all(isinstance(target_gene, str) for target_gene in target_genes): return [index for index, gene in enumerate(gene_names) if gene in target_genes] elif all(isinstance(target_gene, int) for target_gene in target_genes): return target_genes else: raise ValueError("Mixed types in target genes.") else: raise ValueError("Unable to interpret target_genes.")
python
def target_gene_indices(gene_names, target_genes): """ :param gene_names: list of gene names. :param target_genes: either int (the top n), 'all', or a collection (subset of gene_names). :return: the (column) indices of the target genes in the expression_matrix. """ if isinstance(target_genes, list) and len(target_genes) == 0: return [] if isinstance(target_genes, str) and target_genes.upper() == 'ALL': return list(range(len(gene_names))) elif isinstance(target_genes, int): top_n = target_genes assert top_n > 0 return list(range(min(top_n, len(gene_names)))) elif isinstance(target_genes, list): if not target_genes: # target_genes is empty return target_genes elif all(isinstance(target_gene, str) for target_gene in target_genes): return [index for index, gene in enumerate(gene_names) if gene in target_genes] elif all(isinstance(target_gene, int) for target_gene in target_genes): return target_genes else: raise ValueError("Mixed types in target genes.") else: raise ValueError("Unable to interpret target_genes.")
['def', 'target_gene_indices', '(', 'gene_names', ',', 'target_genes', ')', ':', 'if', 'isinstance', '(', 'target_genes', ',', 'list', ')', 'and', 'len', '(', 'target_genes', ')', '==', '0', ':', 'return', '[', ']', 'if', 'isinstance', '(', 'target_genes', ',', 'str', ')', 'and', 'target_genes', '.', 'upper', '(', ')', '==', "'ALL'", ':', 'return', 'list', '(', 'range', '(', 'len', '(', 'gene_names', ')', ')', ')', 'elif', 'isinstance', '(', 'target_genes', ',', 'int', ')', ':', 'top_n', '=', 'target_genes', 'assert', 'top_n', '>', '0', 'return', 'list', '(', 'range', '(', 'min', '(', 'top_n', ',', 'len', '(', 'gene_names', ')', ')', ')', ')', 'elif', 'isinstance', '(', 'target_genes', ',', 'list', ')', ':', 'if', 'not', 'target_genes', ':', '# target_genes is empty', 'return', 'target_genes', 'elif', 'all', '(', 'isinstance', '(', 'target_gene', ',', 'str', ')', 'for', 'target_gene', 'in', 'target_genes', ')', ':', 'return', '[', 'index', 'for', 'index', ',', 'gene', 'in', 'enumerate', '(', 'gene_names', ')', 'if', 'gene', 'in', 'target_genes', ']', 'elif', 'all', '(', 'isinstance', '(', 'target_gene', ',', 'int', ')', 'for', 'target_gene', 'in', 'target_genes', ')', ':', 'return', 'target_genes', 'else', ':', 'raise', 'ValueError', '(', '"Mixed types in target genes."', ')', 'else', ':', 'raise', 'ValueError', '(', '"Unable to interpret target_genes."', ')']
:param gene_names: list of gene names. :param target_genes: either int (the top n), 'all', or a collection (subset of gene_names). :return: the (column) indices of the target genes in the expression_matrix.
[':', 'param', 'gene_names', ':', 'list', 'of', 'gene', 'names', '.', ':', 'param', 'target_genes', ':', 'either', 'int', '(', 'the', 'top', 'n', ')', 'all', 'or', 'a', 'collection', '(', 'subset', 'of', 'gene_names', ')', '.', ':', 'return', ':', 'the', '(', 'column', ')', 'indices', 'of', 'the', 'target', 'genes', 'in', 'the', 'expression_matrix', '.']
train
https://github.com/tmoerman/arboreto/blob/3ff7b6f987b32e5774771751dea646fa6feaaa52/arboreto/core.py#L326-L357
384
brbsix/subnuker
subnuker.py
getch
def getch(): """Request a single character input from the user.""" if sys.platform in ['darwin', 'linux']: import termios import tty file_descriptor = sys.stdin.fileno() settings = termios.tcgetattr(file_descriptor) try: tty.setraw(file_descriptor) return sys.stdin.read(1) finally: termios.tcsetattr(file_descriptor, termios.TCSADRAIN, settings) elif sys.platform in ['cygwin', 'win32']: import msvcrt return msvcrt.getwch()
python
def getch(): """Request a single character input from the user.""" if sys.platform in ['darwin', 'linux']: import termios import tty file_descriptor = sys.stdin.fileno() settings = termios.tcgetattr(file_descriptor) try: tty.setraw(file_descriptor) return sys.stdin.read(1) finally: termios.tcsetattr(file_descriptor, termios.TCSADRAIN, settings) elif sys.platform in ['cygwin', 'win32']: import msvcrt return msvcrt.getwch()
['def', 'getch', '(', ')', ':', 'if', 'sys', '.', 'platform', 'in', '[', "'darwin'", ',', "'linux'", ']', ':', 'import', 'termios', 'import', 'tty', 'file_descriptor', '=', 'sys', '.', 'stdin', '.', 'fileno', '(', ')', 'settings', '=', 'termios', '.', 'tcgetattr', '(', 'file_descriptor', ')', 'try', ':', 'tty', '.', 'setraw', '(', 'file_descriptor', ')', 'return', 'sys', '.', 'stdin', '.', 'read', '(', '1', ')', 'finally', ':', 'termios', '.', 'tcsetattr', '(', 'file_descriptor', ',', 'termios', '.', 'TCSADRAIN', ',', 'settings', ')', 'elif', 'sys', '.', 'platform', 'in', '[', "'cygwin'", ',', "'win32'", ']', ':', 'import', 'msvcrt', 'return', 'msvcrt', '.', 'getwch', '(', ')']
Request a single character input from the user.
['Request', 'a', 'single', 'character', 'input', 'from', 'the', 'user', '.']
train
https://github.com/brbsix/subnuker/blob/a94260a6e84b790a9e39e0b1793443ffd4e1f496/subnuker.py#L348-L363
385
amperser/proselint
proselint/checks/misc/currency.py
check
def check(text): """Check the text.""" err = "misc.currency" msg = u"Incorrect use of symbols in {}." symbols = [ "\$[\d]* ?(?:dollars|usd|us dollars)" ] return existence_check(text, symbols, err, msg)
python
def check(text): """Check the text.""" err = "misc.currency" msg = u"Incorrect use of symbols in {}." symbols = [ "\$[\d]* ?(?:dollars|usd|us dollars)" ] return existence_check(text, symbols, err, msg)
['def', 'check', '(', 'text', ')', ':', 'err', '=', '"misc.currency"', 'msg', '=', 'u"Incorrect use of symbols in {}."', 'symbols', '=', '[', '"\\$[\\d]* ?(?:dollars|usd|us dollars)"', ']', 'return', 'existence_check', '(', 'text', ',', 'symbols', ',', 'err', ',', 'msg', ')']
Check the text.
['Check', 'the', 'text', '.']
train
https://github.com/amperser/proselint/blob/cb619ee4023cc7856f5fb96aec2a33a2c9f1a2e2/proselint/checks/misc/currency.py#L20-L29
386
maxalbert/tohu
tohu/v4/item_list.py
ItemList.to_csv
def to_csv(self, filename=None, *, fields=None, append=False, header=True, header_prefix='', sep=',', newline='\n'): """ Parameters ---------- filename: str or None The file to which output will be written. By default, any existing content is overwritten. Use `append=True` to open the file in append mode instead. If filename is None, the generated CSV output is returned instead of written to a file. fields: list or dict List of field names to export, or dictionary mapping output column names to attribute names of the generators. Examples: fields=['field_name_1', 'field_name_2'] fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'} append: bool If `True`, open the file in 'append' mode to avoid overwriting existing content. Default is `False`, i.e. any existing content will be overwritten. This argument only has an effect if `filename` is given (i.e. if output happens to a file instead of returning a CSV string). header: bool or str or None If `header=False` or `header=None` then no header line will be written. If `header` is a string then this string will be used as the header line. If `header=True` then a header line will be automatically generated from the field names of the custom generator. header_prefix: str If `header=True` then the auto-generated header line will be prefixed with `header_prefix` (otherwise this argument has no effect). For example, set `header_prefix='#'` to make the header line start with '#'. Default: '' sep: str Field separator to use in the output. Default: ',' newline: str Line terminator to use in the output. Default: '\n' Returns ------- The return value depends on the value of `filename`. If `filename` is given, writes the output to the file and returns `None`. If `filename` is `None`, returns a string containing the CSV output. """ assert isinstance(append, bool) if fields is None: raise NotImplementedError("TODO: derive field names automatically from the generator which produced this item list") if isinstance(fields, (list, tuple)): fields = {name: name for name in fields} header_line = _generate_csv_header_line(header=header, header_prefix=header_prefix, header_names=fields.keys(), sep=sep, newline=newline) if filename is not None: # ensure parent directory of output file exits dirname = os.path.dirname(os.path.abspath(filename)) if not os.path.exists(dirname): os.makedirs(dirname) file_or_string = open(filename, 'a' if append else 'w') if (filename is not None) else io.StringIO() retval = None attr_getters = [attrgetter(attr_name) for attr_name in fields.values()] try: file_or_string.write(header_line) for x in self.items: line = sep.join([format(func(x)) for func in attr_getters]) + newline file_or_string.write(line) if filename is None: retval = file_or_string.getvalue() finally: file_or_string.close() return retval
python
def to_csv(self, filename=None, *, fields=None, append=False, header=True, header_prefix='', sep=',', newline='\n'): """ Parameters ---------- filename: str or None The file to which output will be written. By default, any existing content is overwritten. Use `append=True` to open the file in append mode instead. If filename is None, the generated CSV output is returned instead of written to a file. fields: list or dict List of field names to export, or dictionary mapping output column names to attribute names of the generators. Examples: fields=['field_name_1', 'field_name_2'] fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'} append: bool If `True`, open the file in 'append' mode to avoid overwriting existing content. Default is `False`, i.e. any existing content will be overwritten. This argument only has an effect if `filename` is given (i.e. if output happens to a file instead of returning a CSV string). header: bool or str or None If `header=False` or `header=None` then no header line will be written. If `header` is a string then this string will be used as the header line. If `header=True` then a header line will be automatically generated from the field names of the custom generator. header_prefix: str If `header=True` then the auto-generated header line will be prefixed with `header_prefix` (otherwise this argument has no effect). For example, set `header_prefix='#'` to make the header line start with '#'. Default: '' sep: str Field separator to use in the output. Default: ',' newline: str Line terminator to use in the output. Default: '\n' Returns ------- The return value depends on the value of `filename`. If `filename` is given, writes the output to the file and returns `None`. If `filename` is `None`, returns a string containing the CSV output. """ assert isinstance(append, bool) if fields is None: raise NotImplementedError("TODO: derive field names automatically from the generator which produced this item list") if isinstance(fields, (list, tuple)): fields = {name: name for name in fields} header_line = _generate_csv_header_line(header=header, header_prefix=header_prefix, header_names=fields.keys(), sep=sep, newline=newline) if filename is not None: # ensure parent directory of output file exits dirname = os.path.dirname(os.path.abspath(filename)) if not os.path.exists(dirname): os.makedirs(dirname) file_or_string = open(filename, 'a' if append else 'w') if (filename is not None) else io.StringIO() retval = None attr_getters = [attrgetter(attr_name) for attr_name in fields.values()] try: file_or_string.write(header_line) for x in self.items: line = sep.join([format(func(x)) for func in attr_getters]) + newline file_or_string.write(line) if filename is None: retval = file_or_string.getvalue() finally: file_or_string.close() return retval
['def', 'to_csv', '(', 'self', ',', 'filename', '=', 'None', ',', '*', ',', 'fields', '=', 'None', ',', 'append', '=', 'False', ',', 'header', '=', 'True', ',', 'header_prefix', '=', "''", ',', 'sep', '=', "','", ',', 'newline', '=', "'\\n'", ')', ':', 'assert', 'isinstance', '(', 'append', ',', 'bool', ')', 'if', 'fields', 'is', 'None', ':', 'raise', 'NotImplementedError', '(', '"TODO: derive field names automatically from the generator which produced this item list"', ')', 'if', 'isinstance', '(', 'fields', ',', '(', 'list', ',', 'tuple', ')', ')', ':', 'fields', '=', '{', 'name', ':', 'name', 'for', 'name', 'in', 'fields', '}', 'header_line', '=', '_generate_csv_header_line', '(', 'header', '=', 'header', ',', 'header_prefix', '=', 'header_prefix', ',', 'header_names', '=', 'fields', '.', 'keys', '(', ')', ',', 'sep', '=', 'sep', ',', 'newline', '=', 'newline', ')', 'if', 'filename', 'is', 'not', 'None', ':', '# ensure parent directory of output file exits', 'dirname', '=', 'os', '.', 'path', '.', 'dirname', '(', 'os', '.', 'path', '.', 'abspath', '(', 'filename', ')', ')', 'if', 'not', 'os', '.', 'path', '.', 'exists', '(', 'dirname', ')', ':', 'os', '.', 'makedirs', '(', 'dirname', ')', 'file_or_string', '=', 'open', '(', 'filename', ',', "'a'", 'if', 'append', 'else', "'w'", ')', 'if', '(', 'filename', 'is', 'not', 'None', ')', 'else', 'io', '.', 'StringIO', '(', ')', 'retval', '=', 'None', 'attr_getters', '=', '[', 'attrgetter', '(', 'attr_name', ')', 'for', 'attr_name', 'in', 'fields', '.', 'values', '(', ')', ']', 'try', ':', 'file_or_string', '.', 'write', '(', 'header_line', ')', 'for', 'x', 'in', 'self', '.', 'items', ':', 'line', '=', 'sep', '.', 'join', '(', '[', 'format', '(', 'func', '(', 'x', ')', ')', 'for', 'func', 'in', 'attr_getters', ']', ')', '+', 'newline', 'file_or_string', '.', 'write', '(', 'line', ')', 'if', 'filename', 'is', 'None', ':', 'retval', '=', 'file_or_string', '.', 'getvalue', '(', ')', 'finally', ':', 'file_or_string', '.', 'close', '(', ')', 'return', 'retval']
Parameters ---------- filename: str or None The file to which output will be written. By default, any existing content is overwritten. Use `append=True` to open the file in append mode instead. If filename is None, the generated CSV output is returned instead of written to a file. fields: list or dict List of field names to export, or dictionary mapping output column names to attribute names of the generators. Examples: fields=['field_name_1', 'field_name_2'] fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'} append: bool If `True`, open the file in 'append' mode to avoid overwriting existing content. Default is `False`, i.e. any existing content will be overwritten. This argument only has an effect if `filename` is given (i.e. if output happens to a file instead of returning a CSV string). header: bool or str or None If `header=False` or `header=None` then no header line will be written. If `header` is a string then this string will be used as the header line. If `header=True` then a header line will be automatically generated from the field names of the custom generator. header_prefix: str If `header=True` then the auto-generated header line will be prefixed with `header_prefix` (otherwise this argument has no effect). For example, set `header_prefix='#'` to make the header line start with '#'. Default: '' sep: str Field separator to use in the output. Default: ',' newline: str Line terminator to use in the output. Default: '\n' Returns ------- The return value depends on the value of `filename`. If `filename` is given, writes the output to the file and returns `None`. If `filename` is `None`, returns a string containing the CSV output.
['Parameters', '----------', 'filename', ':', 'str', 'or', 'None', 'The', 'file', 'to', 'which', 'output', 'will', 'be', 'written', '.', 'By', 'default', 'any', 'existing', 'content', 'is', 'overwritten', '.', 'Use', 'append', '=', 'True', 'to', 'open', 'the', 'file', 'in', 'append', 'mode', 'instead', '.', 'If', 'filename', 'is', 'None', 'the', 'generated', 'CSV', 'output', 'is', 'returned', 'instead', 'of', 'written', 'to', 'a', 'file', '.', 'fields', ':', 'list', 'or', 'dict', 'List', 'of', 'field', 'names', 'to', 'export', 'or', 'dictionary', 'mapping', 'output', 'column', 'names', 'to', 'attribute', 'names', 'of', 'the', 'generators', '.']
train
https://github.com/maxalbert/tohu/blob/43380162fadec99cdd5c5c3152dd6b7d3a9d39a8/tohu/v4/item_list.py#L132-L206
387
72squared/redpipe
redpipe/keyspaces.py
String.incrby
def incrby(self, name, amount=1): """ increment the value for key by value: int :param name: str the name of the redis key :param amount: int :return: Future() """ with self.pipe as pipe: return pipe.incrby(self.redis_key(name), amount=amount)
python
def incrby(self, name, amount=1): """ increment the value for key by value: int :param name: str the name of the redis key :param amount: int :return: Future() """ with self.pipe as pipe: return pipe.incrby(self.redis_key(name), amount=amount)
['def', 'incrby', '(', 'self', ',', 'name', ',', 'amount', '=', '1', ')', ':', 'with', 'self', '.', 'pipe', 'as', 'pipe', ':', 'return', 'pipe', '.', 'incrby', '(', 'self', '.', 'redis_key', '(', 'name', ')', ',', 'amount', '=', 'amount', ')']
increment the value for key by value: int :param name: str the name of the redis key :param amount: int :return: Future()
['increment', 'the', 'value', 'for', 'key', 'by', 'value', ':', 'int']
train
https://github.com/72squared/redpipe/blob/e6ee518bc9f3e2fee323c8c53d08997799bd9b1b/redpipe/keyspaces.py#L664-L673
388
spulec/moto
moto/dynamodb/models.py
DynamoType.compare
def compare(self, range_comparison, range_objs): """ Compares this type against comparison filters """ range_values = [obj.value for obj in range_objs] comparison_func = get_comparison_func(range_comparison) return comparison_func(self.value, *range_values)
python
def compare(self, range_comparison, range_objs): """ Compares this type against comparison filters """ range_values = [obj.value for obj in range_objs] comparison_func = get_comparison_func(range_comparison) return comparison_func(self.value, *range_values)
['def', 'compare', '(', 'self', ',', 'range_comparison', ',', 'range_objs', ')', ':', 'range_values', '=', '[', 'obj', '.', 'value', 'for', 'obj', 'in', 'range_objs', ']', 'comparison_func', '=', 'get_comparison_func', '(', 'range_comparison', ')', 'return', 'comparison_func', '(', 'self', '.', 'value', ',', '*', 'range_values', ')']
Compares this type against comparison filters
['Compares', 'this', 'type', 'against', 'comparison', 'filters']
train
https://github.com/spulec/moto/blob/4a286c4bc288933bb023396e2784a6fdbb966bc9/moto/dynamodb/models.py#L47-L53
389
androguard/androguard
androguard/core/bytecodes/dvm.py
MapList.show
def show(self): """ Print with a pretty display the MapList object """ bytecode._Print("MAP_LIST SIZE", self.size) for i in self.map_item: if i.item != self: # FIXME this does not work for CodeItems! # as we do not have the method analysis here... i.show()
python
def show(self): """ Print with a pretty display the MapList object """ bytecode._Print("MAP_LIST SIZE", self.size) for i in self.map_item: if i.item != self: # FIXME this does not work for CodeItems! # as we do not have the method analysis here... i.show()
['def', 'show', '(', 'self', ')', ':', 'bytecode', '.', '_Print', '(', '"MAP_LIST SIZE"', ',', 'self', '.', 'size', ')', 'for', 'i', 'in', 'self', '.', 'map_item', ':', 'if', 'i', '.', 'item', '!=', 'self', ':', '# FIXME this does not work for CodeItems!', '# as we do not have the method analysis here...', 'i', '.', 'show', '(', ')']
Print with a pretty display the MapList object
['Print', 'with', 'a', 'pretty', 'display', 'the', 'MapList', 'object']
train
https://github.com/androguard/androguard/blob/984c0d981be2950cf0451e484f7b0d4d53bc4911/androguard/core/bytecodes/dvm.py#L7550-L7559
390
openego/ding0
ding0/grid/mv_grid/mv_connect.py
disconnect_node
def disconnect_node(node, target_obj_result, graph, debug): """ Disconnects `node` from `target_obj` Args ---- node: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) target_obj_result: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes and newly created branches debug: bool If True, information is printed during process """ # backup kind and type of branch branch_kind = graph.adj[node][target_obj_result]['branch'].kind branch_type = graph.adj[node][target_obj_result]['branch'].type branch_ring = graph.adj[node][target_obj_result]['branch'].ring graph.remove_edge(node, target_obj_result) if isinstance(target_obj_result, MVCableDistributorDing0): neighbor_nodes = list(graph.neighbors(target_obj_result)) if len(neighbor_nodes) == 2: node.grid.remove_cable_distributor(target_obj_result) branch_length = calc_geo_dist_vincenty(neighbor_nodes[0], neighbor_nodes[1]) graph.add_edge(neighbor_nodes[0], neighbor_nodes[1], branch=BranchDing0(length=branch_length, kind=branch_kind, type=branch_type, ring=branch_ring)) if debug: logger.debug('disconnect edge {0}-{1}'.format(node, target_obj_result))
python
def disconnect_node(node, target_obj_result, graph, debug): """ Disconnects `node` from `target_obj` Args ---- node: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) target_obj_result: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes and newly created branches debug: bool If True, information is printed during process """ # backup kind and type of branch branch_kind = graph.adj[node][target_obj_result]['branch'].kind branch_type = graph.adj[node][target_obj_result]['branch'].type branch_ring = graph.adj[node][target_obj_result]['branch'].ring graph.remove_edge(node, target_obj_result) if isinstance(target_obj_result, MVCableDistributorDing0): neighbor_nodes = list(graph.neighbors(target_obj_result)) if len(neighbor_nodes) == 2: node.grid.remove_cable_distributor(target_obj_result) branch_length = calc_geo_dist_vincenty(neighbor_nodes[0], neighbor_nodes[1]) graph.add_edge(neighbor_nodes[0], neighbor_nodes[1], branch=BranchDing0(length=branch_length, kind=branch_kind, type=branch_type, ring=branch_ring)) if debug: logger.debug('disconnect edge {0}-{1}'.format(node, target_obj_result))
['def', 'disconnect_node', '(', 'node', ',', 'target_obj_result', ',', 'graph', ',', 'debug', ')', ':', '# backup kind and type of branch', 'branch_kind', '=', 'graph', '.', 'adj', '[', 'node', ']', '[', 'target_obj_result', ']', '[', "'branch'", ']', '.', 'kind', 'branch_type', '=', 'graph', '.', 'adj', '[', 'node', ']', '[', 'target_obj_result', ']', '[', "'branch'", ']', '.', 'type', 'branch_ring', '=', 'graph', '.', 'adj', '[', 'node', ']', '[', 'target_obj_result', ']', '[', "'branch'", ']', '.', 'ring', 'graph', '.', 'remove_edge', '(', 'node', ',', 'target_obj_result', ')', 'if', 'isinstance', '(', 'target_obj_result', ',', 'MVCableDistributorDing0', ')', ':', 'neighbor_nodes', '=', 'list', '(', 'graph', '.', 'neighbors', '(', 'target_obj_result', ')', ')', 'if', 'len', '(', 'neighbor_nodes', ')', '==', '2', ':', 'node', '.', 'grid', '.', 'remove_cable_distributor', '(', 'target_obj_result', ')', 'branch_length', '=', 'calc_geo_dist_vincenty', '(', 'neighbor_nodes', '[', '0', ']', ',', 'neighbor_nodes', '[', '1', ']', ')', 'graph', '.', 'add_edge', '(', 'neighbor_nodes', '[', '0', ']', ',', 'neighbor_nodes', '[', '1', ']', ',', 'branch', '=', 'BranchDing0', '(', 'length', '=', 'branch_length', ',', 'kind', '=', 'branch_kind', ',', 'type', '=', 'branch_type', ',', 'ring', '=', 'branch_ring', ')', ')', 'if', 'debug', ':', 'logger', '.', 'debug', '(', "'disconnect edge {0}-{1}'", '.', 'format', '(', 'node', ',', 'target_obj_result', ')', ')']
Disconnects `node` from `target_obj` Args ---- node: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) target_obj_result: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes and newly created branches debug: bool If True, information is printed during process
['Disconnects', 'node', 'from', 'target_obj']
train
https://github.com/openego/ding0/blob/e2d6528f96255e4bb22ba15514a4f1883564ed5d/ding0/grid/mv_grid/mv_connect.py#L543-L580
391
jameslyons/python_speech_features
python_speech_features/base.py
delta
def delta(feat, N): """Compute delta features from a feature vector sequence. :param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector. :param N: For each frame, calculate delta features based on preceding and following N frames :returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector. """ if N < 1: raise ValueError('N must be an integer >= 1') NUMFRAMES = len(feat) denominator = 2 * sum([i**2 for i in range(1, N+1)]) delta_feat = numpy.empty_like(feat) padded = numpy.pad(feat, ((N, N), (0, 0)), mode='edge') # padded version of feat for t in range(NUMFRAMES): delta_feat[t] = numpy.dot(numpy.arange(-N, N+1), padded[t : t+2*N+1]) / denominator # [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1] return delta_feat
python
def delta(feat, N): """Compute delta features from a feature vector sequence. :param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector. :param N: For each frame, calculate delta features based on preceding and following N frames :returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector. """ if N < 1: raise ValueError('N must be an integer >= 1') NUMFRAMES = len(feat) denominator = 2 * sum([i**2 for i in range(1, N+1)]) delta_feat = numpy.empty_like(feat) padded = numpy.pad(feat, ((N, N), (0, 0)), mode='edge') # padded version of feat for t in range(NUMFRAMES): delta_feat[t] = numpy.dot(numpy.arange(-N, N+1), padded[t : t+2*N+1]) / denominator # [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1] return delta_feat
['def', 'delta', '(', 'feat', ',', 'N', ')', ':', 'if', 'N', '<', '1', ':', 'raise', 'ValueError', '(', "'N must be an integer >= 1'", ')', 'NUMFRAMES', '=', 'len', '(', 'feat', ')', 'denominator', '=', '2', '*', 'sum', '(', '[', 'i', '**', '2', 'for', 'i', 'in', 'range', '(', '1', ',', 'N', '+', '1', ')', ']', ')', 'delta_feat', '=', 'numpy', '.', 'empty_like', '(', 'feat', ')', 'padded', '=', 'numpy', '.', 'pad', '(', 'feat', ',', '(', '(', 'N', ',', 'N', ')', ',', '(', '0', ',', '0', ')', ')', ',', 'mode', '=', "'edge'", ')', '# padded version of feat', 'for', 't', 'in', 'range', '(', 'NUMFRAMES', ')', ':', 'delta_feat', '[', 't', ']', '=', 'numpy', '.', 'dot', '(', 'numpy', '.', 'arange', '(', '-', 'N', ',', 'N', '+', '1', ')', ',', 'padded', '[', 't', ':', 't', '+', '2', '*', 'N', '+', '1', ']', ')', '/', 'denominator', '# [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1]', 'return', 'delta_feat']
Compute delta features from a feature vector sequence. :param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector. :param N: For each frame, calculate delta features based on preceding and following N frames :returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector.
['Compute', 'delta', 'features', 'from', 'a', 'feature', 'vector', 'sequence', '.']
train
https://github.com/jameslyons/python_speech_features/blob/40c590269b57c64a8c1f1ddaaff2162008d1850c/python_speech_features/base.py#L195-L210
392
richardkiss/pycoin
pycoin/key/HierarchicalKey.py
HierarchicalKey.subkeys
def subkeys(self, path): """ A generalized form that can return multiple subkeys. """ for _ in subpaths_for_path_range(path, hardening_chars="'pH"): yield self.subkey_for_path(_)
python
def subkeys(self, path): """ A generalized form that can return multiple subkeys. """ for _ in subpaths_for_path_range(path, hardening_chars="'pH"): yield self.subkey_for_path(_)
['def', 'subkeys', '(', 'self', ',', 'path', ')', ':', 'for', '_', 'in', 'subpaths_for_path_range', '(', 'path', ',', 'hardening_chars', '=', '"\'pH"', ')', ':', 'yield', 'self', '.', 'subkey_for_path', '(', '_', ')']
A generalized form that can return multiple subkeys.
['A', 'generalized', 'form', 'that', 'can', 'return', 'multiple', 'subkeys', '.']
train
https://github.com/richardkiss/pycoin/blob/1e8d0d9fe20ce0347b97847bb529cd1bd84c7442/pycoin/key/HierarchicalKey.py#L6-L11
393
bitlabstudio/cmsplugin-image-gallery
image_gallery/templatetags/image_gallery_tags.py
render_pictures
def render_pictures(context, selection='recent', amount=3): """Template tag to render a list of pictures.""" pictures = Image.objects.filter( folder__id__in=Gallery.objects.filter(is_published=True).values_list( 'folder__pk', flat=True)) if selection == 'recent': context.update({ 'pictures': pictures.order_by('-uploaded_at')[:amount] }) elif selection == 'random': context.update({ 'pictures': pictures.order_by('?')[:amount] }) else: return None return context
python
def render_pictures(context, selection='recent', amount=3): """Template tag to render a list of pictures.""" pictures = Image.objects.filter( folder__id__in=Gallery.objects.filter(is_published=True).values_list( 'folder__pk', flat=True)) if selection == 'recent': context.update({ 'pictures': pictures.order_by('-uploaded_at')[:amount] }) elif selection == 'random': context.update({ 'pictures': pictures.order_by('?')[:amount] }) else: return None return context
['def', 'render_pictures', '(', 'context', ',', 'selection', '=', "'recent'", ',', 'amount', '=', '3', ')', ':', 'pictures', '=', 'Image', '.', 'objects', '.', 'filter', '(', 'folder__id__in', '=', 'Gallery', '.', 'objects', '.', 'filter', '(', 'is_published', '=', 'True', ')', '.', 'values_list', '(', "'folder__pk'", ',', 'flat', '=', 'True', ')', ')', 'if', 'selection', '==', "'recent'", ':', 'context', '.', 'update', '(', '{', "'pictures'", ':', 'pictures', '.', 'order_by', '(', "'-uploaded_at'", ')', '[', ':', 'amount', ']', '}', ')', 'elif', 'selection', '==', "'random'", ':', 'context', '.', 'update', '(', '{', "'pictures'", ':', 'pictures', '.', 'order_by', '(', "'?'", ')', '[', ':', 'amount', ']', '}', ')', 'else', ':', 'return', 'None', 'return', 'context']
Template tag to render a list of pictures.
['Template', 'tag', 'to', 'render', 'a', 'list', 'of', 'pictures', '.']
train
https://github.com/bitlabstudio/cmsplugin-image-gallery/blob/f16a2d5d0a6fde469bc07436ff0cd84af2c78e5c/image_gallery/templatetags/image_gallery_tags.py#L12-L27
394
roboogle/gtkmvc3
gtkmvco/gtkmvc3/support/utils.py
__nt_relpath
def __nt_relpath(path, start=os.curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_list = os.path.abspath(start).split(os.sep) path_list = os.path.abspath(path).split(os.sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = os.path.splitunc(path) unc_start, rest = os.path.splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" \ % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" \ % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 pass rel_list = [os.pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return os.curdir return os.path.join(*rel_list)
python
def __nt_relpath(path, start=os.curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_list = os.path.abspath(start).split(os.sep) path_list = os.path.abspath(path).split(os.sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = os.path.splitunc(path) unc_start, rest = os.path.splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" \ % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" \ % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 pass rel_list = [os.pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return os.curdir return os.path.join(*rel_list)
['def', '__nt_relpath', '(', 'path', ',', 'start', '=', 'os', '.', 'curdir', ')', ':', 'if', 'not', 'path', ':', 'raise', 'ValueError', '(', '"no path specified"', ')', 'start_list', '=', 'os', '.', 'path', '.', 'abspath', '(', 'start', ')', '.', 'split', '(', 'os', '.', 'sep', ')', 'path_list', '=', 'os', '.', 'path', '.', 'abspath', '(', 'path', ')', '.', 'split', '(', 'os', '.', 'sep', ')', 'if', 'start_list', '[', '0', ']', '.', 'lower', '(', ')', '!=', 'path_list', '[', '0', ']', '.', 'lower', '(', ')', ':', 'unc_path', ',', 'rest', '=', 'os', '.', 'path', '.', 'splitunc', '(', 'path', ')', 'unc_start', ',', 'rest', '=', 'os', '.', 'path', '.', 'splitunc', '(', 'start', ')', 'if', 'bool', '(', 'unc_path', ')', '^', 'bool', '(', 'unc_start', ')', ':', 'raise', 'ValueError', '(', '"Cannot mix UNC and non-UNC paths (%s and %s)"', '%', '(', 'path', ',', 'start', ')', ')', 'else', ':', 'raise', 'ValueError', '(', '"path is on drive %s, start on drive %s"', '%', '(', 'path_list', '[', '0', ']', ',', 'start_list', '[', '0', ']', ')', ')', '# Work out how much of the filepath is shared by start and path.', 'for', 'i', 'in', 'range', '(', 'min', '(', 'len', '(', 'start_list', ')', ',', 'len', '(', 'path_list', ')', ')', ')', ':', 'if', 'start_list', '[', 'i', ']', '.', 'lower', '(', ')', '!=', 'path_list', '[', 'i', ']', '.', 'lower', '(', ')', ':', 'break', 'else', ':', 'i', '+=', '1', 'pass', 'rel_list', '=', '[', 'os', '.', 'pardir', ']', '*', '(', 'len', '(', 'start_list', ')', '-', 'i', ')', '+', 'path_list', '[', 'i', ':', ']', 'if', 'not', 'rel_list', ':', 'return', 'os', '.', 'curdir', 'return', 'os', '.', 'path', '.', 'join', '(', '*', 'rel_list', ')']
Return a relative version of a path
['Return', 'a', 'relative', 'version', 'of', 'a', 'path']
train
https://github.com/roboogle/gtkmvc3/blob/63405fd8d2056be26af49103b13a8d5e57fe4dff/gtkmvco/gtkmvc3/support/utils.py#L112-L136
395
redodo/formats
formats/banks.py
FormatBank.convert
def convert(self, type_from, type_to, data): """Parsers data from with one format and composes with another. :param type_from: The unique name of the format to parse with :param type_to: The unique name of the format to compose with :param data: The text to convert """ try: return self.compose(type_to, self.parse(type_from, data)) except Exception as e: raise ValueError( "Couldn't convert '{from_}' to '{to}'. Possibly " "because the parser of '{from_}' generates a " "data structure incompatible with the composer " "of '{to}'. This is the original error: \n\n" "{error}: {message}".format(from_=type_from, to=type_to, error=e.__class__.__name__, message=e.message))
python
def convert(self, type_from, type_to, data): """Parsers data from with one format and composes with another. :param type_from: The unique name of the format to parse with :param type_to: The unique name of the format to compose with :param data: The text to convert """ try: return self.compose(type_to, self.parse(type_from, data)) except Exception as e: raise ValueError( "Couldn't convert '{from_}' to '{to}'. Possibly " "because the parser of '{from_}' generates a " "data structure incompatible with the composer " "of '{to}'. This is the original error: \n\n" "{error}: {message}".format(from_=type_from, to=type_to, error=e.__class__.__name__, message=e.message))
['def', 'convert', '(', 'self', ',', 'type_from', ',', 'type_to', ',', 'data', ')', ':', 'try', ':', 'return', 'self', '.', 'compose', '(', 'type_to', ',', 'self', '.', 'parse', '(', 'type_from', ',', 'data', ')', ')', 'except', 'Exception', 'as', 'e', ':', 'raise', 'ValueError', '(', '"Couldn\'t convert \'{from_}\' to \'{to}\'. Possibly "', '"because the parser of \'{from_}\' generates a "', '"data structure incompatible with the composer "', '"of \'{to}\'. This is the original error: \\n\\n"', '"{error}: {message}"', '.', 'format', '(', 'from_', '=', 'type_from', ',', 'to', '=', 'type_to', ',', 'error', '=', 'e', '.', '__class__', '.', '__name__', ',', 'message', '=', 'e', '.', 'message', ')', ')']
Parsers data from with one format and composes with another. :param type_from: The unique name of the format to parse with :param type_to: The unique name of the format to compose with :param data: The text to convert
['Parsers', 'data', 'from', 'with', 'one', 'format', 'and', 'composes', 'with', 'another', '.']
train
https://github.com/redodo/formats/blob/5bc7a79a2c93ef895534edbbf83f1efe2f62e081/formats/banks.py#L122-L139
396
kensho-technologies/graphql-compiler
graphql_compiler/compiler/expressions.py
BinaryComposition.to_match
def to_match(self): """Return a unicode object with the MATCH representation of this BinaryComposition.""" self.validate() # The MATCH versions of some operators require an inverted order of arguments. # pylint: disable=unused-variable regular_operator_format = '(%(left)s %(operator)s %(right)s)' inverted_operator_format = '(%(right)s %(operator)s %(left)s)' # noqa intersects_operator_format = '(%(operator)s(%(left)s, %(right)s).asList().size() > 0)' # pylint: enable=unused-variable # Null literals use 'is/is not' as (in)equality operators, while other values use '=/<>'. if any((isinstance(self.left, Literal) and self.left.value is None, isinstance(self.right, Literal) and self.right.value is None)): translation_table = { u'=': (u'IS', regular_operator_format), u'!=': (u'IS NOT', regular_operator_format), } else: translation_table = { u'=': (u'=', regular_operator_format), u'!=': (u'<>', regular_operator_format), u'>=': (u'>=', regular_operator_format), u'<=': (u'<=', regular_operator_format), u'>': (u'>', regular_operator_format), u'<': (u'<', regular_operator_format), u'+': (u'+', regular_operator_format), u'||': (u'OR', regular_operator_format), u'&&': (u'AND', regular_operator_format), u'contains': (u'CONTAINS', regular_operator_format), u'intersects': (u'intersect', intersects_operator_format), u'has_substring': (None, None), # must be lowered into compatible form using LIKE # MATCH-specific operators u'LIKE': (u'LIKE', regular_operator_format), u'INSTANCEOF': (u'INSTANCEOF', regular_operator_format), } match_operator, format_spec = translation_table.get(self.operator, (None, None)) if not match_operator: raise AssertionError(u'Unrecognized operator used: ' u'{} {}'.format(self.operator, self)) return format_spec % dict(operator=match_operator, left=self.left.to_match(), right=self.right.to_match())
python
def to_match(self): """Return a unicode object with the MATCH representation of this BinaryComposition.""" self.validate() # The MATCH versions of some operators require an inverted order of arguments. # pylint: disable=unused-variable regular_operator_format = '(%(left)s %(operator)s %(right)s)' inverted_operator_format = '(%(right)s %(operator)s %(left)s)' # noqa intersects_operator_format = '(%(operator)s(%(left)s, %(right)s).asList().size() > 0)' # pylint: enable=unused-variable # Null literals use 'is/is not' as (in)equality operators, while other values use '=/<>'. if any((isinstance(self.left, Literal) and self.left.value is None, isinstance(self.right, Literal) and self.right.value is None)): translation_table = { u'=': (u'IS', regular_operator_format), u'!=': (u'IS NOT', regular_operator_format), } else: translation_table = { u'=': (u'=', regular_operator_format), u'!=': (u'<>', regular_operator_format), u'>=': (u'>=', regular_operator_format), u'<=': (u'<=', regular_operator_format), u'>': (u'>', regular_operator_format), u'<': (u'<', regular_operator_format), u'+': (u'+', regular_operator_format), u'||': (u'OR', regular_operator_format), u'&&': (u'AND', regular_operator_format), u'contains': (u'CONTAINS', regular_operator_format), u'intersects': (u'intersect', intersects_operator_format), u'has_substring': (None, None), # must be lowered into compatible form using LIKE # MATCH-specific operators u'LIKE': (u'LIKE', regular_operator_format), u'INSTANCEOF': (u'INSTANCEOF', regular_operator_format), } match_operator, format_spec = translation_table.get(self.operator, (None, None)) if not match_operator: raise AssertionError(u'Unrecognized operator used: ' u'{} {}'.format(self.operator, self)) return format_spec % dict(operator=match_operator, left=self.left.to_match(), right=self.right.to_match())
['def', 'to_match', '(', 'self', ')', ':', 'self', '.', 'validate', '(', ')', '# The MATCH versions of some operators require an inverted order of arguments.', '# pylint: disable=unused-variable', 'regular_operator_format', '=', "'(%(left)s %(operator)s %(right)s)'", 'inverted_operator_format', '=', "'(%(right)s %(operator)s %(left)s)'", '# noqa', 'intersects_operator_format', '=', "'(%(operator)s(%(left)s, %(right)s).asList().size() > 0)'", '# pylint: enable=unused-variable', "# Null literals use 'is/is not' as (in)equality operators, while other values use '=/<>'.", 'if', 'any', '(', '(', 'isinstance', '(', 'self', '.', 'left', ',', 'Literal', ')', 'and', 'self', '.', 'left', '.', 'value', 'is', 'None', ',', 'isinstance', '(', 'self', '.', 'right', ',', 'Literal', ')', 'and', 'self', '.', 'right', '.', 'value', 'is', 'None', ')', ')', ':', 'translation_table', '=', '{', "u'='", ':', '(', "u'IS'", ',', 'regular_operator_format', ')', ',', "u'!='", ':', '(', "u'IS NOT'", ',', 'regular_operator_format', ')', ',', '}', 'else', ':', 'translation_table', '=', '{', "u'='", ':', '(', "u'='", ',', 'regular_operator_format', ')', ',', "u'!='", ':', '(', "u'<>'", ',', 'regular_operator_format', ')', ',', "u'>='", ':', '(', "u'>='", ',', 'regular_operator_format', ')', ',', "u'<='", ':', '(', "u'<='", ',', 'regular_operator_format', ')', ',', "u'>'", ':', '(', "u'>'", ',', 'regular_operator_format', ')', ',', "u'<'", ':', '(', "u'<'", ',', 'regular_operator_format', ')', ',', "u'+'", ':', '(', "u'+'", ',', 'regular_operator_format', ')', ',', "u'||'", ':', '(', "u'OR'", ',', 'regular_operator_format', ')', ',', "u'&&'", ':', '(', "u'AND'", ',', 'regular_operator_format', ')', ',', "u'contains'", ':', '(', "u'CONTAINS'", ',', 'regular_operator_format', ')', ',', "u'intersects'", ':', '(', "u'intersect'", ',', 'intersects_operator_format', ')', ',', "u'has_substring'", ':', '(', 'None', ',', 'None', ')', ',', '# must be lowered into compatible form using LIKE', '# MATCH-specific operators', "u'LIKE'", ':', '(', "u'LIKE'", ',', 'regular_operator_format', ')', ',', "u'INSTANCEOF'", ':', '(', "u'INSTANCEOF'", ',', 'regular_operator_format', ')', ',', '}', 'match_operator', ',', 'format_spec', '=', 'translation_table', '.', 'get', '(', 'self', '.', 'operator', ',', '(', 'None', ',', 'None', ')', ')', 'if', 'not', 'match_operator', ':', 'raise', 'AssertionError', '(', "u'Unrecognized operator used: '", "u'{} {}'", '.', 'format', '(', 'self', '.', 'operator', ',', 'self', ')', ')', 'return', 'format_spec', '%', 'dict', '(', 'operator', '=', 'match_operator', ',', 'left', '=', 'self', '.', 'left', '.', 'to_match', '(', ')', ',', 'right', '=', 'self', '.', 'right', '.', 'to_match', '(', ')', ')']
Return a unicode object with the MATCH representation of this BinaryComposition.
['Return', 'a', 'unicode', 'object', 'with', 'the', 'MATCH', 'representation', 'of', 'this', 'BinaryComposition', '.']
train
https://github.com/kensho-technologies/graphql-compiler/blob/f6079c6d10f64932f6b3af309b79bcea2123ca8f/graphql_compiler/compiler/expressions.py#L791-L836
397
coursera/courseraoauth2client
courseraoauth2client/commands/version.py
parser
def parser(subparsers): "Build an argparse argument parser to parse the command line." # create the parser for the version subcommand. parser_version = subparsers.add_parser( 'version', help="Output the version of %(prog)s to the console.") parser_version.set_defaults(func=command_version) return parser_version
python
def parser(subparsers): "Build an argparse argument parser to parse the command line." # create the parser for the version subcommand. parser_version = subparsers.add_parser( 'version', help="Output the version of %(prog)s to the console.") parser_version.set_defaults(func=command_version) return parser_version
['def', 'parser', '(', 'subparsers', ')', ':', '# create the parser for the version subcommand.', 'parser_version', '=', 'subparsers', '.', 'add_parser', '(', "'version'", ',', 'help', '=', '"Output the version of %(prog)s to the console."', ')', 'parser_version', '.', 'set_defaults', '(', 'func', '=', 'command_version', ')', 'return', 'parser_version']
Build an argparse argument parser to parse the command line.
['Build', 'an', 'argparse', 'argument', 'parser', 'to', 'parse', 'the', 'command', 'line', '.']
train
https://github.com/coursera/courseraoauth2client/blob/4edd991defe26bfc768ab28a30368cace40baf44/courseraoauth2client/commands/version.py#L53-L62
398
orb-framework/orb
orb/core/database.py
Database.addNamespace
def addNamespace(self, namespace, **context): """ Creates a new namespace within this database. :param namespace: <str> """ self.connection().addNamespace(namespace, orb.Context(**context))
python
def addNamespace(self, namespace, **context): """ Creates a new namespace within this database. :param namespace: <str> """ self.connection().addNamespace(namespace, orb.Context(**context))
['def', 'addNamespace', '(', 'self', ',', 'namespace', ',', '*', '*', 'context', ')', ':', 'self', '.', 'connection', '(', ')', '.', 'addNamespace', '(', 'namespace', ',', 'orb', '.', 'Context', '(', '*', '*', 'context', ')', ')']
Creates a new namespace within this database. :param namespace: <str>
['Creates', 'a', 'new', 'namespace', 'within', 'this', 'database', '.']
train
https://github.com/orb-framework/orb/blob/575be2689cb269e65a0a2678232ff940acc19e5a/orb/core/database.py#L77-L83
399
mabuchilab/QNET
src/qnet/printing/asciiprinter.py
QnetAsciiPrinter._render_op
def _render_op( self, identifier, hs=None, dagger=False, args=None, superop=False): """Render an operator Args: identifier (str or SymbolicLabelBase): The identifier (name/symbol) of the operator. May include a subscript, denoted by '_'. hs (qnet.algebra.hilbert_space_algebra.HilbertSpace): The Hilbert space in which the operator is defined dagger (bool): Whether the operator should be daggered args (list): A list of expressions that will be rendered with :meth:`doprint`, joined with commas, enclosed in parenthesis superop (bool): Whether the operator is a super-operator """ hs_label = None if hs is not None and self._settings['show_hs_label']: hs_label = self._render_hs_label(hs) name, total_subscript, total_superscript, args_str \ = self._split_op(identifier, hs_label, dagger, args) res = name if len(total_subscript) > 0: res += "_" + total_subscript if len(total_superscript) > 0: res += "^" + total_superscript if len(args_str) > 0: res += args_str return res
python
def _render_op( self, identifier, hs=None, dagger=False, args=None, superop=False): """Render an operator Args: identifier (str or SymbolicLabelBase): The identifier (name/symbol) of the operator. May include a subscript, denoted by '_'. hs (qnet.algebra.hilbert_space_algebra.HilbertSpace): The Hilbert space in which the operator is defined dagger (bool): Whether the operator should be daggered args (list): A list of expressions that will be rendered with :meth:`doprint`, joined with commas, enclosed in parenthesis superop (bool): Whether the operator is a super-operator """ hs_label = None if hs is not None and self._settings['show_hs_label']: hs_label = self._render_hs_label(hs) name, total_subscript, total_superscript, args_str \ = self._split_op(identifier, hs_label, dagger, args) res = name if len(total_subscript) > 0: res += "_" + total_subscript if len(total_superscript) > 0: res += "^" + total_superscript if len(args_str) > 0: res += args_str return res
['def', '_render_op', '(', 'self', ',', 'identifier', ',', 'hs', '=', 'None', ',', 'dagger', '=', 'False', ',', 'args', '=', 'None', ',', 'superop', '=', 'False', ')', ':', 'hs_label', '=', 'None', 'if', 'hs', 'is', 'not', 'None', 'and', 'self', '.', '_settings', '[', "'show_hs_label'", ']', ':', 'hs_label', '=', 'self', '.', '_render_hs_label', '(', 'hs', ')', 'name', ',', 'total_subscript', ',', 'total_superscript', ',', 'args_str', '=', 'self', '.', '_split_op', '(', 'identifier', ',', 'hs_label', ',', 'dagger', ',', 'args', ')', 'res', '=', 'name', 'if', 'len', '(', 'total_subscript', ')', '>', '0', ':', 'res', '+=', '"_"', '+', 'total_subscript', 'if', 'len', '(', 'total_superscript', ')', '>', '0', ':', 'res', '+=', '"^"', '+', 'total_superscript', 'if', 'len', '(', 'args_str', ')', '>', '0', ':', 'res', '+=', 'args_str', 'return', 'res']
Render an operator Args: identifier (str or SymbolicLabelBase): The identifier (name/symbol) of the operator. May include a subscript, denoted by '_'. hs (qnet.algebra.hilbert_space_algebra.HilbertSpace): The Hilbert space in which the operator is defined dagger (bool): Whether the operator should be daggered args (list): A list of expressions that will be rendered with :meth:`doprint`, joined with commas, enclosed in parenthesis superop (bool): Whether the operator is a super-operator
['Render', 'an', 'operator']
train
https://github.com/mabuchilab/QNET/blob/cc20d26dad78691d34c67173e5cd67dcac94208a/src/qnet/printing/asciiprinter.py#L152-L178