Commit
·
b2f6e26
1
Parent(s):
23318bb
Update parquet files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +0 -699
- all_languages/xnli-test.parquet +3 -0
- all_languages/xnli-train-00000-of-00004.parquet +3 -0
- all_languages/xnli-train-00001-of-00004.parquet +3 -0
- all_languages/xnli-train-00002-of-00004.parquet +3 -0
- all_languages/xnli-train-00003-of-00004.parquet +3 -0
- all_languages/xnli-validation.parquet +3 -0
- ar/xnli-test.parquet +3 -0
- ar/xnli-train.parquet +3 -0
- ar/xnli-validation.parquet +3 -0
- bg/xnli-test.parquet +3 -0
- bg/xnli-train.parquet +3 -0
- bg/xnli-validation.parquet +3 -0
- dataset_infos.json +0 -1
- de/xnli-test.parquet +3 -0
- de/xnli-train.parquet +3 -0
- de/xnli-validation.parquet +3 -0
- el/xnli-test.parquet +3 -0
- el/xnli-train.parquet +3 -0
- el/xnli-validation.parquet +3 -0
- en/xnli-test.parquet +3 -0
- en/xnli-train.parquet +3 -0
- en/xnli-validation.parquet +3 -0
- es/xnli-test.parquet +3 -0
- es/xnli-train.parquet +3 -0
- es/xnli-validation.parquet +3 -0
- fr/xnli-test.parquet +3 -0
- fr/xnli-train.parquet +3 -0
- fr/xnli-validation.parquet +3 -0
- hi/xnli-test.parquet +3 -0
- hi/xnli-train.parquet +3 -0
- hi/xnli-validation.parquet +3 -0
- ru/xnli-test.parquet +3 -0
- ru/xnli-train.parquet +3 -0
- ru/xnli-validation.parquet +3 -0
- sw/xnli-test.parquet +3 -0
- sw/xnli-train.parquet +3 -0
- sw/xnli-validation.parquet +3 -0
- th/xnli-test.parquet +3 -0
- th/xnli-train.parquet +3 -0
- th/xnli-validation.parquet +3 -0
- tr/xnli-test.parquet +3 -0
- tr/xnli-train.parquet +3 -0
- tr/xnli-validation.parquet +3 -0
- ur/xnli-test.parquet +3 -0
- ur/xnli-train.parquet +3 -0
- ur/xnli-validation.parquet +3 -0
- vi/xnli-test.parquet +3 -0
- vi/xnli-train.parquet +3 -0
- vi/xnli-validation.parquet +3 -0
README.md
DELETED
@@ -1,699 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
paperswithcode_id: xnli
|
5 |
-
pretty_name: Cross-lingual Natural Language Inference
|
6 |
-
dataset_info:
|
7 |
-
- config_name: ar
|
8 |
-
features:
|
9 |
-
- name: premise
|
10 |
-
dtype: string
|
11 |
-
- name: hypothesis
|
12 |
-
dtype: string
|
13 |
-
- name: label
|
14 |
-
dtype:
|
15 |
-
class_label:
|
16 |
-
names:
|
17 |
-
0: entailment
|
18 |
-
1: neutral
|
19 |
-
2: contradiction
|
20 |
-
splits:
|
21 |
-
- name: train
|
22 |
-
num_bytes: 107399934
|
23 |
-
num_examples: 392702
|
24 |
-
- name: test
|
25 |
-
num_bytes: 1294561
|
26 |
-
num_examples: 5010
|
27 |
-
- name: validation
|
28 |
-
num_bytes: 633009
|
29 |
-
num_examples: 2490
|
30 |
-
download_size: 483963712
|
31 |
-
dataset_size: 109327504
|
32 |
-
- config_name: bg
|
33 |
-
features:
|
34 |
-
- name: premise
|
35 |
-
dtype: string
|
36 |
-
- name: hypothesis
|
37 |
-
dtype: string
|
38 |
-
- name: label
|
39 |
-
dtype:
|
40 |
-
class_label:
|
41 |
-
names:
|
42 |
-
0: entailment
|
43 |
-
1: neutral
|
44 |
-
2: contradiction
|
45 |
-
splits:
|
46 |
-
- name: train
|
47 |
-
num_bytes: 125973545
|
48 |
-
num_examples: 392702
|
49 |
-
- name: test
|
50 |
-
num_bytes: 1573042
|
51 |
-
num_examples: 5010
|
52 |
-
- name: validation
|
53 |
-
num_bytes: 774069
|
54 |
-
num_examples: 2490
|
55 |
-
download_size: 483963712
|
56 |
-
dataset_size: 128320656
|
57 |
-
- config_name: de
|
58 |
-
features:
|
59 |
-
- name: premise
|
60 |
-
dtype: string
|
61 |
-
- name: hypothesis
|
62 |
-
dtype: string
|
63 |
-
- name: label
|
64 |
-
dtype:
|
65 |
-
class_label:
|
66 |
-
names:
|
67 |
-
0: entailment
|
68 |
-
1: neutral
|
69 |
-
2: contradiction
|
70 |
-
splits:
|
71 |
-
- name: train
|
72 |
-
num_bytes: 84684460
|
73 |
-
num_examples: 392702
|
74 |
-
- name: test
|
75 |
-
num_bytes: 996496
|
76 |
-
num_examples: 5010
|
77 |
-
- name: validation
|
78 |
-
num_bytes: 494612
|
79 |
-
num_examples: 2490
|
80 |
-
download_size: 483963712
|
81 |
-
dataset_size: 86175568
|
82 |
-
- config_name: el
|
83 |
-
features:
|
84 |
-
- name: premise
|
85 |
-
dtype: string
|
86 |
-
- name: hypothesis
|
87 |
-
dtype: string
|
88 |
-
- name: label
|
89 |
-
dtype:
|
90 |
-
class_label:
|
91 |
-
names:
|
92 |
-
0: entailment
|
93 |
-
1: neutral
|
94 |
-
2: contradiction
|
95 |
-
splits:
|
96 |
-
- name: train
|
97 |
-
num_bytes: 139753678
|
98 |
-
num_examples: 392702
|
99 |
-
- name: test
|
100 |
-
num_bytes: 1704793
|
101 |
-
num_examples: 5010
|
102 |
-
- name: validation
|
103 |
-
num_bytes: 841234
|
104 |
-
num_examples: 2490
|
105 |
-
download_size: 483963712
|
106 |
-
dataset_size: 142299705
|
107 |
-
- config_name: en
|
108 |
-
features:
|
109 |
-
- name: premise
|
110 |
-
dtype: string
|
111 |
-
- name: hypothesis
|
112 |
-
dtype: string
|
113 |
-
- name: label
|
114 |
-
dtype:
|
115 |
-
class_label:
|
116 |
-
names:
|
117 |
-
0: entailment
|
118 |
-
1: neutral
|
119 |
-
2: contradiction
|
120 |
-
splits:
|
121 |
-
- name: train
|
122 |
-
num_bytes: 74444346
|
123 |
-
num_examples: 392702
|
124 |
-
- name: test
|
125 |
-
num_bytes: 875142
|
126 |
-
num_examples: 5010
|
127 |
-
- name: validation
|
128 |
-
num_bytes: 433471
|
129 |
-
num_examples: 2490
|
130 |
-
download_size: 483963712
|
131 |
-
dataset_size: 75752959
|
132 |
-
- config_name: es
|
133 |
-
features:
|
134 |
-
- name: premise
|
135 |
-
dtype: string
|
136 |
-
- name: hypothesis
|
137 |
-
dtype: string
|
138 |
-
- name: label
|
139 |
-
dtype:
|
140 |
-
class_label:
|
141 |
-
names:
|
142 |
-
0: entailment
|
143 |
-
1: neutral
|
144 |
-
2: contradiction
|
145 |
-
splits:
|
146 |
-
- name: train
|
147 |
-
num_bytes: 81383604
|
148 |
-
num_examples: 392702
|
149 |
-
- name: test
|
150 |
-
num_bytes: 969821
|
151 |
-
num_examples: 5010
|
152 |
-
- name: validation
|
153 |
-
num_bytes: 478430
|
154 |
-
num_examples: 2490
|
155 |
-
download_size: 483963712
|
156 |
-
dataset_size: 82831855
|
157 |
-
- config_name: fr
|
158 |
-
features:
|
159 |
-
- name: premise
|
160 |
-
dtype: string
|
161 |
-
- name: hypothesis
|
162 |
-
dtype: string
|
163 |
-
- name: label
|
164 |
-
dtype:
|
165 |
-
class_label:
|
166 |
-
names:
|
167 |
-
0: entailment
|
168 |
-
1: neutral
|
169 |
-
2: contradiction
|
170 |
-
splits:
|
171 |
-
- name: train
|
172 |
-
num_bytes: 85809099
|
173 |
-
num_examples: 392702
|
174 |
-
- name: test
|
175 |
-
num_bytes: 1029247
|
176 |
-
num_examples: 5010
|
177 |
-
- name: validation
|
178 |
-
num_bytes: 510112
|
179 |
-
num_examples: 2490
|
180 |
-
download_size: 483963712
|
181 |
-
dataset_size: 87348458
|
182 |
-
- config_name: hi
|
183 |
-
features:
|
184 |
-
- name: premise
|
185 |
-
dtype: string
|
186 |
-
- name: hypothesis
|
187 |
-
dtype: string
|
188 |
-
- name: label
|
189 |
-
dtype:
|
190 |
-
class_label:
|
191 |
-
names:
|
192 |
-
0: entailment
|
193 |
-
1: neutral
|
194 |
-
2: contradiction
|
195 |
-
splits:
|
196 |
-
- name: train
|
197 |
-
num_bytes: 170594284
|
198 |
-
num_examples: 392702
|
199 |
-
- name: test
|
200 |
-
num_bytes: 2073081
|
201 |
-
num_examples: 5010
|
202 |
-
- name: validation
|
203 |
-
num_bytes: 1023923
|
204 |
-
num_examples: 2490
|
205 |
-
download_size: 483963712
|
206 |
-
dataset_size: 173691288
|
207 |
-
- config_name: ru
|
208 |
-
features:
|
209 |
-
- name: premise
|
210 |
-
dtype: string
|
211 |
-
- name: hypothesis
|
212 |
-
dtype: string
|
213 |
-
- name: label
|
214 |
-
dtype:
|
215 |
-
class_label:
|
216 |
-
names:
|
217 |
-
0: entailment
|
218 |
-
1: neutral
|
219 |
-
2: contradiction
|
220 |
-
splits:
|
221 |
-
- name: train
|
222 |
-
num_bytes: 129859935
|
223 |
-
num_examples: 392702
|
224 |
-
- name: test
|
225 |
-
num_bytes: 1603474
|
226 |
-
num_examples: 5010
|
227 |
-
- name: validation
|
228 |
-
num_bytes: 786450
|
229 |
-
num_examples: 2490
|
230 |
-
download_size: 483963712
|
231 |
-
dataset_size: 132249859
|
232 |
-
- config_name: sw
|
233 |
-
features:
|
234 |
-
- name: premise
|
235 |
-
dtype: string
|
236 |
-
- name: hypothesis
|
237 |
-
dtype: string
|
238 |
-
- name: label
|
239 |
-
dtype:
|
240 |
-
class_label:
|
241 |
-
names:
|
242 |
-
0: entailment
|
243 |
-
1: neutral
|
244 |
-
2: contradiction
|
245 |
-
splits:
|
246 |
-
- name: train
|
247 |
-
num_bytes: 69286045
|
248 |
-
num_examples: 392702
|
249 |
-
- name: test
|
250 |
-
num_bytes: 871659
|
251 |
-
num_examples: 5010
|
252 |
-
- name: validation
|
253 |
-
num_bytes: 429858
|
254 |
-
num_examples: 2490
|
255 |
-
download_size: 483963712
|
256 |
-
dataset_size: 70587562
|
257 |
-
- config_name: th
|
258 |
-
features:
|
259 |
-
- name: premise
|
260 |
-
dtype: string
|
261 |
-
- name: hypothesis
|
262 |
-
dtype: string
|
263 |
-
- name: label
|
264 |
-
dtype:
|
265 |
-
class_label:
|
266 |
-
names:
|
267 |
-
0: entailment
|
268 |
-
1: neutral
|
269 |
-
2: contradiction
|
270 |
-
splits:
|
271 |
-
- name: train
|
272 |
-
num_bytes: 176063212
|
273 |
-
num_examples: 392702
|
274 |
-
- name: test
|
275 |
-
num_bytes: 2147023
|
276 |
-
num_examples: 5010
|
277 |
-
- name: validation
|
278 |
-
num_bytes: 1061168
|
279 |
-
num_examples: 2490
|
280 |
-
download_size: 483963712
|
281 |
-
dataset_size: 179271403
|
282 |
-
- config_name: tr
|
283 |
-
features:
|
284 |
-
- name: premise
|
285 |
-
dtype: string
|
286 |
-
- name: hypothesis
|
287 |
-
dtype: string
|
288 |
-
- name: label
|
289 |
-
dtype:
|
290 |
-
class_label:
|
291 |
-
names:
|
292 |
-
0: entailment
|
293 |
-
1: neutral
|
294 |
-
2: contradiction
|
295 |
-
splits:
|
296 |
-
- name: train
|
297 |
-
num_bytes: 71637460
|
298 |
-
num_examples: 392702
|
299 |
-
- name: test
|
300 |
-
num_bytes: 934942
|
301 |
-
num_examples: 5010
|
302 |
-
- name: validation
|
303 |
-
num_bytes: 459316
|
304 |
-
num_examples: 2490
|
305 |
-
download_size: 483963712
|
306 |
-
dataset_size: 73031718
|
307 |
-
- config_name: ur
|
308 |
-
features:
|
309 |
-
- name: premise
|
310 |
-
dtype: string
|
311 |
-
- name: hypothesis
|
312 |
-
dtype: string
|
313 |
-
- name: label
|
314 |
-
dtype:
|
315 |
-
class_label:
|
316 |
-
names:
|
317 |
-
0: entailment
|
318 |
-
1: neutral
|
319 |
-
2: contradiction
|
320 |
-
splits:
|
321 |
-
- name: train
|
322 |
-
num_bytes: 96441806
|
323 |
-
num_examples: 392702
|
324 |
-
- name: test
|
325 |
-
num_bytes: 1416249
|
326 |
-
num_examples: 5010
|
327 |
-
- name: validation
|
328 |
-
num_bytes: 699960
|
329 |
-
num_examples: 2490
|
330 |
-
download_size: 483963712
|
331 |
-
dataset_size: 98558015
|
332 |
-
- config_name: vi
|
333 |
-
features:
|
334 |
-
- name: premise
|
335 |
-
dtype: string
|
336 |
-
- name: hypothesis
|
337 |
-
dtype: string
|
338 |
-
- name: label
|
339 |
-
dtype:
|
340 |
-
class_label:
|
341 |
-
names:
|
342 |
-
0: entailment
|
343 |
-
1: neutral
|
344 |
-
2: contradiction
|
345 |
-
splits:
|
346 |
-
- name: train
|
347 |
-
num_bytes: 101417750
|
348 |
-
num_examples: 392702
|
349 |
-
- name: test
|
350 |
-
num_bytes: 1190225
|
351 |
-
num_examples: 5010
|
352 |
-
- name: validation
|
353 |
-
num_bytes: 590688
|
354 |
-
num_examples: 2490
|
355 |
-
download_size: 483963712
|
356 |
-
dataset_size: 103198663
|
357 |
-
- config_name: zh
|
358 |
-
features:
|
359 |
-
- name: premise
|
360 |
-
dtype: string
|
361 |
-
- name: hypothesis
|
362 |
-
dtype: string
|
363 |
-
- name: label
|
364 |
-
dtype:
|
365 |
-
class_label:
|
366 |
-
names:
|
367 |
-
0: entailment
|
368 |
-
1: neutral
|
369 |
-
2: contradiction
|
370 |
-
splits:
|
371 |
-
- name: train
|
372 |
-
num_bytes: 72225161
|
373 |
-
num_examples: 392702
|
374 |
-
- name: test
|
375 |
-
num_bytes: 777937
|
376 |
-
num_examples: 5010
|
377 |
-
- name: validation
|
378 |
-
num_bytes: 384859
|
379 |
-
num_examples: 2490
|
380 |
-
download_size: 483963712
|
381 |
-
dataset_size: 73387957
|
382 |
-
- config_name: all_languages
|
383 |
-
features:
|
384 |
-
- name: premise
|
385 |
-
dtype:
|
386 |
-
translation:
|
387 |
-
languages:
|
388 |
-
- ar
|
389 |
-
- bg
|
390 |
-
- de
|
391 |
-
- el
|
392 |
-
- en
|
393 |
-
- es
|
394 |
-
- fr
|
395 |
-
- hi
|
396 |
-
- ru
|
397 |
-
- sw
|
398 |
-
- th
|
399 |
-
- tr
|
400 |
-
- ur
|
401 |
-
- vi
|
402 |
-
- zh
|
403 |
-
- name: hypothesis
|
404 |
-
dtype:
|
405 |
-
translation_variable_languages:
|
406 |
-
languages:
|
407 |
-
- ar
|
408 |
-
- bg
|
409 |
-
- de
|
410 |
-
- el
|
411 |
-
- en
|
412 |
-
- es
|
413 |
-
- fr
|
414 |
-
- hi
|
415 |
-
- ru
|
416 |
-
- sw
|
417 |
-
- th
|
418 |
-
- tr
|
419 |
-
- ur
|
420 |
-
- vi
|
421 |
-
- zh
|
422 |
-
num_languages: 15
|
423 |
-
- name: label
|
424 |
-
dtype:
|
425 |
-
class_label:
|
426 |
-
names:
|
427 |
-
0: entailment
|
428 |
-
1: neutral
|
429 |
-
2: contradiction
|
430 |
-
splits:
|
431 |
-
- name: train
|
432 |
-
num_bytes: 1581474731
|
433 |
-
num_examples: 392702
|
434 |
-
- name: test
|
435 |
-
num_bytes: 19387508
|
436 |
-
num_examples: 5010
|
437 |
-
- name: validation
|
438 |
-
num_bytes: 9566255
|
439 |
-
num_examples: 2490
|
440 |
-
download_size: 483963712
|
441 |
-
dataset_size: 1610428494
|
442 |
-
---
|
443 |
-
|
444 |
-
# Dataset Card for "xnli"
|
445 |
-
|
446 |
-
## Table of Contents
|
447 |
-
- [Dataset Description](#dataset-description)
|
448 |
-
- [Dataset Summary](#dataset-summary)
|
449 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
450 |
-
- [Languages](#languages)
|
451 |
-
- [Dataset Structure](#dataset-structure)
|
452 |
-
- [Data Instances](#data-instances)
|
453 |
-
- [Data Fields](#data-fields)
|
454 |
-
- [Data Splits](#data-splits)
|
455 |
-
- [Dataset Creation](#dataset-creation)
|
456 |
-
- [Curation Rationale](#curation-rationale)
|
457 |
-
- [Source Data](#source-data)
|
458 |
-
- [Annotations](#annotations)
|
459 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
460 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
461 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
462 |
-
- [Discussion of Biases](#discussion-of-biases)
|
463 |
-
- [Other Known Limitations](#other-known-limitations)
|
464 |
-
- [Additional Information](#additional-information)
|
465 |
-
- [Dataset Curators](#dataset-curators)
|
466 |
-
- [Licensing Information](#licensing-information)
|
467 |
-
- [Citation Information](#citation-information)
|
468 |
-
- [Contributions](#contributions)
|
469 |
-
|
470 |
-
## Dataset Description
|
471 |
-
|
472 |
-
- **Homepage:** [https://www.nyu.edu/projects/bowman/xnli/](https://www.nyu.edu/projects/bowman/xnli/)
|
473 |
-
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
474 |
-
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
475 |
-
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
476 |
-
- **Size of downloaded dataset files:** 7384.70 MB
|
477 |
-
- **Size of the generated dataset:** 3076.99 MB
|
478 |
-
- **Total amount of disk used:** 10461.69 MB
|
479 |
-
|
480 |
-
### Dataset Summary
|
481 |
-
|
482 |
-
XNLI is a subset of a few thousand examples from MNLI which has been translated
|
483 |
-
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
|
484 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
485 |
-
B) and is a classification task (given two sentences, predict one of three
|
486 |
-
labels).
|
487 |
-
|
488 |
-
### Supported Tasks and Leaderboards
|
489 |
-
|
490 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
491 |
-
|
492 |
-
### Languages
|
493 |
-
|
494 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
495 |
-
|
496 |
-
## Dataset Structure
|
497 |
-
|
498 |
-
### Data Instances
|
499 |
-
|
500 |
-
#### all_languages
|
501 |
-
|
502 |
-
- **Size of downloaded dataset files:** 461.54 MB
|
503 |
-
- **Size of the generated dataset:** 1535.82 MB
|
504 |
-
- **Total amount of disk used:** 1997.37 MB
|
505 |
-
|
506 |
-
An example of 'train' looks as follows.
|
507 |
-
```
|
508 |
-
This example was too long and was cropped:
|
509 |
-
|
510 |
-
{
|
511 |
-
"hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...",
|
512 |
-
"label": 0,
|
513 |
-
"premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..."
|
514 |
-
}
|
515 |
-
```
|
516 |
-
|
517 |
-
#### ar
|
518 |
-
|
519 |
-
- **Size of downloaded dataset files:** 461.54 MB
|
520 |
-
- **Size of the generated dataset:** 104.26 MB
|
521 |
-
- **Total amount of disk used:** 565.81 MB
|
522 |
-
|
523 |
-
An example of 'validation' looks as follows.
|
524 |
-
```
|
525 |
-
{
|
526 |
-
"hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.",
|
527 |
-
"label": 1,
|
528 |
-
"premise": "وقال، ماما، لقد عدت للمنزل."
|
529 |
-
}
|
530 |
-
```
|
531 |
-
|
532 |
-
#### bg
|
533 |
-
|
534 |
-
- **Size of downloaded dataset files:** 461.54 MB
|
535 |
-
- **Size of the generated dataset:** 122.38 MB
|
536 |
-
- **Total amount of disk used:** 583.92 MB
|
537 |
-
|
538 |
-
An example of 'train' looks as follows.
|
539 |
-
```
|
540 |
-
This example was too long and was cropped:
|
541 |
-
|
542 |
-
{
|
543 |
-
"hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...",
|
544 |
-
"label": 0,
|
545 |
-
"premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..."
|
546 |
-
}
|
547 |
-
```
|
548 |
-
|
549 |
-
#### de
|
550 |
-
|
551 |
-
- **Size of downloaded dataset files:** 461.54 MB
|
552 |
-
- **Size of the generated dataset:** 82.18 MB
|
553 |
-
- **Total amount of disk used:** 543.73 MB
|
554 |
-
|
555 |
-
An example of 'train' looks as follows.
|
556 |
-
```
|
557 |
-
This example was too long and was cropped:
|
558 |
-
|
559 |
-
{
|
560 |
-
"hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .",
|
561 |
-
"label": 0,
|
562 |
-
"premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..."
|
563 |
-
}
|
564 |
-
```
|
565 |
-
|
566 |
-
#### el
|
567 |
-
|
568 |
-
- **Size of downloaded dataset files:** 461.54 MB
|
569 |
-
- **Size of the generated dataset:** 135.71 MB
|
570 |
-
- **Total amount of disk used:** 597.25 MB
|
571 |
-
|
572 |
-
An example of 'validation' looks as follows.
|
573 |
-
```
|
574 |
-
This example was too long and was cropped:
|
575 |
-
|
576 |
-
{
|
577 |
-
"hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...",
|
578 |
-
"label": 1,
|
579 |
-
"premise": "Και είπε, Μαμά, έφτασα στο σπίτι."
|
580 |
-
}
|
581 |
-
```
|
582 |
-
|
583 |
-
### Data Fields
|
584 |
-
|
585 |
-
The data fields are the same among all splits.
|
586 |
-
|
587 |
-
#### all_languages
|
588 |
-
- `premise`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`.
|
589 |
-
- `hypothesis`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`.
|
590 |
-
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
|
591 |
-
|
592 |
-
#### ar
|
593 |
-
- `premise`: a `string` feature.
|
594 |
-
- `hypothesis`: a `string` feature.
|
595 |
-
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
|
596 |
-
|
597 |
-
#### bg
|
598 |
-
- `premise`: a `string` feature.
|
599 |
-
- `hypothesis`: a `string` feature.
|
600 |
-
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
|
601 |
-
|
602 |
-
#### de
|
603 |
-
- `premise`: a `string` feature.
|
604 |
-
- `hypothesis`: a `string` feature.
|
605 |
-
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
|
606 |
-
|
607 |
-
#### el
|
608 |
-
- `premise`: a `string` feature.
|
609 |
-
- `hypothesis`: a `string` feature.
|
610 |
-
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
|
611 |
-
|
612 |
-
### Data Splits
|
613 |
-
|
614 |
-
| name |train |validation|test|
|
615 |
-
|-------------|-----:|---------:|---:|
|
616 |
-
|all_languages|392702| 2490|5010|
|
617 |
-
|ar |392702| 2490|5010|
|
618 |
-
|bg |392702| 2490|5010|
|
619 |
-
|de |392702| 2490|5010|
|
620 |
-
|el |392702| 2490|5010|
|
621 |
-
|
622 |
-
## Dataset Creation
|
623 |
-
|
624 |
-
### Curation Rationale
|
625 |
-
|
626 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
627 |
-
|
628 |
-
### Source Data
|
629 |
-
|
630 |
-
#### Initial Data Collection and Normalization
|
631 |
-
|
632 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
633 |
-
|
634 |
-
#### Who are the source language producers?
|
635 |
-
|
636 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
637 |
-
|
638 |
-
### Annotations
|
639 |
-
|
640 |
-
#### Annotation process
|
641 |
-
|
642 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
643 |
-
|
644 |
-
#### Who are the annotators?
|
645 |
-
|
646 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
647 |
-
|
648 |
-
### Personal and Sensitive Information
|
649 |
-
|
650 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
651 |
-
|
652 |
-
## Considerations for Using the Data
|
653 |
-
|
654 |
-
### Social Impact of Dataset
|
655 |
-
|
656 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
657 |
-
|
658 |
-
### Discussion of Biases
|
659 |
-
|
660 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
661 |
-
|
662 |
-
### Other Known Limitations
|
663 |
-
|
664 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
665 |
-
|
666 |
-
## Additional Information
|
667 |
-
|
668 |
-
### Dataset Curators
|
669 |
-
|
670 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
671 |
-
|
672 |
-
### Licensing Information
|
673 |
-
|
674 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
675 |
-
|
676 |
-
### Citation Information
|
677 |
-
|
678 |
-
```
|
679 |
-
@InProceedings{conneau2018xnli,
|
680 |
-
author = {Conneau, Alexis
|
681 |
-
and Rinott, Ruty
|
682 |
-
and Lample, Guillaume
|
683 |
-
and Williams, Adina
|
684 |
-
and Bowman, Samuel R.
|
685 |
-
and Schwenk, Holger
|
686 |
-
and Stoyanov, Veselin},
|
687 |
-
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
|
688 |
-
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
|
689 |
-
in Natural Language Processing},
|
690 |
-
year = {2018},
|
691 |
-
publisher = {Association for Computational Linguistics},
|
692 |
-
location = {Brussels, Belgium},
|
693 |
-
}
|
694 |
-
```
|
695 |
-
|
696 |
-
|
697 |
-
### Contributions
|
698 |
-
|
699 |
-
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_languages/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f613b5cd81d042c4bb195097aa49f192edbad7e75fba2a5ec655e1a7183e02d
|
3 |
+
size 6769721
|
all_languages/xnli-train-00000-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4f6fd95d0c1f77cf01415b6b28a610662b6607353ce8f9c8558aa04290e095f
|
3 |
+
size 302881429
|
all_languages/xnli-train-00001-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c307a98b5ccdcba5d23ae914e861b7b0065371cdf24d7d6376ed3c1dc76bb9f1
|
3 |
+
size 303637918
|
all_languages/xnli-train-00002-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f92129356eda90eebf26af2c40b9e6415930aaf5e4dc04ed4a7e2d3f41e9f403
|
3 |
+
size 301736501
|
all_languages/xnli-train-00003-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35ed01db7d892d0581094e2be11438266154bd2581d401b967480289b7be682e
|
3 |
+
size 45411019
|
all_languages/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:847585d8b3212f24404e796e849ab35632a4298fa3178e03fcd9434f0710af5f
|
3 |
+
size 3392502
|
ar/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfa53cd45deb1b09bec29cd68c32680cfd7ec6dd74010c0af5158d706e71077c
|
3 |
+
size 391979
|
ar/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a25e67f6f94f0e5d4a9cb6244af6087d3e4f7900641617a43e048ad782edf08a
|
3 |
+
size 58630164
|
ar/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b08cc4729f9f1b3cc27d0c1b5ffb3d24cd169b6c2add1e285779f7e8324bfbc4
|
3 |
+
size 193756
|
bg/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39f664e5f923c40c96bdbe9c2043e641dc9959e8e3b6b332bfea8420fbf4a329
|
3 |
+
size 447340
|
bg/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c21f1a13e2e0d3ee812e94f11375cf0c18fd163f923689832f27a30e1eba690
|
3 |
+
size 65447047
|
bg/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3840a7713ee478d480608a72665a2f1f0de14e41e814c1c82a6e14ca804e68a
|
3 |
+
size 223488
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"ar": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ar", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 107399934, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1294561, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 633009, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 109327504, "size_in_bytes": 593291216}, "bg": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "bg", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 125973545, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1573042, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 774069, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 128320656, "size_in_bytes": 612284368}, "de": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "de", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 84684460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 996496, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 494612, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 86175568, "size_in_bytes": 570139280}, "el": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "el", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 139753678, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1704793, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 841234, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 142299705, "size_in_bytes": 626263417}, "en": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 74444346, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 875142, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 433471, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 75752959, "size_in_bytes": 559716671}, "es": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "es", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 81383604, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 969821, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 478430, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 82831855, "size_in_bytes": 566795567}, "fr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85809099, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1029247, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 510112, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 87348458, "size_in_bytes": 571312170}, "hi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "hi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 170594284, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2073081, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1023923, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 173691288, "size_in_bytes": 657655000}, "ru": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 129859935, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1603474, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 786450, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 132249859, "size_in_bytes": 616213571}, "sw": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "sw", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 69286045, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 871659, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 429858, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 70587562, "size_in_bytes": 554551274}, "th": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "th", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 176063212, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2147023, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1061168, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 179271403, "size_in_bytes": 663235115}, "tr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "tr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71637460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 934942, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 459316, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73031718, "size_in_bytes": 556995430}, "ur": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ur", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96441806, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1416249, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 699960, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 98558015, "size_in_bytes": 582521727}, "vi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "vi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 101417750, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1190225, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 590688, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 103198663, "size_in_bytes": 587162375}, "zh": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "zh", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 72225161, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 777937, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 384859, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73387957, "size_in_bytes": 557351669}, "all_languages": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "id": null, "_type": "Translation"}, "hypothesis": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "num_languages": 15, "id": null, "_type": "TranslationVariableLanguages"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "all_languages", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1581474731, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 19387508, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 9566255, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 1610428494, "size_in_bytes": 2094392206}}
|
|
|
|
de/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8e56533a55a993c12b5add76e51975f3712c3ad7a54095ae71209f0bcc41086
|
3 |
+
size 356131
|
de/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2ed04c2093c573012b7a33e236ee11fccc612bc3fb96e574bf38b5e1e8cabf
|
3 |
+
size 55436760
|
de/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:752e1a2eec82c487473ce83eee9254e4e4fd0833ef4b776968078b03c635d053
|
3 |
+
size 180989
|
el/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ebed26a2c2e92c551b50acc728848dd47fbba982d5986c20a56b8d44dabc8da
|
3 |
+
size 489528
|
el/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:738d8c9bcb751fa0795640144fece6119b6b9701d86189f0988a112016389154
|
3 |
+
size 73814853
|
el/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffc308bf2e9329c11a0bcce8b1d502f97eb8c14abfb86d11f67c6a35d7fe1b2e
|
3 |
+
size 246863
|
en/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18748a9dc5ff5544b3b5499aa62041b9f74e2d57f67611f9876c948476c5c755
|
3 |
+
size 308236
|
en/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce50be7207ad3e3405c29767ca657870e48e54c4aee86b5d372ac41c737ce7e7
|
3 |
+
size 50161922
|
en/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a043157dffe4030b86a6963c7e5b7c8ff96c23e47dad7f4d88d07f9e4b2a77d8
|
3 |
+
size 157206
|
es/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:256788de66603248a2b2660011aba35dd97f847d0b739c0220d00274593d5403
|
3 |
+
size 341924
|
es/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:799af741f795cb8020f6c20430c89af01ce62409de85423c13549e619b8c4dc8
|
3 |
+
size 53162138
|
es/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29272da47443f80fbc87e6417ccc2e372b2b8d3bb4504fe26795f9c36d368643
|
3 |
+
size 173092
|
fr/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dfddfd8273187c14b68c1b3b5fa352acf77fd71ad630118a7e2484da238ff82
|
3 |
+
size 360232
|
fr/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:518f94f0d2c2aae5dc766ffbc278423dc94c5d22d8e797590131352b735024e5
|
3 |
+
size 55425052
|
fr/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4130ecb91284d9754d88eb460c77ab9a6fe27493b9c1ca3ba592e889f24c1a02
|
3 |
+
size 183393
|
hi/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047aa8dc9eb0ff8a8d2ee20437682f966e23a6e1f822e52b814eec230a81e8fc
|
3 |
+
size 492624
|
hi/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42d790c3473ec63e750c86b05810065f4c2da8d21a929bab6270fbf03a6e7a22
|
3 |
+
size 70167281
|
hi/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37c8ce1cf5825a2bed7737aa7b6bf927e6d819068de35b79f118e007b74a5889
|
3 |
+
size 248640
|
ru/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8872a035081a70d5ed76b4da7159cf92682a4a2e29bcb080cd916e9d5b05d670
|
3 |
+
size 477351
|
ru/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7944c40e76b2d643e852f365a354ded1efff827404f8dbb14d14d6dc6f27de6e
|
3 |
+
size 69986523
|
ru/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a23c1873ffb17779492c76a73d3a0a0139f33dbaa2404b83da9d56a5883626b
|
3 |
+
size 238729
|
sw/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61e78abdd7358d648fed51e2c568a3a54716e2cea8ac7be06a25721fa424a3f8
|
3 |
+
size 312254
|
sw/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbed4a892f86cdef3bcc932c151ea5d2c70c21004d4c752e6f1eb933ebbeb497
|
3 |
+
size 45093825
|
sw/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2243ed7749ed460dd71f72eb267dc61cf6507082aad2f8057110f6ba82f1c6bc
|
3 |
+
size 158070
|
th/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea66cf0b17797b706a83f811eb01e2997eb0b97310b331d4cf27e6f288811c60
|
3 |
+
size 503401
|
th/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5957400b9888b4abd2c22aab5bf5145a98c228ebbd447a4529d995809f6ebbba
|
3 |
+
size 76466352
|
th/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69e10090e0b5cfcdee8f9ff8976f198a125029ecd3565cdf8c2ec0ca3b5b054a
|
3 |
+
size 252289
|
tr/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f04079c7e23d9dbb6fa11da888c770648961204ac1bb7d5b0f8d7dd89b183c6a
|
3 |
+
size 338132
|
tr/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13ac9bb4698604a73039c4c183a0c340ab842130b5a3316b295e5588f390e380
|
3 |
+
size 47999787
|
tr/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b061dbff5a513d5287577cafc3c7dc158da9ee01895ba056a9dbf4d661d6b533
|
3 |
+
size 171758
|
ur/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6609558b167db601b9929acd38f28967890b51902c1ba38e239c4a8487f8c23
|
3 |
+
size 427736
|
ur/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbd0092be22cdda814c5e7713894259d6f409b8f969aa8440b42f69ab8a11f2a
|
3 |
+
size 46038911
|
ur/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:222f916a6f951dba8e663f801242405708a3a8261cbce17fd00980d0f9533252
|
3 |
+
size 216135
|
vi/xnli-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a54771601eeb96b2e23c526869e8e0ee655af6f62dc585a2c2b0494f3727dbc
|
3 |
+
size 364125
|
vi/xnli-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c87da5103282745d84fcd8388a56905bdcf51d26ca37630445433c3766af443
|
3 |
+
size 57140046
|
vi/xnli-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a267d0948a84eded722399a02df0cd0d6a6b06ba7af42de4361937a299a71b1d
|
3 |
+
size 185884
|