|
import csv |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
Dusha is a bi-modal corpus suitable for speech emotion recognition (SER) tasks. |
|
The dataset consists of audio recordings with Russian speech and their emotional labels. |
|
The corpus contains approximately 350 hours of data. Four basic emotions that usually appear in a dialog with |
|
a virtual assistant were selected: Happiness (Positive), Sadness, Anger and Neutral emotion. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_DATA_URL_TRAIN = "https://huggingface.co/datasets/firstap/audio_s1/resolve/main/data/train.tar.xz" |
|
_DATA_URL_TEST = "https://huggingface.co/datasets/firstap/audio_s1/resolve/main/data/test.tar.xz" |
|
_METADATA_URL_TRAIN = "https://huggingface.co/datasets/firstap/audio_s1/resolve/main/data/train.csv" |
|
_METADATA_URL_TEST = "https://huggingface.co/datasets/firstap/audio_s1/resolve/main/data/test.csv" |
|
|
|
|
|
class Dusha(datasets.GeneratorBasedBuilder): |
|
DEFAULT_WRITER_BATCH_SIZE = 16 |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"label": datasets.ClassLabel(num_classes=2, names=['no_stress', 'stress']), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
metadata_train = dl_manager.download(_METADATA_URL_TRAIN) |
|
metadata_test = dl_manager.download(_METADATA_URL_TEST) |
|
archive_train = dl_manager.download(_DATA_URL_TRAIN) |
|
archive_test = dl_manager.download(_DATA_URL_TEST) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"audio_files": dl_manager.iter_archive(archive_train), |
|
"metadata": metadata_train}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_files": dl_manager.iter_archive(archive_test), |
|
"metadata": metadata_test}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, audio_files, metadata): |
|
examples = dict() |
|
|
|
with open(metadata, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f, delimiter=",") |
|
next(csv_reader) |
|
for row in csv_reader: |
|
audio_path, label = row |
|
examples[audio_path] = { |
|
"file": audio_path, |
|
"label": label, |
|
} |
|
|
|
key = 0 |
|
for path, f in audio_files: |
|
if path in examples: |
|
audio = {"path": path, "bytes": f.read()} |
|
yield key, {**examples[path], "audio": audio} |
|
key += 1 |
|
|