File size: 5,297 Bytes
57309de d37e844 57309de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language: []
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Urban100
size_categories:
- unknown
source_datasets:
- original
task_categories:
- other
task_ids:
- other-other-image-super-resolution
---
# Dataset Card for Urban100
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage**: https://github.com/jbhuang0604/SelfExSR
- **Repository**: https://huggingface.co/datasets/eugenesiow/Urban100
- **Paper**: https://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html
- **Leaderboard**: https://github.com/eugenesiow/super-image#scale-x2
### Dataset Summary
The Urban100 dataset contains 100 images of urban scenes. It commonly used as a test set to evaluate the performance of super-resolution models. It was first published by [Huang et al. (2015)](https://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html) in the paper "Single Image Super-Resolution From Transformed Self-Exemplars".
Install with `pip`:
```bash
pip install datasets super-image
```
Evaluate a model with the [`super-image`](https://github.com/eugenesiow/super-image) library:
```python
from datasets import load_dataset
from super_image import EdsrModel
from super_image.data import EvalDataset, EvalMetrics
dataset = load_dataset('eugenesiow/Urban100', 'bicubic_x2', split='validation')
eval_dataset = EvalDataset(dataset)
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
EvalMetrics().evaluate(model, eval_dataset)
```
### Supported Tasks and Leaderboards
The dataset is commonly used for evaluation of the `image-super-resolution` task.
Unofficial [`super-image`](https://github.com/eugenesiow/super-image) leaderboard for:
- [Scale 2](https://github.com/eugenesiow/super-image#scale-x2)
- [Scale 3](https://github.com/eugenesiow/super-image#scale-x3)
- [Scale 4](https://github.com/eugenesiow/super-image#scale-x4)
- [Scale 8](https://github.com/eugenesiow/super-image#scale-x8)
### Languages
Not applicable.
## Dataset Structure
### Data Instances
An example of `validation` for `bicubic_x2` looks as follows.
```
{
"hr": "/.cache/huggingface/datasets/downloads/extracted/Urban100_HR/img_001.png",
"lr": "/.cache/huggingface/datasets/downloads/extracted/Urban100_LR_x2/img_001.png"
}
```
### Data Fields
The data fields are the same among all splits.
- `hr`: a `string` to the path of the High Resolution (HR) `.png` image.
- `lr`: a `string` to the path of the Low Resolution (LR) `.png` image.
### Data Splits
| name |validation|
|-------|---:|
|bicubic_x2|100|
|bicubic_x3|100|
|bicubic_x4|100|
## Dataset Creation
### Curation Rationale
The authors have created Urban100 containing 100 HR images with a variety of real-world structures.
### Source Data
#### Initial Data Collection and Normalization
The authors constructed this dataset using images from Flickr (under CC license) using keywords such as urban, city, architecture, and structure.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
No annotations.
#### Who are the annotators?
No annotators.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
- **Original Authors**: [Huang et al. (2015)](https://github.com/jbhuang0604/SelfExSR)
### Licensing Information
The dataset provided uses images from Flikr under the CC (CC-BY-4.0) license.
### Citation Information
```bibtex
@InProceedings{Huang_2015_CVPR,
author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra},
title = {Single Image Super-Resolution From Transformed Self-Exemplars},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}
```
### Contributions
Thanks to [@eugenesiow](https://github.com/eugenesiow) for adding this dataset.
|