mlqa / mlqa.py
system's picture
system HF staff
Update files from the datasets library (from 1.0.2)
7ffe9b1
raw
history blame
8.57 kB
"""TODO(mlqa): Add a description here."""
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
# TODO(mlqa): BibTeX citation
_CITATION = """\
@article{lewis2019mlqa,
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
journal={arXiv preprint arXiv:1910.07475},
year={2019}
}
"""
# TODO(mlqa):
_DESCRIPTION = """\
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
_DEV_TEST_URL = "MLQA_V1.zip"
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"]
_TRANSLATE_LANG = ["ar", "de", "vi", "zh", "es", "hi"]
class MlqaConfig(datasets.BuilderConfig):
def __init__(self, data_url, **kwargs):
"""BuilderConfig for MLQA
Args:
data_url: `string`, url to the dataset
**kwargs: keyword arguments forwarded to super.
"""
super(MlqaConfig, self).__init__(
version=datasets.Version(
"1.0.0",
),
**kwargs,
)
self.data_url = data_url
class Mlqa(datasets.GeneratorBasedBuilder):
"""TODO(mlqa): Short description of my dataset."""
# TODO(mlqa): Set up version.
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = (
[
MlqaConfig(
name="mlqa-translate-train." + lang,
data_url=_URL + _TRANSLATE_TRAIN_URL,
description="Machine-translated data for Translate-train (SQuAD Train and Dev sets machine-translated into "
"Arabic, German, Hindi, Vietnamese, Simplified Chinese and Spanish)",
)
for lang in _LANG
if lang != "en"
]
+ [
MlqaConfig(
name="mlqa-translate-test." + lang,
data_url=_URL + _TRANSLATE_TEST_URL,
description="Machine-translated data for Translate-Test (MLQA-test set machine-translated into English) ",
)
for lang in _LANG
if lang != "en"
]
+ [
MlqaConfig(
name="mlqa." + lang1 + "." + lang2,
data_url=_URL + _DEV_TEST_URL,
description="development and test splits",
)
for lang1 in _LANG
for lang2 in _LANG
]
)
def _info(self):
# TODO(mlqa): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")}
),
"id": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/facebookresearch/MLQA",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(mlqa): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
if self.config.name.startswith("mlqa-translate-train"):
dl_file = dl_manager.download_and_extract(self.config.data_url)
lang = self.config.name.split(".")[-1]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "mlqa-translate-train"),
"{}_squad-translate-train-train-v1.1.json".format(lang),
)
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "mlqa-translate-train"),
"{}_squad-translate-train-dev-v1.1.json".format(lang),
)
},
),
]
else:
if self.config.name.startswith("mlqa."):
dl_file = dl_manager.download_and_extract(self.config.data_url)
name = self.config.name.split(".")
l1, l2 = name[1:]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "MLQA_V1/test"),
"test-context-{}-question-{}.json".format(l1, l2),
)
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "MLQA_V1/dev"), "dev-context-{}-question-{}.json".format(l1, l2)
)
},
),
]
else:
if self.config.name.startswith("mlqa-translate-test"):
dl_file = dl_manager.download_and_extract(self.config.data_url)
lang = self.config.name.split(".")[-1]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(dl_file, "mlqa-translate-test"),
"translate-test-context-{}-question-{}.json".format(lang, lang),
)
},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(mlqa): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for examples in data["data"]:
for example in examples["paragraphs"]:
context = example["context"]
for qa in example["qas"]:
question = qa["question"]
id_ = qa["id"]
answers = qa["answers"]
answers_start = [answer["answer_start"] for answer in answers]
answers_text = [answer["text"] for answer in answers]
yield id_, {
"context": context,
"question": question,
"answers": {"answer_start": answers_start, "text": answers_text},
"id": id_,
}