Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
Indonesian
Size:
100K<n<1M
ArXiv:
Tags:
extractive-summarization
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Large-scale Indonesian Summarization Dataset""" | |
import glob | |
import json | |
import os | |
import re | |
from pathlib import Path | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{id_liputan6, | |
author = {Fajri Koto, Jey Han Lau, Timothy Baldwin}, | |
title = {Liputan6: A Large-scale Indonesian Dataset for Text Summarization}, | |
year = {2020}, | |
url = {https://arxiv.org/abs/2011.00679}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL, | |
an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop | |
benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual | |
BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have | |
low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive | |
summarization models. | |
""" | |
_HOMEPAGE = "https://arxiv.org/abs/2011.00679" | |
_LICENSE = "" | |
class IdLiputan6Config(datasets.BuilderConfig): | |
"""BuilderConfig for IdLiputan6""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for IdLiputan6. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(IdLiputan6Config, self).__init__(**kwargs) | |
class IdLiputan6(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
IdLiputan6Config( | |
name="canonical", | |
version=VERSION, | |
description="Canonical Liputan6 dataset", | |
), | |
IdLiputan6Config( | |
name="xtreme", | |
version=VERSION, | |
description="Xtreme Liputan6 dataset", | |
), | |
] | |
def manual_download_instructions(self): | |
return """\ | |
You need to manually request the liputan6 dataset using the form in https://github.com/fajri91/sum_liputan6/ | |
and uncompress it. The liputan6 dataset can then be loaded using the following command | |
`datasets.load_dataset("id_liputan6", 'canonical', data_dir="<path/to/uncompressed_folder>")` or | |
`datasets.load_dataset("id_liputan6", 'xtreme', data_dir="<path/to/uncompressed_folder>")`. | |
""" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"clean_article": datasets.Value("string"), | |
"clean_summary": datasets.Value("string"), | |
"extractive_summary": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) | |
if not os.path.exists(data_dir): | |
raise FileNotFoundError( | |
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('id_liputan6', " | |
"'canonical', data_dir=...)`. Manual download instructions:\n{self.manual_download_instructions}" | |
) | |
split_generators = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"article_dir": os.path.join(data_dir, f"{self.config.name}/dev"), | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"article_dir": os.path.join(data_dir, f"{self.config.name}/test"), | |
"split": "test", | |
}, | |
), | |
] | |
if self.config.name == "canonical": | |
split_generators.append( | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"article_dir": os.path.join(data_dir, f"{self.config.name}/train"), | |
"split": "train", | |
}, | |
) | |
) | |
return split_generators | |
def _generate_examples(self, article_dir, split): | |
detokenizers = [ | |
[re.compile(r"([Ll])iputan6 . com "), r"\1iputan6.com"], | |
[re.compile(r" ([.,:])"), r"\1"], | |
[re.compile(r"\( ([^)]+) \)"), r"(\1)"], | |
[re.compile(r"\" ([^\"]+) \""), r'"\1"'], | |
[re.compile(r"\[ ([^]]+) ]"), r"[\1]"], | |
] | |
logger.info("⏳ Generating %s examples from = %s", split, article_dir) | |
guid = 0 | |
for path in sorted( | |
glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True), key=lambda p: int(Path(p).stem) | |
): | |
with open(path, encoding="utf-8") as f: | |
data = json.load(f) | |
clean_article = " ".join([" ".join(i) for i in data["clean_article"]]) | |
for d in detokenizers: | |
clean_article = d[0].sub(d[1], clean_article) | |
clean_summary = " ".join([" ".join(i) for i in data["clean_summary"]]) | |
for d in detokenizers: | |
clean_summary = d[0].sub(d[1], clean_summary) | |
extractive_summary = " ".join([" ".join(data["clean_article"][i]) for i in data["extractive_summary"]]) | |
for d in detokenizers: | |
extractive_summary = d[0].sub(d[1], extractive_summary) | |
yield guid, { | |
"id": str(data["id"]), | |
"url": data["url"], | |
"clean_article": clean_article, | |
"clean_summary": clean_summary, | |
"extractive_summary": extractive_summary, | |
} | |
guid += 1 | |