|
import os |
|
|
|
import numpy as np |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
@inproceedings{karpukhin-etal-2020-dense, |
|
title = "Dense Passage Retrieval for Open-Domain Question Answering", |
|
author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau", |
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.550", |
|
doi = "10.18653/v1/2020.emnlp-main.550", |
|
pages = "6769--6781", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model. |
|
It contains 21M passages from wikipedia along with their DPR embeddings. |
|
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages. |
|
""" |
|
|
|
_LICENSE = """DPR is CC-BY-NC 4.0 licensed.""" |
|
|
|
_DATA_URL = "https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz" |
|
|
|
_NQ_VECTORS_URL = "https://dl.fbaipublicfiles.com/dpr/data/wiki_encoded/single/nq/wiki_passages_{i}" |
|
|
|
_MULTISET_VECTORS_URL = "https://dl.fbaipublicfiles.com/rag/rag_multiset_embeddings/wiki_passages_{i}" |
|
|
|
_INDEX_URL = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr" |
|
|
|
|
|
class WikiDprConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WikiDprConfig.""" |
|
|
|
def __init__( |
|
self, |
|
with_embeddings=True, |
|
with_index=True, |
|
wiki_split="psgs_w100", |
|
embeddings_name="nq", |
|
index_name="compressed", |
|
index_train_size=262144, |
|
dummy=False, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for WikiSnippets. |
|
Args: |
|
with_embeddings (`bool`, defaults to `True`): Load the 768-dimensional embeddings from DPR. |
|
with_index (`bool`, defaults to `True`): Load the faiss index trained on the embeddings. |
|
wiki_split (`str`, defaults to `psgs_w100`): name of the splitting method of wiki articles. |
|
embeddings_name (`str`, defaults to `nq`): "nq" or "multiset", depending on which dataset DPR was trained on. |
|
index_name (`str`, defaults to `compressed`): "compressed" or "exact", the configuration of the faiss index to use. |
|
index_train_size (`int`, defaults to `262144`): Size of the subset to use to train the index, if it is trainable. |
|
dummy (`bool`, defaults to `False`): Dummy uses only 10 000 examples for testing purposes. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.with_embeddings = with_embeddings |
|
self.with_index = with_index and index_name != "no_index" |
|
self.wiki_split = wiki_split |
|
self.embeddings_name = embeddings_name |
|
self.index_name = index_name if with_index else "no_index" |
|
self.index_train_size = index_train_size |
|
self.dummy = dummy |
|
name = [self.wiki_split, self.embeddings_name, self.index_name] |
|
if not self.with_embeddings: |
|
name.append("no_embeddings") |
|
if self.dummy: |
|
name = ["dummy"] + name |
|
assert ( |
|
self.index_name != "compressed" or not self.with_index |
|
), "Please use `index_name='exact' for dummy wiki_dpr`" |
|
assert wiki_split == "psgs_w100" |
|
assert embeddings_name in ("nq", "multiset") |
|
assert index_name in ("compressed", "exact", "no_index") |
|
kwargs["name"] = ".".join(name) |
|
super(WikiDprConfig, self).__init__(**kwargs) |
|
|
|
prefix = f"{wiki_split}.{embeddings_name}." |
|
if self.index_name == "exact": |
|
self.index_file = prefix + "HNSW128_SQ8-IP-{split}.faiss" |
|
else: |
|
self.index_file = prefix + "IVF4096_HNSW128_PQ128-IP-{split}.faiss" |
|
if self.dummy: |
|
self.index_file = "dummy." + self.index_file |
|
|
|
|
|
class WikiDpr(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIG_CLASS = WikiDprConfig |
|
BUILDER_CONFIGS = [ |
|
WikiDprConfig( |
|
embeddings_name=embeddings_name, |
|
with_embeddings=with_embeddings, |
|
index_name=index_name, |
|
version=datasets.Version("0.0.0"), |
|
) |
|
for with_embeddings in (True, False) |
|
for embeddings_name in ("nq", "multiset") |
|
for index_name in ("exact", "compressed", "no_index") |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"embeddings": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
) |
|
if self.config.with_embeddings |
|
else datasets.Features( |
|
{"id": datasets.Value("string"), "text": datasets.Value("string"), "title": datasets.Value("string")} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/facebookresearch/DPR", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
files_to_download = {"data_file": _DATA_URL} |
|
downloaded_files = dl_manager.download_and_extract(files_to_download) |
|
if self.config.with_embeddings: |
|
vectors_url = _NQ_VECTORS_URL if self.config.embeddings_name == "nq" else _MULTISET_VECTORS_URL |
|
if self.config.dummy: |
|
downloaded_files["vectors_files"] = dl_manager.download([vectors_url.format(i=0)]) |
|
else: |
|
downloaded_files["vectors_files"] = dl_manager.download([vectors_url.format(i=i) for i in range(50)]) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=downloaded_files), |
|
] |
|
|
|
def _generate_examples(self, data_file, vectors_files=None): |
|
vec_idx = 0 |
|
vecs = [] |
|
lines = open(data_file, "r", encoding="utf-8") |
|
next(lines) |
|
for i, line in enumerate(lines): |
|
if self.config.dummy and i == 10000: |
|
break |
|
if i == 21015300: |
|
break |
|
id, text, title = line.strip().split("\t") |
|
text = text[1:-1] |
|
text = text.replace('""', '"') |
|
if self.config.with_embeddings: |
|
if vec_idx >= len(vecs): |
|
if len(vectors_files) == 0: |
|
logger.warning(f"Ran out of vector files at index {i}") |
|
break |
|
vecs = np.load(open(vectors_files.pop(0), "rb"), allow_pickle=True) |
|
vec_idx = 0 |
|
vec_id, vec = vecs[vec_idx] |
|
assert int(id) == int(vec_id), f"ID mismatch between lines {id} and vector {vec_id}" |
|
yield id, {"id": id, "text": text, "title": title, "embeddings": vec} |
|
vec_idx += 1 |
|
else: |
|
yield id, { |
|
"id": id, |
|
"text": text, |
|
"title": title, |
|
} |
|
|
|
def _post_processing_resources(self, split): |
|
if self.config.with_index: |
|
return {"embeddings_index": self.config.index_file.format(split=split)} |
|
else: |
|
return {} |
|
|
|
def _download_post_processing_resources(self, split, resource_name, dl_manager): |
|
if resource_name == "embeddings_index": |
|
try: |
|
downloaded_resources = dl_manager.download_and_extract( |
|
{"embeddings_index": _INDEX_URL + "/" + self.config.index_file.format(split=split)} |
|
) |
|
return downloaded_resources["embeddings_index"] |
|
except (FileNotFoundError, ConnectionError): |
|
pass |
|
|
|
def _post_process(self, dataset, resources_paths): |
|
if self.config.with_index: |
|
index_file = resources_paths["embeddings_index"] |
|
if os.path.exists(index_file): |
|
dataset.load_faiss_index("embeddings", index_file) |
|
else: |
|
if "embeddings" not in dataset.column_names: |
|
raise ValueError("Couldn't build the index because there are no embeddings.") |
|
import faiss |
|
|
|
d = 768 |
|
train_size = self.config.index_train_size |
|
logger.info("Building wiki_dpr faiss index") |
|
if self.config.index_name == "exact": |
|
index = faiss.IndexHNSWSQ(d, faiss.ScalarQuantizer.QT_8bit, 128, faiss.METRIC_INNER_PRODUCT) |
|
index.hnsw.efConstruction = 200 |
|
index.hnsw.efSearch = 128 |
|
dataset.add_faiss_index("embeddings", custom_index=index, train_size=train_size) |
|
else: |
|
quantizer = faiss.IndexHNSWFlat(d, 128, faiss.METRIC_INNER_PRODUCT) |
|
quantizer.hnsw.efConstruction = 200 |
|
quantizer.hnsw.efSearch = 128 |
|
ivf_index = faiss.IndexIVFPQ(quantizer, d, 4096, 128, 8, faiss.METRIC_INNER_PRODUCT) |
|
ivf_index.nprobe = 64 |
|
ivf_index.own_fields = True |
|
quantizer.this.disown() |
|
dataset.add_faiss_index( |
|
"embeddings", |
|
train_size=train_size, |
|
custom_index=ivf_index, |
|
) |
|
logger.info("Saving wiki_dpr faiss index") |
|
dataset.save_faiss_index("embeddings", index_file) |
|
return dataset |
|
|