Update files from the datasets library (from 1.6.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.6.0
- README.md +20 -1
- silicone.py +7 -9
README.md
CHANGED
@@ -10,7 +10,26 @@ licenses:
|
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
size_categories:
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
source_datasets:
|
15 |
- original
|
16 |
task_categories:
|
|
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
size_categories:
|
13 |
+
dyda_da:
|
14 |
+
- 100K<n<1M
|
15 |
+
dyda_e:
|
16 |
+
- 100K<n<1M
|
17 |
+
iemocap:
|
18 |
+
- 10K<n<100K
|
19 |
+
maptask:
|
20 |
+
- 10K<n<100K
|
21 |
+
meld_e:
|
22 |
+
- 10K<n<100K
|
23 |
+
meld_s:
|
24 |
+
- 10K<n<100K
|
25 |
+
mrda:
|
26 |
+
- 100K<n<1M
|
27 |
+
oasis:
|
28 |
+
- 10K<n<100K
|
29 |
+
sem:
|
30 |
+
- 1K<n<10K
|
31 |
+
swda:
|
32 |
+
- 100K<n<1M
|
33 |
source_datasets:
|
34 |
- original
|
35 |
task_categories:
|
silicone.py
CHANGED
@@ -16,12 +16,10 @@
|
|
16 |
# Lint as: python3
|
17 |
"""The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
|
18 |
|
19 |
-
from __future__ import absolute_import, division, print_function
|
20 |
|
21 |
import textwrap
|
22 |
|
23 |
import pandas as pd
|
24 |
-
import six
|
25 |
|
26 |
import datasets
|
27 |
|
@@ -256,7 +254,7 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
256 |
"Utterance": "Utterance",
|
257 |
"Emotion": "Emotion",
|
258 |
},
|
259 |
-
label_classes=list(
|
260 |
label_column="Emotion",
|
261 |
data_url={
|
262 |
"train": _URL + "/iemocap/train.csv",
|
@@ -403,7 +401,7 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
403 |
"Dialogue_ID": "Dialogue_ID",
|
404 |
"Utterance": "Utterance",
|
405 |
},
|
406 |
-
label_classes=list(
|
407 |
label_column="Dialogue_Act",
|
408 |
data_url={
|
409 |
"train": _URL + "/mrda/train.csv",
|
@@ -556,7 +554,7 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
556 |
"Dialogue_ID": "Dialogue_ID",
|
557 |
"Conv_ID": "Conv_ID",
|
558 |
},
|
559 |
-
label_classes=list(
|
560 |
label_column="Dialogue_Act",
|
561 |
data_url={
|
562 |
"train": _URL + "/swda/train.csv",
|
@@ -583,7 +581,7 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
583 |
]
|
584 |
|
585 |
def _info(self):
|
586 |
-
features = {text_feature: datasets.Value("string") for text_feature in
|
587 |
if self.config.label_classes:
|
588 |
features["Label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
589 |
features["Idx"] = datasets.Value("int32")
|
@@ -629,7 +627,7 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
629 |
def _generate_examples(self, data_file, split):
|
630 |
if self.config.name not in ("maptask", "iemocap", "oasis"):
|
631 |
df = pd.read_csv(data_file, delimiter=",", header=0, quotechar='"', dtype=str)[
|
632 |
-
|
633 |
]
|
634 |
|
635 |
if self.config.name == "iemocap":
|
@@ -640,11 +638,11 @@ class Silicone(datasets.GeneratorBasedBuilder):
|
|
640 |
quotechar='"',
|
641 |
names=["Dialogue_ID", "Utterance_ID", "Utterance", "Emotion", "Valence", "Activation", "Dominance"],
|
642 |
dtype=str,
|
643 |
-
)[
|
644 |
|
645 |
if self.config.name in ("maptask", "oasis"):
|
646 |
df = pd.read_csv(data_file, delimiter="|", names=["Speaker", "Utterance", "Dialogue_Act"], dtype=str)[
|
647 |
-
|
648 |
]
|
649 |
|
650 |
rows = df.to_dict(orient="records")
|
|
|
16 |
# Lint as: python3
|
17 |
"""The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
|
18 |
|
|
|
19 |
|
20 |
import textwrap
|
21 |
|
22 |
import pandas as pd
|
|
|
23 |
|
24 |
import datasets
|
25 |
|
|
|
254 |
"Utterance": "Utterance",
|
255 |
"Emotion": "Emotion",
|
256 |
},
|
257 |
+
label_classes=list(IEMOCAP_E_DESCRIPTION.keys()),
|
258 |
label_column="Emotion",
|
259 |
data_url={
|
260 |
"train": _URL + "/iemocap/train.csv",
|
|
|
401 |
"Dialogue_ID": "Dialogue_ID",
|
402 |
"Utterance": "Utterance",
|
403 |
},
|
404 |
+
label_classes=list(MRDA_DA_DESCRIPTION.keys()),
|
405 |
label_column="Dialogue_Act",
|
406 |
data_url={
|
407 |
"train": _URL + "/mrda/train.csv",
|
|
|
554 |
"Dialogue_ID": "Dialogue_ID",
|
555 |
"Conv_ID": "Conv_ID",
|
556 |
},
|
557 |
+
label_classes=list(SWDA_DA_DESCRIPTION.keys()),
|
558 |
label_column="Dialogue_Act",
|
559 |
data_url={
|
560 |
"train": _URL + "/swda/train.csv",
|
|
|
581 |
]
|
582 |
|
583 |
def _info(self):
|
584 |
+
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
585 |
if self.config.label_classes:
|
586 |
features["Label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
587 |
features["Idx"] = datasets.Value("int32")
|
|
|
627 |
def _generate_examples(self, data_file, split):
|
628 |
if self.config.name not in ("maptask", "iemocap", "oasis"):
|
629 |
df = pd.read_csv(data_file, delimiter=",", header=0, quotechar='"', dtype=str)[
|
630 |
+
self.config.text_features.keys()
|
631 |
]
|
632 |
|
633 |
if self.config.name == "iemocap":
|
|
|
638 |
quotechar='"',
|
639 |
names=["Dialogue_ID", "Utterance_ID", "Utterance", "Emotion", "Valence", "Activation", "Dominance"],
|
640 |
dtype=str,
|
641 |
+
)[self.config.text_features.keys()]
|
642 |
|
643 |
if self.config.name in ("maptask", "oasis"):
|
644 |
df = pd.read_csv(data_file, delimiter="|", names=["Speaker", "Utterance", "Dialogue_Act"], dtype=str)[
|
645 |
+
self.config.text_features.keys()
|
646 |
]
|
647 |
|
648 |
rows = df.to_dict(orient="records")
|