|
"""TODO(mlqa): Add a description here.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{lewis2019mlqa, |
|
title={MLQA: Evaluating Cross-lingual Extractive Question Answering}, |
|
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger}, |
|
journal={arXiv preprint arXiv:1910.07475}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. |
|
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, |
|
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between |
|
4 different languages on average. |
|
""" |
|
_URL = "https://dl.fbaipublicfiles.com/MLQA/" |
|
_DEV_TEST_URL = "MLQA_V1.zip" |
|
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz" |
|
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz" |
|
_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"] |
|
_TRANSLATE_LANG = ["ar", "de", "vi", "zh", "es", "hi"] |
|
|
|
|
|
class MlqaConfig(datasets.BuilderConfig): |
|
def __init__(self, data_url, **kwargs): |
|
"""BuilderConfig for MLQA |
|
|
|
Args: |
|
data_url: `string`, url to the dataset |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MlqaConfig, self).__init__( |
|
version=datasets.Version( |
|
"1.0.0", |
|
), |
|
**kwargs, |
|
) |
|
self.data_url = data_url |
|
|
|
|
|
class Mlqa(datasets.GeneratorBasedBuilder): |
|
"""TODO(mlqa): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = ( |
|
[ |
|
MlqaConfig( |
|
name="mlqa-translate-train." + lang, |
|
data_url=_URL + _TRANSLATE_TRAIN_URL, |
|
description="Machine-translated data for Translate-train (SQuAD Train and Dev sets machine-translated into " |
|
"Arabic, German, Hindi, Vietnamese, Simplified Chinese and Spanish)", |
|
) |
|
for lang in _LANG |
|
if lang != "en" |
|
] |
|
+ [ |
|
MlqaConfig( |
|
name="mlqa-translate-test." + lang, |
|
data_url=_URL + _TRANSLATE_TEST_URL, |
|
description="Machine-translated data for Translate-Test (MLQA-test set machine-translated into English) ", |
|
) |
|
for lang in _LANG |
|
if lang != "en" |
|
] |
|
+ [ |
|
MlqaConfig( |
|
name="mlqa." + lang1 + "." + lang2, |
|
data_url=_URL + _DEV_TEST_URL, |
|
description="development and test splits", |
|
) |
|
for lang1 in _LANG |
|
for lang2 in _LANG |
|
] |
|
) |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")} |
|
), |
|
"id": datasets.Value("string"), |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/facebookresearch/MLQA", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
if self.config.name.startswith("mlqa-translate-train"): |
|
dl_file = dl_manager.download_and_extract(self.config.data_url) |
|
lang = self.config.name.split(".")[-1] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
os.path.join(dl_file, "mlqa-translate-train"), |
|
"{}_squad-translate-train-train-v1.1.json".format(lang), |
|
) |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
os.path.join(dl_file, "mlqa-translate-train"), |
|
"{}_squad-translate-train-dev-v1.1.json".format(lang), |
|
) |
|
}, |
|
), |
|
] |
|
|
|
else: |
|
if self.config.name.startswith("mlqa."): |
|
dl_file = dl_manager.download_and_extract(self.config.data_url) |
|
name = self.config.name.split(".") |
|
l1, l2 = name[1:] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
os.path.join(dl_file, "MLQA_V1/test"), |
|
"test-context-{}-question-{}.json".format(l1, l2), |
|
) |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
os.path.join(dl_file, "MLQA_V1/dev"), "dev-context-{}-question-{}.json".format(l1, l2) |
|
) |
|
}, |
|
), |
|
] |
|
else: |
|
if self.config.name.startswith("mlqa-translate-test"): |
|
dl_file = dl_manager.download_and_extract(self.config.data_url) |
|
lang = self.config.name.split(".")[-1] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
os.path.join(dl_file, "mlqa-translate-test"), |
|
"translate-test-context-{}-question-{}.json".format(lang, lang), |
|
) |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for examples in data["data"]: |
|
for example in examples["paragraphs"]: |
|
context = example["context"] |
|
for qa in example["qas"]: |
|
question = qa["question"] |
|
id_ = qa["id"] |
|
answers = qa["answers"] |
|
answers_start = [answer["answer_start"] for answer in answers] |
|
answers_text = [answer["text"] for answer in answers] |
|
yield id_, { |
|
"context": context, |
|
"question": question, |
|
"answers": {"answer_start": answers_start, "text": answers_text}, |
|
"id": id_, |
|
} |
|
|