Delete multilingual_librispeech.py
Browse files- multilingual_librispeech.py +0 -226
multilingual_librispeech.py
DELETED
@@ -1,226 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Multilingual Librispeech automatic speech recognition dataset."""
|
18 |
-
|
19 |
-
import os
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
|
24 |
-
_CITATION = """\
|
25 |
-
@article{Pratap2020MLSAL,
|
26 |
-
title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
|
27 |
-
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
|
28 |
-
journal={ArXiv},
|
29 |
-
year={2020},
|
30 |
-
volume={abs/2012.03411}
|
31 |
-
}
|
32 |
-
"""
|
33 |
-
|
34 |
-
_DESCRIPTION = """\
|
35 |
-
This is a streamable version of the Multilingual LibriSpeech (MLS) dataset.
|
36 |
-
The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94)
|
37 |
-
to make it easier to stream.
|
38 |
-
|
39 |
-
MLS dataset is a large multilingual corpus suitable for speech research.
|
40 |
-
The dataset is derived from read audiobooks from LibriVox and consists of 8 languages:
|
41 |
-
English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
|
42 |
-
"""
|
43 |
-
|
44 |
-
_URL = "http://www.openslr.org/94"
|
45 |
-
|
46 |
-
_DL_URL_FORMAT = "data/mls_{name}"
|
47 |
-
|
48 |
-
|
49 |
-
class MultilingualLibrispeechConfig(datasets.BuilderConfig):
|
50 |
-
"""BuilderConfig for MultilingualLibrispeech."""
|
51 |
-
|
52 |
-
def __init__(self, name, **kwargs):
|
53 |
-
"""
|
54 |
-
Args:
|
55 |
-
name: `string`, name of dataset config (=language)
|
56 |
-
**kwargs: keyword arguments forwarded to super.
|
57 |
-
"""
|
58 |
-
super(MultilingualLibrispeechConfig, self).__init__(
|
59 |
-
version=datasets.Version("2.1.0", ""), name=name, **kwargs
|
60 |
-
)
|
61 |
-
# relative path to full data inside a repo (for example `data/mls_german`)
|
62 |
-
self.data_root_url = _DL_URL_FORMAT.format(name=name)
|
63 |
-
|
64 |
-
|
65 |
-
class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
|
66 |
-
"""Multilingual Librispeech dataset."""
|
67 |
-
|
68 |
-
BUILDER_CONFIGS = [
|
69 |
-
MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"),
|
70 |
-
MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"),
|
71 |
-
MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"),
|
72 |
-
MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"),
|
73 |
-
MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"),
|
74 |
-
MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"),
|
75 |
-
MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"),
|
76 |
-
]
|
77 |
-
|
78 |
-
def _info(self):
|
79 |
-
return datasets.DatasetInfo(
|
80 |
-
description=_DESCRIPTION,
|
81 |
-
features=datasets.Features(
|
82 |
-
{
|
83 |
-
"file": datasets.Value("string"),
|
84 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
85 |
-
"text": datasets.Value("string"),
|
86 |
-
"speaker_id": datasets.Value("int64"),
|
87 |
-
"chapter_id": datasets.Value("int64"),
|
88 |
-
"id": datasets.Value("string"),
|
89 |
-
}
|
90 |
-
),
|
91 |
-
supervised_keys=("file", "text"),
|
92 |
-
homepage=_URL,
|
93 |
-
citation=_CITATION,
|
94 |
-
task_templates=None,
|
95 |
-
)
|
96 |
-
|
97 |
-
def _split_generators(self, dl_manager):
|
98 |
-
|
99 |
-
transcripts = dl_manager.download({
|
100 |
-
"train": self.config.data_root_url + "/train/transcripts.txt",
|
101 |
-
"dev": self.config.data_root_url + "/dev/transcripts.txt",
|
102 |
-
"test": self.config.data_root_url + "/test/transcripts.txt",
|
103 |
-
})
|
104 |
-
|
105 |
-
# Download handles.txt files containing ids for limited supervision train sets
|
106 |
-
limited_supervision_9h = dl_manager.download(
|
107 |
-
[self.config.data_root_url + "/train/limited_supervision/9hr/handles.txt"],
|
108 |
-
)
|
109 |
-
# in our case of 1 hour limited supervision ("train.1h") there are always 6 subfolders like:
|
110 |
-
# "limited_supervision/1h/0/handles.txt", "limited_supervision/1h/1/handles.txt", ...
|
111 |
-
limited_supervision_1h = dl_manager.download([
|
112 |
-
self.config.data_root_url + f"/train/limited_supervision/1hr/{i}/handles.txt" for i in range(6)
|
113 |
-
])
|
114 |
-
|
115 |
-
# each split contains many .tar.gz archives with its audio files
|
116 |
-
# audio_filenames.txt contains the names of these archives
|
117 |
-
audio_filenames_paths = dl_manager.download({
|
118 |
-
"train": self.config.data_root_url + "/train/audio_filenames.txt",
|
119 |
-
"dev": self.config.data_root_url + "/dev/audio_filenames.txt",
|
120 |
-
"test": self.config.data_root_url + "/test/audio_filenames.txt",
|
121 |
-
})
|
122 |
-
|
123 |
-
audio_archives = {}
|
124 |
-
for split in audio_filenames_paths:
|
125 |
-
with open(audio_filenames_paths[split], encoding="utf-8") as f:
|
126 |
-
audio_filenames = [line.strip() for line in f.readlines()]
|
127 |
-
audio_archives[split] = dl_manager.download([
|
128 |
-
self.config.data_root_url + "/" + split + "/audio/" + filename
|
129 |
-
for filename in audio_filenames
|
130 |
-
])
|
131 |
-
|
132 |
-
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
133 |
-
local_extracted_archives = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {}
|
134 |
-
|
135 |
-
train_splits = [
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.TRAIN,
|
138 |
-
gen_kwargs={
|
139 |
-
"transcript_path": transcripts["train"],
|
140 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
|
141 |
-
"local_extracted_archive": local_extracted_archives.get("train"),
|
142 |
-
}
|
143 |
-
),
|
144 |
-
datasets.SplitGenerator(
|
145 |
-
name="train.9h",
|
146 |
-
gen_kwargs={
|
147 |
-
"transcript_path": transcripts["train"],
|
148 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
|
149 |
-
"local_extracted_archive": local_extracted_archives.get("train"),
|
150 |
-
"limited_ids_paths": tuple(limited_supervision_9h),
|
151 |
-
},
|
152 |
-
),
|
153 |
-
datasets.SplitGenerator(
|
154 |
-
name="train.1h",
|
155 |
-
gen_kwargs={
|
156 |
-
"transcript_path": transcripts["train"],
|
157 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
|
158 |
-
"local_extracted_archive": local_extracted_archives.get("train"),
|
159 |
-
"limited_ids_paths": tuple(limited_supervision_1h),
|
160 |
-
},
|
161 |
-
),
|
162 |
-
]
|
163 |
-
|
164 |
-
return train_splits + [
|
165 |
-
datasets.SplitGenerator(
|
166 |
-
name=datasets.Split.VALIDATION, gen_kwargs={
|
167 |
-
"transcript_path": transcripts["dev"],
|
168 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]],
|
169 |
-
"local_extracted_archive": local_extracted_archives.get("dev"),
|
170 |
-
}
|
171 |
-
),
|
172 |
-
datasets.SplitGenerator(
|
173 |
-
name=datasets.Split.TEST, gen_kwargs={
|
174 |
-
"transcript_path": transcripts["test"],
|
175 |
-
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["test"]],
|
176 |
-
"local_extracted_archive": local_extracted_archives.get("test"),
|
177 |
-
}
|
178 |
-
),
|
179 |
-
]
|
180 |
-
|
181 |
-
def _generate_examples(self, transcript_path, audio_archives, local_extracted_archive, limited_ids_paths=None):
|
182 |
-
"""Generate examples from a Multilingual LibriSpeech data dir."""
|
183 |
-
transcripts = dict()
|
184 |
-
with open(transcript_path, "r", encoding="utf-8") as file:
|
185 |
-
for line in file:
|
186 |
-
audio_id, transcript = line.strip().split("\t")
|
187 |
-
transcripts[audio_id] = transcript
|
188 |
-
|
189 |
-
limited_ids, limited_ids_archives_names = [], []
|
190 |
-
if limited_ids_paths:
|
191 |
-
for path in limited_ids_paths:
|
192 |
-
with open(path, "r", encoding="utf-8") as file:
|
193 |
-
limited_ids.extend([line.strip() for line in file.readlines()])
|
194 |
-
|
195 |
-
limited_ids = set(limited_ids)
|
196 |
-
|
197 |
-
for archive_idx, audio_archive in enumerate(audio_archives):
|
198 |
-
# TODO: check that archive doesn't contain needed ids
|
199 |
-
# if limited_ids and audio_archive not in limited_ids_archives_names:
|
200 |
-
# continue
|
201 |
-
|
202 |
-
for audio_filename, file in audio_archive:
|
203 |
-
speaker_id, chapter_id = audio_filename.split("_")[:2]
|
204 |
-
speaker_id, chapter_id = int(speaker_id), int(chapter_id)
|
205 |
-
audio_id = audio_filename.split(".flac")[0]
|
206 |
-
audio_transcript = transcripts[audio_id]
|
207 |
-
|
208 |
-
if limited_ids and audio_id not in limited_ids:
|
209 |
-
# this only can be true in limited supervision sets ("train.9h" and "train.1h")
|
210 |
-
continue
|
211 |
-
|
212 |
-
local_audio_file_path = os.path.join(
|
213 |
-
local_extracted_archive[archive_idx], audio_filename
|
214 |
-
) if local_extracted_archive else None
|
215 |
-
|
216 |
-
yield audio_filename, {
|
217 |
-
"file": local_audio_file_path,
|
218 |
-
"audio": {
|
219 |
-
"path": local_audio_file_path if local_audio_file_path else audio_filename,
|
220 |
-
"bytes": file.read()
|
221 |
-
},
|
222 |
-
"text": audio_transcript,
|
223 |
-
"speaker_id": speaker_id,
|
224 |
-
"chapter_id": chapter_id,
|
225 |
-
"id": audio_id
|
226 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|