Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataset class for Food-101 dataset.""" | |
import json | |
from pathlib import Path | |
import datasets | |
from datasets.tasks import ImageClassification | |
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" | |
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/" | |
_DESCRIPTION = ( | |
"This dataset consists of 101 food categories, with 101'000 images. For " | |
"each class, 250 manually reviewed test images are provided as well as 750" | |
" training images. On purpose, the training images were not cleaned, and " | |
"thus still contain some amount of noise. This comes mostly in the form of" | |
" intense colors and sometimes wrong labels. All images were rescaled to " | |
"have a maximum side length of 512 pixels." | |
) | |
_CITATION = """\ | |
@inproceedings{bossard14, | |
title = {Food-101 -- Mining Discriminative Components with Random Forests}, | |
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc}, | |
booktitle = {European Conference on Computer Vision}, | |
year = {2014} | |
} | |
""" | |
_NAMES = [ | |
"apple_pie", | |
"baby_back_ribs", | |
"baklava", | |
"beef_carpaccio", | |
"beef_tartare", | |
"beet_salad", | |
"beignets", | |
"bibimbap", | |
"bread_pudding", | |
"breakfast_burrito", | |
"bruschetta", | |
"caesar_salad", | |
"cannoli", | |
"caprese_salad", | |
"carrot_cake", | |
"ceviche", | |
"cheesecake", | |
"cheese_plate", | |
"chicken_curry", | |
"chicken_quesadilla", | |
"chicken_wings", | |
"chocolate_cake", | |
"chocolate_mousse", | |
"churros", | |
"clam_chowder", | |
"club_sandwich", | |
"crab_cakes", | |
"creme_brulee", | |
"croque_madame", | |
"cup_cakes", | |
"deviled_eggs", | |
"donuts", | |
"dumplings", | |
"edamame", | |
"eggs_benedict", | |
"escargots", | |
"falafel", | |
"filet_mignon", | |
"fish_and_chips", | |
"foie_gras", | |
"french_fries", | |
"french_onion_soup", | |
"french_toast", | |
"fried_calamari", | |
"fried_rice", | |
"frozen_yogurt", | |
"garlic_bread", | |
"gnocchi", | |
"greek_salad", | |
"grilled_cheese_sandwich", | |
"grilled_salmon", | |
"guacamole", | |
"gyoza", | |
"hamburger", | |
"hot_and_sour_soup", | |
"hot_dog", | |
"huevos_rancheros", | |
"hummus", | |
"ice_cream", | |
"lasagna", | |
"lobster_bisque", | |
"lobster_roll_sandwich", | |
"macaroni_and_cheese", | |
"macarons", | |
"miso_soup", | |
"mussels", | |
"nachos", | |
"omelette", | |
"onion_rings", | |
"oysters", | |
"pad_thai", | |
"paella", | |
"pancakes", | |
"panna_cotta", | |
"peking_duck", | |
"pho", | |
"pizza", | |
"pork_chop", | |
"poutine", | |
"prime_rib", | |
"pulled_pork_sandwich", | |
"ramen", | |
"ravioli", | |
"red_velvet_cake", | |
"risotto", | |
"samosa", | |
"sashimi", | |
"scallops", | |
"seaweed_salad", | |
"shrimp_and_grits", | |
"spaghetti_bolognese", | |
"spaghetti_carbonara", | |
"spring_rolls", | |
"steak", | |
"strawberry_shortcake", | |
"sushi", | |
"tacos", | |
"takoyaki", | |
"tiramisu", | |
"tuna_tartare", | |
"waffles", | |
] | |
class Food101(datasets.GeneratorBasedBuilder): | |
"""Food-101 Images dataset.""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=_NAMES), | |
} | |
), | |
supervised_keys=("image", "label"), | |
homepage=_HOMEPAGE, | |
task_templates=[ImageClassification(image_file_path_column="image", label_column="label", labels=_NAMES)], | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
dl_path = Path(dl_manager.download_and_extract(_BASE_URL)) | |
meta_path = dl_path / "food-101" / "meta" | |
image_dir_path = dl_path / "food-101" / "images" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"json_file_path": meta_path / "train.json", "image_dir_path": image_dir_path}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"json_file_path": meta_path / "test.json", "image_dir_path": image_dir_path}, | |
), | |
] | |
def _generate_examples(self, json_file_path, image_dir_path): | |
"""Generate images and labels for splits.""" | |
data = json.loads(json_file_path.read_text()) | |
for label, images in data.items(): | |
for image_name in images: | |
image = image_dir_path / f"{image_name}.jpg" | |
features = {"image": str(image), "label": label} | |
yield image_name, features | |