File size: 2,206 Bytes
b7a352e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8648c0c
 
 
 
 
 
b7a352e
 
 
8648c0c
 
 
 
 
 
b7a352e
 
 
8648c0c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# The Cancer Genome Atlas Ovarian Cancer (NSCLC-Radiomics)

The models featured in this repository uses images from the publically available [NSCLC-Radiomics](https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics) Dataset. Download the data from TCIA with **Descriptive Directory Name** download option.

## Converting Images

Convert DICOM images and segmentation to NIFTI format using [pydicom-seg](https://razorx89.github.io/pydicom-seg/guides/read.html).
    - `python convert_segm.py`

## Segmentations

Images will have one of the following segmentation files:

```
─ seg-Esophagus.nii.gz
─ seg-GTV-1.nii.gz
─ seg-Heart.nii.gz
─ seg-Lung-Left.nii.gz
─ seg-Lung-Right.nii.gz
─ seg-Spinal-Cord.nii.gz
```

## Requirements

pandas==1.5.0
pydicom==2.3.1
pydicom-seg==0.4.1
SimpleITK==2.2.0
tqdm==4.64.1

## Citation

If using this repository, please cite the following works:

```
Data Citation

  Aerts, H. J. W. L., Wee, L., Rios Velazquez, E., Leijenaar, R. T. H., Parmar, C., Grossmann, P.,
  Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F.,
  Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2019).
  Data From NSCLC-Radiomics (version 4) [Data set].
  The Cancer Imaging Archive.
  https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI 

Publication Citation

  Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S.,
  Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M.,
  Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2014, June 3).
  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
  Nature Communications. Nature Publishing Group.
  https://doi.org/10.1038/ncomms5006  (link)

TCIA Citation

  Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M,
  Tarbox L, Prior F.
  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository,
  Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057.
  https://doi.org/10.1007/s10278-013-9622-7
```