prompt
stringlengths
1.74k
34.3k
ref
stringlengths
4
432
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zju3dv/nr_in_a_room # Path: models/perceptual_model.py class VGG16_for_Perceptual(nn.Module): class CLIP_for_Perceptual(nn.Module): def __init__(self, requires_grad=False, n_layers=[2, 4, 14, 21]): def forward(self, x): def perceptual_loss( self, pred: torch.Tensor, gt: torch.Tensor, low_level: bool = True, ): def mse_loss(source, target): def __init__(self, requires_grad=False, model_name="ViT-B/32"): def perceptual_loss(self, pred: torch.Tensor, gt: torch.Tensor, **kwargs): def mse_loss(source, target): def sim_loss(source, target): def compute_img_embedding(self, img: torch.Tensor): def get_perceptual_loss( perceptual_net: Union[VGG16_for_Perceptual, CLIP_for_Perceptual], pred: torch.Tensor, gt: torch.Tensor, low_level: bool = True, ): # Path: models/perceptual_model.py def get_perceptual_loss( perceptual_net: Union[VGG16_for_Perceptual, CLIP_for_Perceptual], pred: torch.Tensor, gt: torch.Tensor, low_level: bool = True, ): """ perceptual loss is suitable for whole images, not sampled rays. pred: [B, 3, H, W] gt: [B, 3, H, W] """ assert pred.shape == gt.shape if pred.shape[2:4] != torch.Size((244, 244)): norm = Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711) ) # pred = norm(nn.Upsample((244, 244), mode="bilinear", align_corners=True)(pred)) # gt = norm(nn.Upsample((244, 244), mode="bilinear", align_corners=True)(gt)) pred = norm(pred) gt = norm(gt) return perceptual_net.perceptual_loss(pred, gt, low_level=low_level) # Path: models/perceptual_model.py class VGG16_for_Perceptual(nn.Module): def __init__(self, requires_grad=False, n_layers=[2, 4, 14, 21]): super(VGG16_for_Perceptual, self).__init__() from torchvision import models vgg_pretrained_features = models.vgg16( pretrained=True ).features # TODO: check requires_grad self.slice0 = nn.Sequential() self.slice1 = nn.Sequential() self.slice2 = nn.Sequential() self.slice3 = nn.Sequential() for x in range(n_layers[0]): # relu1_1 self.slice0.add_module(str(x), vgg_pretrained_features[x]) for x in range(n_layers[0], n_layers[1]): # relu1_2 self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(n_layers[1], n_layers[2]): # relu3_2 self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(n_layers[2], n_layers[3]): # relu4_2 self.slice3.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, x): # TODO: normalize h0 = self.slice0(x) h1 = self.slice1(h0) h2 = self.slice2(h1) h3 = self.slice3(h2) return h0, h1, h2, h3 def perceptual_loss( self, pred: torch.Tensor, gt: torch.Tensor, low_level: bool = True, ): def mse_loss(source, target): return torch.mean((source - target) ** 2) perceptual_loss = 0 if low_level: pred_0 = self.slice0(pred) gt_0 = self.slice0(gt) perceptual_loss += mse_loss(pred_0, gt_0) else: pred_0, pred_1, pred_2, pred_3 = self.forward(pred) gt_0, gt_1, gt_2, gt_3 = self.forward(gt) perceptual_loss += mse_loss(pred_0, gt_0) perceptual_loss += mse_loss(pred_1, gt_1) perceptual_loss += mse_loss(pred_2, gt_2) perceptual_loss += mse_loss(pred_3, gt_3) return perceptual_loss # Path: optim/patch_perceptual.py import torch import numpy as np import cv2 from models import perceptual_model from models.perceptual_model import get_perceptual_loss, VGG16_for_Perceptual from typing import List, Optional, Any, Dict, Union # import lpips # loss_fn_vgg = lpips.LPIPS(net="vgg").cuda() def get_mask_bbox(mask): # crop image true_indices = np.nonzero(mask) min_h, min_w = np.min(true_indices[0]), np.min(true_indices[1]) max_h, max_w = np.max(true_indices[0]), np.max(true_indices[1]) # print(min_h, min_w) # print(max_h, max_w) # img = img[min_h:max_h+1,min_w:max_w+1,:] return min_h, max_h, min_w, max_w def patch_perceptual_loss(
perceptual_net: VGG16_for_Perceptual,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ShramanPramanick/VoLTA # Path: Multimodal_Fine_Grained/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_feature_extractors.py def make_roi_mask_feature_extractor(cfg): func = _ROI_MASK_FEATURE_EXTRACTORS[cfg.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR] return func(cfg) # Path: Multimodal_Fine_Grained/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_predictors.py def make_roi_mask_predictor(cfg): func = _ROI_MASK_PREDICTOR[cfg.MODEL.ROI_MASK_HEAD.PREDICTOR] return func(cfg) # Path: Multimodal_Fine_Grained/maskrcnn_benchmark/modeling/roi_heads/mask_head/inference.py def make_roi_mask_post_processor(cfg): if cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS: mask_threshold = cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD masker = Masker(threshold=mask_threshold, padding=1) else: masker = None mdetr_style_aggregate_class_num = cfg.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM mask_post_processor = MaskPostProcessor( masker, mdetr_style_aggregate_class_num, vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL") ) return mask_post_processor # Path: Multimodal_Fine_Grained/maskrcnn_benchmark/modeling/roi_heads/mask_head/loss.py def make_roi_mask_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) loss_evaluator = MaskRCNNLossComputation( matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION, vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL") ) return loss_evaluator # Path: Multimodal_Fine_Grained/maskrcnn_benchmark/modeling/roi_heads/mask_head/mask_head.py import torch from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList from .roi_mask_feature_extractors import make_roi_mask_feature_extractor from .roi_mask_predictors import make_roi_mask_predictor from .inference import make_roi_mask_post_processor from .loss import make_roi_mask_loss_evaluator # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. def keep_only_positive_boxes(boxes): """ Given a set of BoxList containing the `labels` field, return a set of BoxList for which `labels > 0`. Arguments: boxes (list of BoxList) """ assert isinstance(boxes, (list, tuple)) assert isinstance(boxes[0], BoxList) assert boxes[0].has_field("labels") positive_boxes = [] positive_inds = [] num_boxes = 0 for boxes_per_image in boxes: labels = boxes_per_image.get_field("labels") inds_mask = labels > 0 inds = inds_mask.nonzero().squeeze(1) positive_boxes.append(boxes_per_image[inds]) positive_inds.append(inds_mask) return positive_boxes, positive_inds class ROIMaskHead(torch.nn.Module): def __init__(self, cfg): super(ROIMaskHead, self).__init__() self.cfg = cfg.clone() self.feature_extractor = make_roi_mask_feature_extractor(cfg) self.predictor = make_roi_mask_predictor(cfg)
self.post_processor = make_roi_mask_post_processor(cfg)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: earthcube-lab/textnoisr # Path: textnoisr/noise.py class CharNoiseAugmenter: _AVAILABLE_ACTIONS = ("insert", "swap", "substitute", "delete") def __init__( self, noise_level: float, actions: tuple[str, ...] = _AVAILABLE_ACTIONS, character_set: tuple[str, ...] = tuple(string.ascii_letters), seed: int | None = None, natural_language_swap_correction: float = 1.052, ) -> None: def _random_success(self, p: float) -> bool: def _random_char(self, p: float, character_set: tuple[str, ...]) -> str: def insert_random_chars(self, text: str, p: float) -> str: def _choose_another_character(self, char): def substitute_random_chars(self, text: str, p: float) -> str: def delete_random_chars(self, text: str, p: float) -> str: def consecutive_swap_random_chars(self, text: str, p: float) -> str: def add_noise(self, text: str | list[str]) -> str | list[str]: # Path: textnoisr/noise_dataset.py def _add_noise_to_example( example: dict, noise_augmenter: noise.CharNoiseAugmenter, feature_name: str, ) -> dict: def add_noise( dataset: Dataset, noise_augmenter: noise.CharNoiseAugmenter, feature_name: str = "tokens", **kwargs: Any, ) -> Dataset: # Path: tests/textnoisr/test_noise_dataset.py from math import isclose from datasets import load_dataset as hf_load_dataset from evaluate import load from textnoisr import noise, noise_dataset import pytest ABS_TOLERANCE = 1.5e-2 REL_TOLERANCE = 1.5e-2 @pytest.fixture() def dataset100_text(): return hf_load_dataset("rotten_tomatoes", split="train") @pytest.fixture() def dataset100(dataset100_text): def split_tokens(item): item["tokens"] = item["text"].split(" ") return item return dataset100_text.map(split_tokens) cer = load("cer") @pytest.mark.nightly @pytest.mark.parametrize( "noise_level,actions", [ (0.001, ["substitute"]), (0.001, ["insert"]), (0.001, ["delete"]), (0.001, ["swap"]), (0.001, ["delete", "insert", "substitute", "swap"]), (0.01, ["substitute"]), (0.01, ["insert"]), (0.01, ["delete"]), (0.01, ["swap"]), (0.01, ["delete", "insert", "substitute", "swap"]), (0.1, ["substitute"]), (0.1, ["insert"]), (0.1, ["delete"]), (0.1, ["swap"]), (0.1, ["delete", "insert", "substitute", "swap"]), (0.15, ["substitute"]), (0.15, ["insert"]), (0.15, ["delete"]), (0.15, ["swap"]), (0.15, ["delete", "insert", "substitute", "swap"]), (0.20, ["substitute"]), (0.20, ["insert"]), (0.20, ["delete"]), (0.20, ["swap"]), (0.20, ["delete", "insert", "substitute", "swap"]), ], ) @pytest.mark.filterwarnings("ignore:jiwer.compute_measures") def test_add_noise_on_split_into_words(dataset100, noise_level, actions): noised_dataset = noise_dataset.add_noise( dataset100,
noise.CharNoiseAugmenter(noise_level=noise_level, actions=actions, seed=42),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: oven-lab/tuya_cloud_map_extractor # Path: custom_components/tuya_cloud_map_extractor/tuya_vacuum_map_extractor/const.py class ServerError(Exception): pass # Path: custom_components/tuya_cloud_map_extractor/tuya_vacuum_map_extractor/const.py class ClientIDError(Exception): pass # Path: custom_components/tuya_cloud_map_extractor/tuya_vacuum_map_extractor/const.py class ClientSecretError(Exception): pass # Path: custom_components/tuya_cloud_map_extractor/tuya_vacuum_map_extractor/const.py class DeviceIDError(Exception): pass # Path: custom_components/tuya_cloud_map_extractor/tuya_vacuum_map_extractor/tuya.py import datetime import hmac import requests from .const import ServerError, ClientIDError, ClientSecretError, DeviceIDError def _get_sign(client_id: str, secret_key: str, url: str, t: int, token: str): empty_hash = "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" signstr = client_id + token + t + "GET" + "\n" + empty_hash + "\n" + "" + "\n" + url return hmac.new( secret_key.encode(), msg=signstr.encode(), digestmod="sha256" ).hexdigest() def tuyarequest( server: str, url: str, client_id: str, secret_key: str, token="" ) -> dict: """Handles authentication with provided token and makes request to tuya servers.""" t = str(int(round(datetime.datetime.timestamp(datetime.datetime.now()) * 1000, 0))) sign = _get_sign( client_id=client_id, secret_key=secret_key, url=url, t=t, token=token ) headers = { "sign_method": "HMAC-SHA256", "client_id": client_id, "t": t, "sign": sign.upper(), } if token != "": headers["access_token"] = token return requests.get(url=server + url, headers=headers, timeout=2.5).json() def get_download_link( server: str, client_id: str, secret_key: str, device_id: str ) -> str: """Gets the download link of the real time map.""" url = "/v1.0/token?grant_type=1" response = tuyarequest( server=server, url=url, client_id=client_id, secret_key=secret_key ) if not response["success"]: if response["msg"] == "clientId is invalid": raise ClientIDError("Invalid Client ID") elif response["msg"] == "sign invalid": raise ClientSecretError("Invalid Client Secret") elif "cross-region access is not allowed" in response["msg"]: raise ServerError("Wrong server region. Cross-region access is not allowed.") else: raise RuntimeError("Request failed - Response: ", response) access_token = response["result"]["access_token"] url = "/v1.0/users/sweepers/file/" + device_id + "/realtime-map" response = tuyarequest( server=server, url=url, client_id=client_id, secret_key=secret_key, token=access_token, ) if not response["success"]: if response["msg"] == "permission deny":
raise DeviceIDError("Invalid Device ID")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mlbio-epfl/hume # Path: argparser.py def parse_args(args): parser = argparse.ArgumentParser() parser.add_argument('--phi1_path', type=str, required=True, help="Path to the embeddings in first representation space") parser.add_argument('--phi2_path', type=str, required=True, help="Path to the embeddings in second representation space") parser.add_argument('--phi1_path_val', type=str, help="Path to the embeddings in first representation space to compute metrics." " If not provided phi1_path will be also used for evaluation.") parser.add_argument('--phi2_path_val', type=str, help="Path to the embeddings in second representation space to compute metrics." " If not provided phi2_path will be also used for evaluation.") parser.add_argument('--gt_labels_path', type=str, required=True, help="Path to ground truth labeling to compute metrics") parser.add_argument('--k', type=int, default=10, help="Number of classes") parser.add_argument('--inner_lr', type=float, default=0.001, help="Step size for the inner optimization") parser.add_argument('--outer_lr', type=float, default=0.001, help="Step size for the task encoder's updates") parser.add_argument('--tau', type=float, default=0.1, help="Temperature hyperparameter") parser.add_argument('--H_reg', type=float, default=10., help="Entropy regularization coefficient") parser.add_argument('--num_iters', type=int, default=1000, help="Number of training iterations") parser.add_argument('--adaptation_steps', type=int, default=300, help="Number of inner iterations to fit linear model") parser.add_argument('--num_subsets', type=int, default=20, help="Number of (Xtr, Xte) subsets for averaging HUME's loss") parser.add_argument('--subset_size', type=int, default=10000, help="Size of union of each (Xtr, Xte) subset") parser.add_argument('--train_fraction', type=float, default=0.9, help="Fraction of args.subset_size to define size of Xtr") parser.add_argument('--no_anneal', dest='anneal', action='store_false', help="Turn off temperature and learning rate annealing") parser.add_argument('--no_rand_init', dest='rand_init', action='store_false', help="Start from random inner w0 at each outer iter or generate random w0 once") parser.add_argument('--device', type=str, default="cuda", help="Use cuda or cpu") parser.add_argument('--exp_path', type=str, default="./linear_tasks/", help="Path to save experiment's results") parser.add_argument('--save_all', action='store_true', help="If used then task_encoder is saved at each iteration") parser.add_argument('--seed', type=int, default=42, help='Random seed') return parser.parse_args(args) # Path: activations.py class Sparsemax(torch.nn.Module): def __init__(self, dim=0): self.dim = dim super(Sparsemax, self).__init__() def forward(self, input): return sparsemax(input, self.dim) # Path: utils.py def fix_seed(seed): torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Path: utils.py def get_cv_score(X, y): cv = KFold(n_splits=10, random_state=1, shuffle=True) clf = LogisticRegression(penalty=None) scores = cross_val_score(clf, X, y, scoring='accuracy', cv=cv, n_jobs=-1) return np.mean(scores) # Path: utils.py def check_both_none_or_not_none(arg1, arg2): return (arg1 is None and arg2 is None) or (arg1 is not None and arg2 is not None) # Path: metrics.py def cluster_acc(y_pred, y_true, return_matched=False): """ Calculate clustering accuracy. Require scipy installed # Arguments y: true labels, numpy.array with shape `(n_samples,)` y_pred: predicted labels, numpy.array with shape `(n_samples,)` # Return accuracy, in [0,1] """ y_true = y_true.astype(np.int64) assert y_pred.size == y_true.size D = max(y_pred.max(), y_true.max()) + 1 w = np.zeros((D, D), dtype=np.int64) for i in range(y_pred.size): w[y_pred[i], y_true[i]] += 1 row_ind, col_ind = linear_sum_assignment(w.max() - w) if return_matched: matched = np.array(list(map(lambda i: col_ind[i], y_pred))) return w[row_ind, col_ind].sum() / y_pred.size, matched else: return w[row_ind, col_ind].sum() / y_pred.size # Path: metrics.py def cluster_ari(y_pred, y_true): """ Calculate adjusted rand index. Require scikit-learn installed # Arguments y: true labels, numpy.array with shape `(n_samples,)` y_pred: predicted labels, numpy.array with shape `(n_samples,)` # Return ARI, in [0,1] """ return adjusted_rand_score(y_true, y_pred) # Path: hume.py import os import pickle import torch import torch.nn as nn import torch.nn.functional as F import learn2learn as l2l import numpy as np from tqdm import tqdm from argparser import parse_args from activations import Sparsemax from utils import fix_seed, get_cv_score, check_both_none_or_not_none from metrics import cluster_acc, cluster_ari def run(args=None): args = parse_args(args) device = torch.device(args.device) fix_seed(args.seed) if not os.path.exists(args.exp_path): os.makedirs(args.exp_path) phi1 = np.load(args.phi1_path).astype(np.float32) phi2 = np.load(args.phi2_path).astype(np.float32)
assert check_both_none_or_not_none(args.phi1_path_val, args.phi2_path_val)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: MaxDude132/django-register-field # Path: django_register/base.py class Register: def __init__(self): self._key_to_class = {} self._class_to_key = {} def register(self, klass, db_key=None): if db_key is None: try: db_key = klass.label except AttributeError: raise ValueError( _( "The class {klass} does not have a label. Define " "one or pass a db_key to be used as database value." ).format(klass=klass) ) if db_key in self._key_to_class: raise ValueError(_("Key {key} already registered.").format(key=db_key)) if klass in self._class_to_key: raise ValueError(_("Class {klass} already registered.").format(klass=klass)) self._key_to_class[db_key] = klass self._class_to_key[klass] = db_key return klass def from_key(self, value): try: return self._key_to_class[value] except (KeyError, TypeError): raise ValidationError( _("Value {value} not a registered key.").format(value=value) ) def from_class(self, value): try: return self._class_to_key[value] except KeyError: raise ValidationError( _("Value {value} not a registered class.").format(value=value) ) def get_key(self, value): try: self.from_key(value) except ValidationError: return self.from_class(value) return value def get_class(self, value): try: self.from_class(value) except ValidationError: return self.from_key(value) return value @property def max_length(self): if self._key_to_class: return max(len(key) for key in self._key_to_class) @property def choices(self): return [ (k, self._get_verbose_name(v, k)) for k, v in self._key_to_class.items() ] @property def flatchoices(self): return [ (v, self._get_verbose_name(v, k)) for k, v in self._key_to_class.items() ] def _get_verbose_name(self, klass, key): return getattr(klass, "verbose_name", key.replace("_", " ").title()) def __iter__(self): return iter(self._key_to_class.values()) # Path: django_register/base.py class RegisterChoices(metaclass=RegisterChoicesMeta): def __new__(cls, klass): return cls.register.get_class(klass) # Path: django_register/base.py class RegisterField(models.CharField): description = _("Store a string, return the associated class") def __init__(self, *args, **kwargs): if "register" not in kwargs and "choices" not in kwargs: raise ValueError(_("You must provide choices to the RegisterField.")) if "register" not in kwargs and not hasattr(kwargs["choices"], "register"): raise ValueError(_("Choices must be a RegisterChoices instance.")) # When building the migrations, the register cannot be in the choices. # It will be passed individually, so we take it from there. self.register: Register = ( kwargs.pop("register") if "register" in kwargs else kwargs["choices"].register ) if "choices" not in kwargs: kwargs["choices"] = self.register.choices if "max_length" not in kwargs and (max_length := self.register.max_length): kwargs["max_length"] = max_length if "default" in kwargs: try: kwargs["default"] = self.register.get_key(kwargs["default"]) except ValidationError: pass super().__init__(*args, **kwargs) def from_db_value(self, value, expression, connection): if not value: return value return self.register.get_class(value) def get_default(self): default = super().get_default() if default: return self.register.get_class(default) return default def to_python(self, value): if not value: return value return self.register.get_class(value) def get_prep_value(self, value): if not value: return value return self.register.get_key(value) def value_from_object(self, obj): value = super().value_from_object(obj) return self.get_prep_value(value) def deconstruct(self): name, path, args, kwargs = super().deconstruct() kwargs.pop("choices", None) kwargs["register"] = self.register return name, path, args, kwargs def clean(self, value, model_instance): """ We need to override clean because it runs the validations on the Python object instead of on the database string. """ value = self.get_prep_value(value) self.validate(value, model_instance) self.run_validators(value) return self.to_python(value) def _get_flatchoices(self): return self.register.flatchoices flatchoices = property(_get_flatchoices) def _register_choices(self): return self.register.choices def _register_choices_set(self, value): return choices = property(_register_choices, _register_choices_set) _choices = property(_register_choices, _register_choices_set) # Path: tests/models.py from dataclasses import dataclass from django.db import models from django_register import Register, RegisterChoices, RegisterField # Standard libraries # Django # django_register @dataclass(unsafe_hash=True) class CountryInfo: population: int capital: str class CountryChoices(RegisterChoices): CANADA = CountryInfo(population=37_742_154, capital="Ottawa") FRANCE = CountryInfo(population=65_273_511, capital="Paris") GERMANY = CountryInfo(population=83_783_942, capital="Berlin") UNITED_STATES = CountryInfo(population=331_900_000, capital="Washington") @dataclass(unsafe_hash=True) class ContinentInfo: label: str @dataclass(unsafe_hash=True) class FoodInfo: verbose_name: str
food_register = Register()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hsouri/bob-classification # Path: medical_chexpert/util/custom_transforms.py class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[.1, 2.]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x # Path: medical_chexpert/util/augment.py def new_data_aug_generator(args=None, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): img_size = args.input_size remove_random_resized_crop = args.src # mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] primary_tfl = [] scale = (0.08, 1.0) interpolation = 'bicubic' if remove_random_resized_crop: primary_tfl = [ transforms.Resize(img_size, interpolation=3), transforms.RandomCrop(img_size, padding=4, padding_mode='reflect'), transforms.RandomHorizontalFlip() ] else: primary_tfl = [ RandomResizedCropAndInterpolation( img_size, scale=scale, interpolation=interpolation), transforms.RandomHorizontalFlip() ] secondary_tfl = [transforms.RandomChoice([gray_scale(p=1.0), Solarization(p=1.0), GaussianBlur(p=1.0)])] # if args.color_jitter is not None and not args.color_jitter == 0: # secondary_tfl.append(transforms.ColorJitter(args.color_jitter, args.color_jitter, args.color_jitter)) final_tfl = [ transforms.ToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std)) ] return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) # Path: medical_chexpert/util/datasets.py import os import PIL import torch from torchvision import datasets, transforms from timm.data import create_transform from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from util.dataloader_med import RetinaDataset, Augmentation, Node21, ChestX_ray14, Covidx, CheXpert from .custom_transforms import GaussianBlur from .augment import new_data_aug_generator # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- def build_dataset(is_train, args): transform = build_transform(is_train, args) root = os.path.join(args.data_path, 'train' if is_train else 'val') dataset = datasets.ImageFolder(root, transform=transform) print(dataset) return dataset def build_dataset_chest_xray(split, args): is_train = (split == 'train') # transform = build_transform(is_train, args) if args.build_timm_transform: transform = build_transform(is_train, args) else: if is_train: if args.aug_strategy == 'simclr_with_randrotation': print(args.aug_strategy) transform = transforms.Compose([ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomRotation(degrees=(0, 45)), transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Salz0/telegram_flea # Path: models.py class Message(BaseModel): """The model for the Telegram message.""" from_user: fields.ForeignKeyRelation[User] = fields.ForeignKeyField( "bot.User", related_name="messages" ) id = fields.IntField(pk=True, generated=True) # In Telegram, `message_id` is unique only **within a chat**. message_id = fields.BigIntField() # for the sake of safety, this is a `BigIntField` # TODO: [3/20/2023 by Mykola] Make this a foreign key to the Chat model chat_id = fields.BigIntField() reply_to_message: fields.ForeignKeyRelation[Message] = fields.ForeignKeyField( "bot.Message", related_name="replies", null=True ) content_type = fields.TextField(null=True) text = fields.TextField(null=True) date = fields.DatetimeField() is_handled = fields.BooleanField(default=False) content = fields.BinaryField(null=True) status = fields.CharField(max_length=32, null=True) complete_message_json = fields.JSONField(null=True) replies: fields.BackwardFKRelation[Message] # Path: models.py class User(BaseModel): """ The model for the Telegram user. This model stores all the information about the user. It is also used to store all the authentication-related information. """ id = fields.BigIntField(pk=True, generated=False) username = fields.CharField(max_length=32, null=True) first_name = fields.TextField(null=True) last_name = fields.TextField(null=True) phone_number = fields.CharField(max_length=14, null=True) language_code = fields.CharField(max_length=2, null=True) is_bot = fields.BooleanField(default=False) start_payload = fields.TextField(null=True) is_active = fields.BooleanField(default=True) has_bot_blocked = fields.BooleanField(default=False) is_beta = fields.BooleanField(default=False) is_deleted = fields.BooleanField(default=False) is_admin = fields.BooleanField(default=False) is_staff_member = fields.BooleanField(default=False) messages: fields.ReverseRelation[Message] @property def full_name(self): """Get the full name of the user.""" if not self.last_name: return self.first_name return f"{self.first_name} {self.last_name}" # Path: utils/loguru_logging.py class InterceptHandler(logging.Handler): def emit(self, record): # Path: middlewares/message_logging_middleware.py from aiogram import types from aiogram.dispatcher.middlewares import BaseMiddleware from arrow import arrow from models import Message, User from utils.loguru_logging import logger """The middleware to log all the incoming messages into the database.""" class MessagesLoggingMiddleware(BaseMiddleware): """The middleware class, inherited from `BaseMiddleware`.""" @staticmethod async def _save_message(msg: types.Message) -> Message: """Save the message into the database.""" if msg.reply_to_message: reply_to_message = await Message.get_or_none( message_id=msg.reply_to_message.message_id, chat_id=msg.chat.id, # `message_id` is not unique. For details, see `models.py`. ) else: reply_to_message = None return await Message.create( # Primary fields message_id=msg.message_id, from_user_id=msg.from_user.id, chat_id=msg.chat.id, text=msg.text, date=msg.date, # Other fields that might be useful reply_to_message=reply_to_message, content_type=msg.content_type, complete_message_json=msg.as_json(), ) async def on_pre_process_message(self, msg: types.Message, *_, **__): """Save the message into the database _before_ processing it.""" user_data: dict = msg.from_user.to_python() try: # Create a user first, if not exist. Otherwise, we are unable to create a message # with a foreign key. user, created = await User.get_or_create(id=user_data.pop("id"), defaults=user_data) if created: if payload := msg.get_args(): user.start_payload = payload await user.save()
logger.info(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RobertCsordas/moe_layer # Path: triton_src/moe_layer/cvmm.py def cvmm(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) return CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, sel.reduction_weight) # Path: triton_src/moe_layer/cvmm.py def cvmm_prepare_sel2(sel: torch.Tensor, w: Optional[torch.Tensor] = None) -> CVMMSel: # Has multiple selections for each batch element n_per_batch = sel.shape[-1] # indices = torch.arange(sel.nelement() // n_per_batch, device=sel.device, dtype=torch.int32) # indices = indices.repeat_interleave(n_per_batch).flatten() fsel = sel.flatten() ssel, sel_index = fsel.sort() # in_index = indices[sel_index] in_index = sel_index // n_per_batch return CVMMSel(sel, ssel.view_as(sel), in_index, sel_index, w) # Path: triton_src/moe_layer/cvmm.py class CVMMSel: raw_sel: torch.Tensor sel: torch.Tensor sel_index: torch.Tensor out_index: Optional[torch.Tensor] = None reduction_weight: Optional[torch.Tensor] = None def clone(self) -> 'CVMMSel': return CVMMSel(self.raw_sel, self.sel, self.sel_index, self.out_index, self.reduction_weight) # Path: triton_src/moe_layer/moe_layer_simple.py import torch import torch.distributed import torch.nn.functional as F import math from typing import Tuple, List, Optional from .cvmm import cvmm, cvmm_prepare_sel2, CVMMSel def dist_logsumexp(x: torch.Tensor, dim: int, keepdim: bool = False) -> torch.Tensor: # Calculate numerically stable distributed logsumexp xmax = x.max(dim=dim, keepdim=True).values torch.distributed.all_reduce(xmax, op=torch.distributed.ReduceOp.MAX) xe = (x - xmax).exp().sum(dim=dim, keepdim=True) torch.distributed.all_reduce(xe, op=torch.distributed.ReduceOp.SUM) res = (xmax + xe.log()) if not keepdim: res = res.squeeze(dim) return res def log_mean(x: torch.Tensor, dim: int = 0): if torch.distributed.is_initialized(): xlse = dist_logsumexp(x, dim=dim) # Normalize n = torch.tensor(x.shape[dim]).to(x.device) torch.distributed.all_reduce(n, op=torch.distributed.ReduceOp.SUM) return xlse - n.log() else: return x.logsumexp(dim) - math.log(x.shape[dim]) def entropy_l(l: torch.Tensor) -> torch.Tensor: return - (l * l.exp()).sum(-1) class MoE(torch.nn.Module): def __init__(self, dmodel: int, n_experts: int, expert_size: int, k: int, dropout: float = 0, selection_mode: str = "sigmoid", activation_after_topk: bool = False, activation=F.relu, bias: bool = False, v_dim: Optional[int] = None, sinkhorn_n_iters: int = 3, expert_dropout: float = 0.0, weight_std_scale: float = 1.0): super().__init__() self.k_dim = dmodel self.v_dim = v_dim if v_dim is not None else dmodel self.n_experts = n_experts self.expert_size = expert_size self.size = self.n_experts * self.expert_size self.dropout = dropout self.selection_mode = selection_mode self.k_vec_dim = self.k_dim self.n_heads = k self.activation_after_topk = activation_after_topk self.activation = activation self.sinkhorn_n_iters = sinkhorn_n_iters self.expert_dropout = expert_dropout if self.selection_mode not in {"softmax", "sigmoid", "sinkmoid"}: raise ValueError(f"Unknown selection mode {self.selection_mode}") self.keys = torch.nn.Parameter(torch.empty(self.n_experts, self.k_vec_dim, self.expert_size)) self.values = torch.nn.Parameter(torch.empty(self.n_experts, self.expert_size, self.v_dim)) self.expert_sel = torch.nn.Parameter(torch.empty(self.n_experts, self.k_vec_dim)) torch.nn.init.normal_(self.keys, std=dmodel ** -0.5 * weight_std_scale) torch.nn.init.normal_(self.values, std=self.size ** -0.5 * weight_std_scale) torch.nn.init.normal_(self.expert_sel, std=self.k_vec_dim ** -0.5 * weight_std_scale) if bias: self.bias = torch.nn.Parameter(torch.zeros(self.n_experts, self.expert_size)) self.o_bias = torch.nn.Parameter(torch.zeros(self.v_dim)) else: self.bias = None self.o_bias = None self.renorm_keep_std(self.expert_sel, dim=1) def renorm_keep_std(self, weight: torch.Tensor, dim: int = 0): with torch.no_grad(): std = weight.std() weight.div_(weight.norm(dim=dim, keepdim=True)) weight.mul_(std / weight.std()) def entropy_reg(self, sel: torch.Tensor) -> float: # Everything is done in log scale sel = sel.flatten(0, -2) sel = F.log_softmax(sel, dim=-1) sel = log_mean(sel, -2) return - entropy_l(sel).mean() def compute_scores(self, input: torch.Tensor, index: CVMMSel) -> torch.Tensor:
scores = cvmm(input, index, self.keys)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: meanii/downly # Path: downly/downly.py class Downly(Client): """ Downly 🦉 """ def __init__(self): name = self.__class__.__name__.lower() self.telegram = telegram super().__init__( name, api_id=self.telegram.get('api_id'), api_hash=self.telegram.get('api_hash'), bot_token=self.telegram.get('bot_token'), workdir=str(Path.cwd()), workers=16, plugins=dict( root=f"{name}.plugins", ), sleep_threshold=180 ) self.uptime_reference = time.monotonic_ns() self.start_datetime = datetime.utcnow() async def start(self): await super().start() me = await self.get_me() bot.username = me.username bot.id = me.id logger.info(f"Downly 🦉 v{__version__} (Layer {layer}) started on @{me.username}. Hi.") async def stop(self, *args): await super().stop() logger.info("Downly 🦉 stopped. Bye.") # Path: downly/utils/b_logger.py def b_logger(func): async def wrapper(client, message: Message): # checking if a message is url then log if not validate_url(message.text): await func(client, message) return # logging message if message.from_user: # if a message is from a user logger.info(f"New message from {message.from_user.first_name}({message.from_user.id})" f" in {message.chat.title}({message.chat.id}) -" f" [MESSAGE]: {message.text}") if message.from_user is None: # if a message is from channel logger.info(f"New message from {message.chat.title}({message.chat.id}) -" f" [MESSAGE]: {message.text}") return await func(client, message) return wrapper # Path: downly/database/users_sql.py def update_user(user_id: int, username: str): with INSERTION_LOCK: user = SESSION.query(Users).get(user_id) if not user: user = Users(user_id, username) logger.info(f'[DB]: adding new user to db {user_id} ({username})') SESSION.add(user) SESSION.flush() else: user.username = username SESSION.commit() # Path: downly/database/users_sql.py def update_chat(chat_id: str, chat_name: str): with INSERTION_LOCK: chat = SESSION.query(Chats).get(str(chat_id)) if not chat: chat = Chats(chat_id, chat_name) logger.info(f'[DB]: adding new chat to db {chat_id} ({chat_name})') SESSION.add(chat) SESSION.flush() else: chat.chat_name = chat_name SESSION.commit() # Path: downly/plugins/logger.py from pyrogram import filters, Client from pyrogram.types import Message from pyrogram.enums import ChatType from downly.downly import Downly from downly.utils.b_logger import b_logger from downly.database.users_sql import update_user, update_chat @Downly.on_message(filters.private | filters.group | filters.channel, group=2) @b_logger async def logger(client: Client, message: Message): # check if a message is command then do nothing if message.chat.type == ChatType.GROUP or message.chat.type == ChatType.SUPERGROUP: update_chat(str(message.chat.id), message.chat.title) if message.from_user:
update_user(message.from_user.id, message.from_user.username)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hnesk/flipper-raw-rfid # Path: flipper_raw_rfid/utils.py def batched(iterable: Iterable[Any], n: int) -> Iterable[tuple[Any, ...]]: # batched('ABCDEFG', 3) --> ABC DEF G if n < 1: raise ValueError('n must be at least one') it = iter(iterable) while batch := tuple(islice(it, n)): yield batch # Path: flipper_raw_rfid/utils.py class Peak: """ A peak in a distribution described by left, center and right index """ left: int = field(compare=False) center: int = field(compare=False) right: int = field(compare=False) height: float = field(default=0.0, repr=False) def merge(self, other: Peak) -> Peak: """ Merge this peak with another peak :param other: Peak to merge with :return: merged peak """ return Peak( min(self.left, other.left), (self.center + other.center) // 2, max(self.right, other.right), max(self.height, other.height) ) def slice(self, distribution: npt.NDArray[Any]) -> npt.NDArray[Any]: """ Slice the distribution with the peak :param distribution: :return: """ return distribution[self.left:self.right] def fit(self, distribution: npt.NDArray[Any], quantile: float = 1.0) -> Peak: """ Fit the distribution to the peak :param distribution: :param quantile: :return: """ my_excerpt = distribution[self.left:self.right] if quantile < 1.0: to_capture = numpy.sum(my_excerpt) * quantile def objective(thr: float) -> float: # 1.0 for capturing enough and a little nudge to find bigger thresholds return cast(float, 1.0 * (to_capture > numpy.sum(my_excerpt[my_excerpt > thr])) - thr * 0.0001) res = minimize_scalar(objective, (0, my_excerpt.max())) threshold = int(res.x) else: threshold = 0 first, *_, last = (my_excerpt > threshold).nonzero()[0] return Peak( self.left + first - 1, self.left + (first + last) // 2, self.left + last + 1, my_excerpt[first:last].max() ) def __contains__(self, v: float | int) -> bool: """ Check if a value is inside the peak :param v: value to check :return: """ return self.left <= v <= self.right # Path: flipper_raw_rfid/bits.py import re import numpy import numpy.typing as npt from flipper_raw_rfid.utils import batched, Peak """ Utilities for working with bitstreams """ def decode_lengths(pads: npt.NDArray[numpy.int64], peaks: list[Peak]) -> tuple[npt.NDArray[numpy.int8], int]: """ Loops through pulses and durations and matches them to peaks Checks for the length of the peak as a multiple of the first peak and adds as many 1/0 to the result :param pads: Pulse and duration values :param peaks: A list of peaks from find_peaks, the center frequencies should be more or less multiples of the first peak :return: The decoded bitstream """ result: list[int] = [] position = 0 result_position = None first_length = peaks[0].center for high, duration in pads: low = duration - high high_peak = None low_peak = None for p in peaks: if high in p: high_peak = p if low in p: low_peak = p if high_peak and low_peak: break if not (high_peak and low_peak): if not high_peak: print(f'Found nothing for high {high}, restarting') if not low_peak: print(f'Found nothing for low {low}, restarting') result = [] result_position = position continue result.extend([1] * int(round(high_peak.center / first_length))) result.extend([0] * int(round(low_peak.center / first_length))) position += duration return numpy.array(result, dtype=numpy.int8), result_position def decode_manchester(manchester: npt.NDArray[numpy.int8], biphase: bool = True) -> npt.NDArray[numpy.int8]: """ Decode manchester encoded bitstream :param manchester: manchester encoded bitstream :param biphase: True for biphase, False for diphase :return: decoded bitstream """ if manchester[0] == manchester[1]: manchester = manchester[1:] result = []
for pair in batched(manchester, 2):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: xingchenshanyao/YOLOP-E # Path: lib/utils/utils.py def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) # Path: lib/utils/augmentations.py def letterbox_for_img(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) # Path: lib/dataset/DemoDataset.py import glob import os import random import shutil import time import cv2 import math import numpy as np import torch from pathlib import Path from threading import Thread from PIL import Image, ExifTags from torch.utils.data import Dataset from tqdm import tqdm from ..utils import letterbox_for_img, clean_str img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng'] vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv'] class LoadImages: # for inference def __init__(self, path, img_size=640): p = str(Path(path)) # os-agnostic p = os.path.abspath(p) # absolute path if '*' in p: files = sorted(glob.glob(p, recursive=True)) # glob elif os.path.isdir(p): files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir elif os.path.isfile(p): files = [p] # files else: raise Exception('ERROR: %s does not exist' % p) images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] ni, nv = len(images), len(videos) self.img_size = img_size self.files = images + videos self.nf = ni + nv # number of files self.video_flag = [False] * ni + [True] * nv self.mode = 'images' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \ (p, img_formats, vid_formats) def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nf: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nf: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() h0, w0 = img0.shape[:2] self.frame += 1 print('\n video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='') else: # Read image self.count += 1 img0 = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # BGR #img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB) assert img0 is not None, 'Image Not Found ' + path print('image %g/%g %s: \n' % (self.count, self.nf, path), end='') h0, w0 = img0.shape[:2] # Padded resize # 填充尺寸,640*360*3 -> 640*384*3
img, ratio, pad = letterbox_for_img(img0, new_shape=self.img_size, auto=True)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: godisboy0/nonebot-adapter-wcf # Path: adapters/wechatferry/exception.py class ApiNotAvailable(BaseApiNotAvailable, WechatFerryAdapterException): """API 连接不可用""" # Path: adapters/wechatferry/basemodel.py class UserInfo(): def __init__(self, wx_id: str, code: str, wx_name: str, gender: str): self.wx_id = wx_id # 微信id,原始id。会被作为真正的user_id self.code = code # code 微信允许改id后,新改的id的code self.wx_name = wx_name # 微信昵称 self.gender = gender # 性别 def __str__(self) -> str: return f"wx_id: {self.wx_id}, code: {self.code}, wx_name: {self.wx_name}, gender: {self.gender or ''}" # Path: adapters/wechatferry/sqldb.py class database: def __init__(self, file_path, db_name="wcf") -> None: ## 如果同参数 global singleton_dict if hasattr(singleton_dict, file_path): self.conn = getattr(singleton_dict, file_path) return if not file_path: raise ValueError("file_path can not be empty") if not os.path.exists(file_path): os.makedirs(file_path, exist_ok=True) datafile = os.path.join(file_path, db_name) self.conn = sqlite3.connect(datafile) singleton_dict.file_path = self.conn def create_table(self, sql: str) -> None: cursor = self.conn.cursor() try: cursor.execute(sql) self.conn.commit() except Exception as e: logger.error(f"Failed to create table: {e}") raise e finally: cursor.close() def query(self, sql, *args) -> list: cursor = self.conn.cursor() try: cursor.execute(sql, args) return cursor.fetchall() except Exception as e: logger.error(f"Failed to query: {e}") raise e finally: cursor.close() def execute(self, sql: str, *args) -> None: cursor = self.conn.cursor() try: cursor.execute(sql, args) self.conn.commit() except Exception as e: logger.error(f"Failed to execute: {e}") raise e finally: cursor.close() def insert(self, sql: str, *args) -> None: cursor = self.conn.cursor() try: cursor.execute(sql, args) self.conn.commit() except Exception as e: logger.error(f"Failed to insert: {e}") raise e finally: cursor.close() def update(self, sql: str, *args) -> None: cursor = self.conn.cursor() try: cursor.execute(sql, args) self.conn.commit() except Exception as e: logger.error(f"Failed to update: {e}") raise e finally: cursor.close() def delete(self, sql: str, *args) -> None: cursor = self.conn.cursor() try: cursor.execute(sql, args) self.conn.commit() except Exception as e: logger.error(f"Failed to delete: {e}") raise e finally: cursor.close() def table_exists(self, table_name: str) -> bool: sql = f"SELECT count(*) FROM sqlite_master WHERE type='table' AND name='{table_name}'" cursor = self.conn.cursor() try: cursor.execute(sql) return cursor.fetchone()[0] == 1 except Exception as e: logger.error(f"Failed to check table {table_name} exists: {e}") return False finally: cursor.close() # Path: adapters/wechatferry/utils.py class Logger: class downloader: def __init__(self) -> None: def info(self, msg: str, e: Exception=None) -> None: def error(self, msg: str, e: Exception=None) -> None: def debug(self, msg: str, e: Exception=None) -> None: def warning(self, msg: str, e: Exception=None) -> None: def handle_api_result(result: Optional[Dict[str, Any]]) -> Any: def file_md5(file_path) -> Optional[str]: def __init__(self, url, file_name, path: str, override: bool = True, chunk_size: int = 1024, headers={}) -> None: async def downloadAsync(self) -> str: def download(self) -> str: # Path: adapters/wechatferry/config.py class AdapterConfig(BaseModel): """wechatferry 配置类""" root_user: str debug: bool = Field(default=True) """是否开启调试模式""" db_path: str = Field(default="./data") """数据库路径,默认为当前运行路径下的 data 文件夹,该文件夹已经被 .gitignore 忽略""" echo_root_msg: bool = Field(default=False) """是否将 root_user 的信息直接做成json回传给root_user""" """在debug时非常有用,特别是你的开发机器和部署微信的机器不是同一台时。用过的都说好""" class Config: extra = "ignore" # Path: adapters/wechatferry/api.py from wcferry import Wcf from typing import Any from .exception import ApiNotAvailable from concurrent.futures import ThreadPoolExecutor from .basemodel import UserInfo from .sqldb import database from .utils import file_md5, logger from .config import AdapterConfig import asyncio """ 所有的 api 都定义在这里。 call_api 的所有方法最终都会调用这里的方法。 """ """ 发现绝大多数插件都是为 onebot.v11 所写,为了更好的复用(白嫖),这里也用 onebot.v11 中相关的数据结构。 参数约定: to_wx_id: 群聊时为群聊id, 非群聊时为用户id """ user_cache = {} md5_executor = ThreadPoolExecutor(max_workers=1) class API:
def __init__(self, wcf: Wcf, config: AdapterConfig):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: R1999RC-official/Reverse1999ResonanceCalculator # Path: python/python_env/Lib/site-packages/setuptools/warnings.py class SetuptoolsWarning(UserWarning): """Base class in ``setuptools`` warning hierarchy.""" @classmethod def emit( cls, summary: Optional[str] = None, details: Optional[str] = None, due_date: Optional[_DueDate] = None, see_docs: Optional[str] = None, see_url: Optional[str] = None, stacklevel: int = 2, **kwargs, ): """Private: reserved for ``setuptools`` internal use only""" # Default values: summary_ = summary or getattr(cls, "_SUMMARY", None) or "" details_ = details or getattr(cls, "_DETAILS", None) or "" due_date = due_date or getattr(cls, "_DUE_DATE", None) docs_ref = see_docs or getattr(cls, "_SEE_DOCS", None) docs_url = docs_ref and f"https://setuptools.pypa.io/en/latest/{docs_ref}" see_url = see_url or getattr(cls, "_SEE_URL", None) due = date(*due_date) if due_date else None text = cls._format(summary_, details_, due, see_url or docs_url, kwargs) if due and due < date.today() and _should_enforce(): raise cls(text) warnings.warn(text, cls, stacklevel=stacklevel + 1) @classmethod def _format( cls, summary: str, details: str, due_date: Optional[date] = None, see_url: Optional[str] = None, format_args: Optional[dict] = None, ): """Private: reserved for ``setuptools`` internal use only""" today = date.today() summary = cleandoc(summary).format_map(format_args or {}) possible_parts = [ cleandoc(details).format_map(format_args or {}), ( f"\nBy {due_date:%Y-%b-%d}, you need to update your project and remove " "deprecated calls\nor your builds will no longer be supported." if due_date and due_date > today else None ), ( "\nThis deprecation is overdue, please update your project and remove " "deprecated\ncalls to avoid build errors in the future." if due_date and due_date < today else None ), (f"\nSee {see_url} for details." if see_url else None), ] parts = [x for x in possible_parts if x] if parts: body = indent(_TEMPLATE.format(details="\n".join(parts)), _INDENT) return "\n".join([summary, "!!\n", body, "\n!!"]) return summary # Path: python/python_env/Lib/site-packages/setuptools/warnings.py class SetuptoolsDeprecationWarning(SetuptoolsWarning): """ Base class for warning deprecations in ``setuptools`` This class is not derived from ``DeprecationWarning``, and as such is visible by default. """ # Path: python/python_env/Lib/site-packages/setuptools/config/_apply_pyprojecttoml.py import logging import os from collections.abc import Mapping from email.headerregistry import Address from functools import partial, reduce from itertools import chain from types import MappingProxyType from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union, cast, ) from ..warnings import SetuptoolsWarning, SetuptoolsDeprecationWarning from setuptools._importlib import metadata # noqa from setuptools.dist import Distribution # noqa from setuptools.config import expand from setuptools.config import expand from setuptools.extern.packaging.specifiers import SpecifierSet from .._importlib import metadata from setuptools.dist import Distribution """Translation layer between pyproject config and setuptools distribution and metadata objects. The distribution and metadata objects are modeled after (an old version of) core metadata, therefore configs in the format specified for ``pyproject.toml`` need to be processed before being applied. **PRIVATE MODULE**: API reserved for setuptools internal usage only. """ if TYPE_CHECKING: EMPTY: Mapping = MappingProxyType({}) # Immutable dict-like _Path = Union[os.PathLike, str] _DictOrStr = Union[dict, str] _CorrespFn = Callable[["Distribution", Any, _Path], None] _Correspondence = Union[str, _CorrespFn] _logger = logging.getLogger(__name__) def apply(dist: "Distribution", config: dict, filename: _Path) -> "Distribution": """Apply configuration dict read with :func:`read_configuration`""" if not config: return dist # short-circuit unrelated pyproject.toml file root_dir = os.path.dirname(filename) or "." _apply_project_table(dist, config, root_dir) _apply_tool_table(dist, config, filename) current_directory = os.getcwd() os.chdir(root_dir) try: dist._finalize_requires() dist._finalize_license_files() finally: os.chdir(current_directory) return dist def _apply_project_table(dist: "Distribution", config: dict, root_dir: _Path): project_table = config.get("project", {}).copy() if not project_table: return # short-circuit _handle_missing_dynamic(dist, project_table) _unify_entry_points(project_table) for field, value in project_table.items(): norm_key = json_compatible_key(field) corresp = PYPROJECT_CORRESPONDENCE.get(norm_key, norm_key) if callable(corresp): corresp(dist, value, root_dir) else: _set_config(dist, corresp, value) def _apply_tool_table(dist: "Distribution", config: dict, filename: _Path): tool_table = config.get("tool", {}).get("setuptools", {}) if not tool_table: return # short-circuit for field, value in tool_table.items(): norm_key = json_compatible_key(field) if norm_key in TOOL_TABLE_DEPRECATIONS: suggestion, kwargs = TOOL_TABLE_DEPRECATIONS[norm_key] msg = f"The parameter `{norm_key}` is deprecated, {suggestion}"
SetuptoolsDeprecationWarning.emit(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Summaw/genCraft-imageGen # Path: modules/write/write.py def write(text: str, case: str) -> None: current_time = time.strftime("%H:%M:%S", time.localtime()) switcher = { 'info': _write_info, 'success': _write_success, 'error': _write_error } func = switcher.get(case.lower(), lambda x, y: None) func(current_time, text) # Path: modules/tasks/login.py async def login_attempt(): headers = { "Host": "api.gencraft.com", "Connection": "keep-alive", "Content-Length": "94", "X-Csrf-Protection":"1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36 OPR/102.0.0.0", "Content-Type": "application/json", "Accept": "application/json, text/plain, */*", "X-WEB-TOKEN": "YOURWEBTOKENHERE (WILL AUTOMATE THIS AT A LATER DATE)", "Origin": "https://gencraft.com", "Referer": "https://gencraft.com/", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-US,en;q=0.9" } ''' "first_name": "your google account firstname", "last_name": "your google account lastname", "auth_provider": "google", "timezone": "America/New_York" #or your timezone ''' data = { "first_name": "John", "last_name": "Doe", "auth_provider": "google", "timezone": "America/New_York" } login_request = requests.post("https://api.gencraft.com/api/v5/user/login", headers=headers, json=data, timeout=20) if "SESSION_ID" in login_request.cookies: # Get the value of the "SESSION_ID" cookie session_id = login_request.cookies["SESSION_ID"] else: write("SESSION_ID cookie not found in the response.", 'error') if login_request.status_code == 200: return session_id else: return 'False' # Path: modules/tasks/generateImage.py async def generate_image(sessionId): time.sleep(2) cookies = { 'SESSION_ID': f'{sessionId}', } headers = { 'authority': 'api.gencraft.com', 'accept': 'application json, text plain, */*', 'accept-language': 'en-US,en;q=0.9', 'content-type': 'application/json', 'origin': 'https://gencraft.com', 'referer': 'https://gencraft.com/', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36 OPR/102.0.0.0', 'x-csrf-protection': '1', } # Model styles # art_style 1 = 3D Style # art_style 2 = Anime Style # art_style 14 = CyberPunk Style # art_style 9 = Realistic Style # art_style 29 = Video Game Style # art_style 17 = Isometric Style json_data = { 'prompt_text': 'A blue and gold macaw chilling on a tree overviewing the rainforest', # Give the model a custom prompt here 'art_style_id': 9, 'negative_prompt_text': '', 'media_type': 'image', 'model_id': 1, 'width': 1024, 'height': 1024, } generate_image_request = requests.post('https://api.gencraft.com/api/v5/prompt/generate', cookies=cookies, headers=headers, json=json_data, timeout=30) print(generate_image_request.text) if generate_image_request.status_code == 400: write('Daily limit reached. Please use a different X-WEB-TOKEN to continue generating images', 'error') else: response_json = json.loads(generate_image_request.text) if "data" in response_json and "images" in response_json["data"]: images = response_json["data"]["images"] image_urls = [image["url"] for image in images if "url" in image] structured_data = { "prompt": { "prompt_text": json_data["prompt_text"], "art_style_id": json_data["art_style_id"], }, "urls": image_urls, } for url in image_urls: write(f"Image Generated: {url}", "success") with open("data/generated.json", "a") as json_file: json_file.write("\n") json.dump(structured_data, json_file, indent=4) # Path: main.py import time import asyncio import requests from modules.write.write import write from modules.tasks.login import login_attempt from modules.tasks.generateImage import generate_image async def start(): loginRequest = await login_attempt() if loginRequest == 'False': write("There was a problem logging in.", "error") else: write(f"Session ID: {loginRequest}", 'info')
await generate_image(loginRequest)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mentpy/mentpy # Path: mentpy/gradients/_finite_difference.py def fd_gradient(f, x, h=1e-5, type="central"): if type not in ["central", "forward", "backward"]: raise UserWarning( f"Expected type to be 'central', 'forward', or 'backward' but {type} was given" ) grad = np.zeros(len(x)) for i in range(len(x)): if type == "central": grad[i] = (f(x + h * np.eye(len(x))[i]) - f(x - h * np.eye(len(x))[i])) / ( 2 * h ) elif type == "forward": grad[i] = (f(x + h * np.eye(len(x))[i]) - f(x)) / h elif type == "backward": grad[i] = (f(x) - f(x - h * np.eye(len(x))[i])) / h return grad # Path: mentpy/gradients/_finite_difference.py def fd_hessian(f, x, h=1e-5, type="central"): if type not in ["central", "forward", "backward"]: raise UserWarning( f"Expected type to be 'central', 'forward', or 'backward' but {type} was given" ) hess = np.zeros((len(x), len(x))) for i in range(len(x)): for j in range(len(x)): if type == "central": hess[i, j] = ( f(x + h * np.eye(len(x))[i] + h * np.eye(len(x))[j]) - f(x + h * np.eye(len(x))[i] - h * np.eye(len(x))[j]) - f(x - h * np.eye(len(x))[i] + h * np.eye(len(x))[j]) + f(x - h * np.eye(len(x))[i] - h * np.eye(len(x))[j]) ) / (4 * h**2) elif type == "forward": hess[i, j] = ( f(x + h * np.eye(len(x))[i] + h * np.eye(len(x))[j]) - f(x + h * np.eye(len(x))[i]) - f(x + h * np.eye(len(x))[j]) + f(x) ) / h**2 elif type == "backward": hess[i, j] = ( f(x) - f(x - h * np.eye(len(x))[i]) - f(x - h * np.eye(len(x))[j]) + f(x - h * np.eye(len(x))[i] - h * np.eye(len(x))[j]) ) / h**2 return hess # Path: mentpy/gradients/_parameter_shift.py def psr_gradient(cost, x, shift=1.5): """Calculate the gradient of a cost function using the parameter shift rule. Args: cost (callable): Cost function to calculate the gradient of. x (array): Input to the cost function. shift (float, optional): Shift to use in the parameter shift rule. Defaults to 1.5. Returns: array: Gradient of the cost function. """ grad = np.zeros(len(x)) for i in range(len(x)): grad[i] = ( cost(x + shift * np.eye(len(x))[i]) - cost(x - shift * np.eye(len(x))[i]) ) / (2 * shift) return grad # Path: mentpy/gradients/_parameter_shift.py def psr_hessian(cost, x, shift=1.5): """Calculate the Hessian of a cost function using the parameter shift rule. Args: cost (callable): Cost function to calculate the Hessian of. x (array): Input to the cost function. shift (float, optional): Shift to use in the parameter shift rule. Defaults to 1.5. Returns: array: Hessian of the cost function. """ hess = np.zeros((len(x), len(x))) for i in range(len(x)): for j in range(len(x)): hess[i, j] = ( cost(x + shift * np.eye(len(x))[i] + shift * np.eye(len(x))[j]) - cost(x + shift * np.eye(len(x))[i] - shift * np.eye(len(x))[j]) - cost(x - shift * np.eye(len(x))[i] + shift * np.eye(len(x))[j]) + cost(x - shift * np.eye(len(x))[i] - shift * np.eye(len(x))[j]) ) / (4 * shift**2) return hess # Path: mentpy/gradients/grad.py import numpy as np from ._finite_difference import fd_gradient, fd_hessian from ._parameter_shift import psr_gradient, psr_hessian # Copyright 2023 Luis Mantilla # # Licensed under the Apache License, Version 2.0. # See <http://www.apache.org/licenses/LICENSE-2.0> for details. """Module that contains functions to calculate gradients of cost functions.""" __all__ = ["get_gradient", "get_hessian"] def get_gradient(cost, x, method="parameter-shift", *args, **kwargs): """Calculate the gradient of a cost function. Args: cost (callable): Cost function to calculate the gradient of. x (array): Input to the cost function. method (str, optional): Method to use to calculate the gradient. Defaults to 'parameter-shift'. Returns: array: Gradient of the cost function. """ match method: case "parameter-shift" | "psr" | "parametershift":
return psr_gradient(cost, x, *args, **kwargs)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: rnag/cert-hero # Path: cert_hero/cert_hero.py def certs_please( hostnames: list[str] | tuple[str] | set[str], context: ssl.SSLContext = None, num_threads: int = 25, user_agent: str | None = _DEFAULT_USER_AGENT, ) -> dict[str, CertHero]: """ Retrieve (concurrently) the SSL certificate(s) for a list of ``hostnames`` - works even in the case of expired or self-signed certificates. Usage: >>> import cert_hero, json >>> host_to_cert = cert_hero.certs_please(['google.com', 'cnn.com', 'www.yahoo.co.in', 'youtu.be']) >>> cert_hero.set_expired(host_to_cert) >>> host_to_cert {'google.com': CertHero( { "Cert Status": "SUCCESS", "Serial": "753DD6FF20CB1B4510CB4C1EA27DA2EB", ... } ), 'cnn.com': CertHero( { "Cert Status": "SUCCESS", "Serial": "7F2F3E5C350554D71A6784CCFE6E8315", ... } ), ... } >>> json.dumps(host_to_cert) {"google.com": {"Cert Status": "SUCCESS", ...}, "cnn.com": {"Cert Status": "SUCCESS", ...}, ...} :param hostnames: List of hosts to retrieve SSL Certificate(s) for :param context: (Optional) Shared SSL Context :param num_threads: Max number of concurrent threads :param user_agent: A custom *user agent* to use for the HTTP call to retrieve ``Location`` and ``Status``. Defaults to ``python-requests/{version}``, or a random *user agent* if the ``fake_useragent`` module is installed (via the ``fake-ua`` `extra <https://packaging.python.org/en/latest/tutorials/installing-packages/#installing-extras>`__). :return: A mapping of ``hostname`` to the SSL Certificate (e.g. :class:`CertHero`) for that host """ if context is None: context = create_ssl_context() if num_hosts := len(hostnames): # We can use a with statement to ensure threads are cleaned up promptly with ThreadPoolExecutor( max_workers=min(num_hosts, num_threads) ) as pool: _host_to_cert = { # TODO: Update to remove `or` once we finalize how to handle missing certs host: cert_info or _build_failed_cert('TIMED_OUT') for host, cert_info in zip( hostnames, pool.map( cert_please, hostnames, repeat(context), repeat(user_agent), ), ) } else: _host_to_cert = {} return _host_to_cert # Path: cert_hero/cert_hero.py def set_expired(certs: CertHero | dict[str, str | int | dict[str, str | bool]] | dict[str, CertHero] | dict[str, dict[str, str | int | dict[str, str | bool]]] | Iterable[CertHero] | Iterable[dict[str, str | int | dict[str, str | bool]]] | None, _date_from_iso_str=date.fromisoformat) -> None: """ Set or update the value for ``Validity > Expired`` (:type:`bool`) on each cert in a response from :func:`cert_please()` or :func:`certs_please()`, or a serialized version thereof (e.g. ``json.dumps`` > ``json.loads``). Example Usage:: >>> from cert_hero import cert_please, set_expired >>> cert = cert_please('google.com') >>> assert 'Expired' not in cert['Validity'] >>> set_expired(cert) >>> assert 'Expired' in cert['Validity'] """ if not certs: return # cert_please(): given a `CertHero` (or `CertHero`-like) object if 'Serial' in certs: certs = [certs] # certs_please(): given a mapping of `hostname` to `CertHero` (or `CertHero`-like) object elif values_fn := getattr(certs, 'values', None): certs = values_fn() today = datetime.utcnow().date() for _cert in certs: if _cert: if _validity := _cert.get('Validity'): # Use cached attribute `not_after_date` if available (CertHero), # else we calculate it on the fly in case of a `dict`. not_after_date: date = getattr(_cert, '_not_after_date', None) \ or _date_from_iso_str(_validity['Not After']) # Set the `Validity > Expired` value (bool) _validity['Expired'] = not_after_date < today # Path: cert_hero/cli.py import argparse import sys from . import certs_please, set_expired """Console script for cert_hero.""" def main(): """Console script for cert_hero.""" parser = argparse.ArgumentParser(prog='ch', description='Retrieve the SSL certificate(s) for one or more given host') parser.add_argument('hosts', nargs='*') args = parser.parse_args() host_to_cert = certs_please(args.hosts)
set_expired(host_to_cert)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KosinskiLab/pyTME # Path: tme/matching_utils.py def rigid_transform( coordinates: NDArray, rotation_matrix: NDArray, out: NDArray, translation: NDArray, use_geometric_center: bool = False, coordinates_mask: NDArray = None, out_mask: NDArray = None, center: NDArray = None, ) -> None: """ Apply a rigid transformation (rotation and translation) to given coordinates. Parameters ---------- coordinates : NDArray An array representing the coordinates to be transformed [d x N]. rotation_matrix : NDArray The rotation matrix to be applied [d x d]. translation : NDArray The translation vector to be applied [d]. out : NDArray The output array to store the transformed coordinates. coordinates_mask : NDArray, optional An array representing the mask for the coordinates [d x T]. out_mask : NDArray, optional The output array to store the transformed coordinates mask. use_geometric_center : bool, optional Whether to use geometric or coordinate center. Returns ------- None """ coordinate_dtype = coordinates.dtype center = coordinates.mean(axis=1) if center is None else center if not use_geometric_center: coordinates = coordinates - center[:, None] np.matmul(rotation_matrix, coordinates, out=out) if use_geometric_center: axis_max, axis_min = out.max(axis=1), out.min(axis=1) axis_difference = axis_max - axis_min translation = np.add(translation, center - axis_max + (axis_difference // 2)) else: translation = np.add(translation, np.subtract(center, out.mean(axis=1))) out += translation[:, None] if coordinates_mask is not None and out_mask is not None: if not use_geometric_center: coordinates_mask = coordinates_mask - center[:, None] np.matmul(rotation_matrix, coordinates_mask, out=out_mask) out_mask += translation[:, None] if not use_geometric_center and coordinate_dtype != out.dtype: np.subtract(out.mean(axis=1), out.astype(int).mean(axis=1), out=translation) out += translation[:, None] # Path: tme/matching_utils.py def euler_to_rotationmatrix(angles: Tuple[float]) -> NDArray: """ Convert Euler angles to a rotation matrix. Parameters ---------- angles : tuple A tuple representing the Euler angles in degrees. Returns ------- NDArray The generated rotation matrix. """ if len(angles) == 1: angles = (angles, 0, 0) rotation_matrix = ( Rotation.from_euler("zyx", angles, degrees=True).as_matrix().astype(np.float32) ) return rotation_matrix # Path: tme/matching_optimization.py from typing import Tuple, Dict from abc import ABC, abstractmethod from numpy.typing import NDArray from scipy.optimize import ( differential_evolution, LinearConstraint, basinhopping, ) from scipy.ndimage import laplace from scipy.spatial import KDTree from .matching_utils import rigid_transform, euler_to_rotationmatrix import numpy as np """ Implements various methods for non-exhaustive template matching based on numerical optimization. Copyright (c) 2023 European Molecular Biology Laboratory Author: Valentin Maurer <valentin.maurer@embl-hamburg.de> """ class MatchCoordinatesToDensity(ABC): """ A class to template match coordinate sets. Parameters ---------- target_coordinates : NDArray The coordinates of the target. template_coordinates : NDArray The coordinates of the template. target_weights : NDArray The weights of the target. template_weights : NDArray The weights of the template. sampling_rate : NDArray The size of the voxel. template_mask_coordinates : NDArray, optional The coordinates of the template mask. Default is None. target_mask_coordinates : NDArray, optional The coordinates of the target mask. Default is None. **kwargs : dict, optional Other keyword arguments. """ def __init__( self, target_coordinates: NDArray, template_coordinates: NDArray, target_weights: NDArray, template_weights: NDArray, sampling_rate: NDArray, template_mask_coordinates: NDArray = None, target_mask_coordinates: NDArray = None, **kwargs, ): target, _, origin = FitRefinement.array_from_coordinates( target_coordinates, target_weights, sampling_rate ) self.target_density = target self.target_origin = origin self.sampling_rate = sampling_rate self.template_weights = template_weights self.template_coordinates = template_coordinates self.template_coordinates_rotated = np.empty( self.template_coordinates.shape, dtype=np.float32 ) self.target_mask_density = None if target_mask_coordinates is not None: target_mask, *_ = FitRefinement.array_from_coordinates( coordinates=target_mask_coordinates.astype(np.float32), weights=np.ones(target_mask_coordinates.shape[1]), shape=self.target_density.shape, origin=self.target_origin, sampling_rate=self.sampling_rate, ) self.target_mask_density = target_mask self.template_mask_coordinates = None self.template_mask_coordinates_rotated = None if template_mask_coordinates is not None: self.template_mask_coordinates = template_mask_coordinates self.template_mask_coordinates_rotated = np.empty( self.template_mask_coordinates.shape, dtype=np.float32 ) def __call__(self, x: NDArray): """ Return the score for a given transformation. Parameters ---------- x : NDArray The input transformation parameters. Returns ------- float The negative score from the scoring function. """ translation, rotation = x[:3], x[3:] rotation_matrix = euler_to_rotationmatrix(rotation)
rigid_transform(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hookla/DreamTeamGPT # Path: dream_team_gpt/meeting.py class Meeting: idea: str config: Path = None def __post_init__(self) -> None: """Create agents""" client_factory = ai_client_factory( AIClientConfig( client_type=AIClientType.ChatGPT, model=Models.GPT4, api_key=os.environ["openai.api_key"], ) ) if self.config: sme_dict = parse_yaml_config(self.config) else: sme_dict = DEFAULT_SME_DICT self.smes = [SME(client_factory=client_factory, **d) for d in sme_dict] self.chairman = Chairman(client_factory, self.smes) self.refiner = IdeaRefiner(client_factory, "Refiner") def run(self) -> None: """Run the meeting to discuss the idea""" transcript = Transcript(self.idea) print_with_wrap(transcript) refined_idea = self.refiner.refine_idea(self.idea) transcript.refined_idea = refined_idea print_with_wrap(refined_idea) while not self.chairman.decide_if_meeting_over(transcript): self.run_discussion_round(transcript) def run_discussion_round(self, transcript: str) -> None: logger.info("running next discussion round\n") speaker: SME = self.chairman.decide_next_speaker(transcript) opinion = speaker.opinion(transcript) print_with_wrap(f"\033[94m{speaker.name}\033[0m: {opinion}\n") if opinion.strip().rstrip(".").upper() != NO_COMMENT: transcript += opinion # Path: dream_team_gpt/utils/logging.py def configure_logging(verbose: int = 0) -> None: logging_levels = {0: "ERROR", 1: "INFO", 2: "DEBUG"} logger.remove(0) logger.add(sys.stdout, level=logging_levels.get(verbose, "ERROR")) logger.add("dream_team_gpt.log", level="DEBUG") # Path: dream_team_gpt/main.py from dataclasses import dataclass from pathlib import Path from dotenv import load_dotenv from dream_team_gpt.meeting import Meeting from dream_team_gpt.utils import configure_logging import os import click @click.command() @click.option( "--idea", "-i", type=str, required=True, help="your idea for the team to discuss. Please use double quotes", ) @click.option( "--config", "-c", type=click.Path(exists=True), default=None, help="yaml file with team personalities details", ) @click.option("-v", "--verbose", default=1, count=True) def run_meeting(idea: str, config: Path = None, verbose: int = 1) -> None: print(idea)
configure_logging(verbose)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: amrahhh/sqla_async_orm_queries # Path: sqla_async_orm_queries/models.py class Model(Base): __abstract__ = True @classmethod async def create(cls, data: dict): async with SessionLocal() as session: try: data = cls(**data) session.add(data) await session.commit() return data except Exception as e: await session.rollback() raise e @classmethod async def select_one(cls, *args: BinaryExpression): async with SessionLocal() as session: result = await session.execute(select(cls).where(*args)) data = result.scalar() return data @classmethod async def select_all(cls, *args: BinaryExpression): async with SessionLocal() as session: result = await session.execute(select(cls).where(*args)) data = result.scalars().all() return data @classmethod async def update(cls, data: dict, *args: BinaryExpression): async with SessionLocal() as session: try: query = update(cls).where(*args).values(**data).returning(cls.id) db_data = await session.execute(query) db_data = db_data.scalar() await session.commit() return db_data except Exception as e: await session.rollback() raise e @classmethod async def delete(cls, *args: BinaryExpression): async with SessionLocal() as session: try: query = delete(cls).where(*args) db_data = await session.execute(query) await session.commit() return db_data except Exception as e: await session.rollback() raise e @classmethod async def select_with_pagination( cls, *args: BinaryExpression, page: int = 1, size: int = 10 ): async with SessionLocal() as session: query = select(cls).where(*args).offset((page - 1) * size).limit(size) result = await session.execute(query) data = result.scalars().all() return data async def apply(self): async with SessionLocal() as session: try: session.add(self) await session.commit() except Exception as e: await session.rollback() raise e @classmethod async def apply_all(self, models: List[TModels]): async with SessionLocal() as session: try: session.add_all(models) await session.commit() except Exception as e: await session.rollback() raise e # Path: sqla_async_orm_queries/models.py def init_session(session: AsyncSession): global SessionLocal, INITIALIZED if isinstance(session, (async_sessionmaker, sessionmaker)) and issubclass( session.class_, AsyncSession ): SessionLocal = session INITIALIZED = True return True raise TypeError("You need to use SQLAlchemy `AsyncSession`") # Path: examples/test.py import asyncio from sqlalchemy import Column, String, Integer, and_ from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine, async_sessionmaker from sqla_async_orm_queries import Model, init_session # create your engine engine = create_async_engine( "postgresql+asyncpg://test_user:12345@localhost/test_db", echo=True, ) # create your SessionLocal SessionLocal = async_sessionmaker( expire_on_commit=True, class_=AsyncSession, bind=engine, )
class Test(Model):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: MeetingAgent/MeetingAgent-Core # Path: voice_cloning/clone.py class MyTTS: def __init__(self): # Get device self.device = "cuda" if torch.cuda.is_available() else "cpu" self.tts = TTS("tts_models/en/ljspeech/tacotron2-DDC") self.use_default_speaker = False self.speaker_wav = self._get_speaker() def _get_speaker(self): # speaker audio file wav_files = glob.glob("voice_cloning/audio_samples/*.wav") print("WAV FILES: ", wav_files) if wav_files: if self.use_default_speaker: wav_file = "voice_cloning/audio_samples/default_audio.wav" else: wav_file = wav_files[0] if wav_files[0] != "default_audio.wav" else FileNotFoundError("Add your audio.wav to /voice_cloning/audio_samples") print("WAV FILE: ", wav_file) return wav_file def text_to_speech(self, text, output_file): self.tts.tts_with_vc_to_file( text, speaker_wav=self.speaker_wav, file_path=output_file ) # Path: meeting_buddy_system/gpt_utils.py def gpt_4_answer( messages, model="gpt-4", max_tokens=750, temperature=0.6, top_p=0.9, frequency_penalty=1.2, presence_penalty=0.5, ): completion_params = { "model": model, "messages": messages, "temperature": temperature, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, "max_tokens": max_tokens, } response = openai.ChatCompletion.create(**completion_params) return response["choices"][0]["message"]["content"] # Path: meeting_buddy_system/gpt_utils.py def gpt_3_5_turbo_16k_answer( messages, model="gpt-3.5-turbo-16k", max_tokens=750, temperature=0.6, top_p=0.9, frequency_penalty=1.2, presence_penalty=0.5, ): completion_params = { "model": model, "messages": messages, "temperature": temperature, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, "max_tokens": max_tokens, } response = openai.ChatCompletion.create(**completion_params) return response["choices"][0]["message"]["content"] # Path: meeting_buddy_system/prompts.py MEETING_BUDDY_MAIN_PROMPT = """ <!-->IMPORTANT CONTEXT<--!> An answer should be coherent and include some point form arguments. <!-->IMPORTANT CONTEXT<--!> Here is context for the meeting: {meeting_context} Given a question, answer it coherently and several possible points that can be derived from the question. If the question is simple, like an arithmetic question, no need to further explain any detail. Just give the result with a short explanation of how it was achieved it. """ # Path: meeting_buddy_system/prompts.py EXTRACT_QUERY_PROMPT = """ Given some input text, extract a query from the text. You are to do this in the language of the text. If no query exists, interpret the text as is and see if a question can be captured from it. """ # Path: meeting_buddy.py import pyaudio import wave import whisper import threading import time import pygame from kivy.app import App from kivy.uix.button import Button from kivy.uix.boxlayout import BoxLayout from kivy.uix.switch import Switch from kivy.uix.label import Label from kivy.clock import Clock from kivy.uix.textinput import TextInput from kivy.core.window import Window from kivy.support import install_twisted_reactor from gtts import gTTS from pydub import AudioSegment from ftlangdetect import detect from voice_cloning.clone import MyTTS from meeting_buddy_system.gpt_utils import gpt_4_answer, gpt_3_5_turbo_16k_answer from meeting_buddy_system.prompts import MEETING_BUDDY_MAIN_PROMPT, EXTRACT_QUERY_PROMPT # Audio Processing # GUI install_twisted_reactor() # gtts text to speech # personalized voice text to speech # Local recording = False audio_thread = None def get_audio() -> None: global recording recording = True p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=44100, input=True, frames_per_buffer=1024) frames = [] try: print("Recording...") while recording: data = stream.read(1024) frames.append(data) print("Finished recording.") finally: stream.stop_stream() stream.close() p.terminate() wf = wave.open('meeting_buddy_audio/input_audio.wav', 'wb') wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(44100) wf.writeframes(b''.join(frames)) wf.close() def stop_audio() -> None: global recording recording = False def whisper_process_audio(audio_file: str) -> str: model = whisper.load_model("base") # for multilingual result = model.transcribe(audio_file) return result["text"] def detect_language(text: str) -> str: cleaned_text = text.replace('\n', ' ') return detect(text=cleaned_text, low_memory=True) def gtts_text_to_speech(text: str, output_file='meeting_buddy_audio/output.mp3') -> None: language = detect_language(text=text)["lang"] tts = gTTS(text=text, lang=language, slow=False) tts.save(output_file) print(f'Audio saved as {output_file}') def voice_clone_text_to_speech(text: str, output_file='meeting_buddy_audio/output.wav') -> None: app.tts.text_to_speech(text, output_file) print(f'Audio saved as {output_file}') # initialize mixer pygame.mixer.init() def play_audio(file_path): pygame.mixer.music.load(file_path) pygame.mixer.music.play() def stop_audio_playback(): pygame.mixer.music.stop() def gpt_pipeline(meeting_context: str, input_text: str) -> str: """ Extract query from text and produce the final answer to query. """ print("\n\n\n###### EXTRACTING QUERY FROM TEXT ######\n\n\n") messages = [{"role": "system", "content": EXTRACT_QUERY_PROMPT}, {"role": "user", "content": input_text}]
query = gpt_3_5_turbo_16k_answer(messages=messages)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KaichengGroup/FUSE-Flow # Path: FUSE_Flow/other_modules/utils.py class AEInit(str, Enum): zero = 'zero' xavier = 'xavier' @classmethod def get_values(cls): return tuple(map(lambda c: c.value, cls)) # Path: FUSE_Flow/other_modules/conv_modules/conv_block.py class ConvBlock(nn.Module): def __init__(self, conv, c_in, c_out, kernel_size, stride, padding, init, attention_type, attn_red_ratio): super().__init__() self.block = nn.Sequential( nn.BatchNorm2d(c_in), nn.LeakyReLU(negative_slope=0.2), conv(c_in, c_out, kernel_size=kernel_size, stride=stride, padding=padding), ) # initialize weights and biases if init == AEInit.zero: self.block[-1].weight.data.zero_() self.block[-1].bias.data.zero_() elif init == AEInit.xavier: for name, param in self.block.named_parameters(): if name.endswith('.bias'): param.data.fill_(0) elif name.endswith('.weight'): if len(param.shape) >= 2: bound = math.sqrt(6) / math.sqrt(param.shape[0] + param.shape[1]) param.data.uniform_(-bound, bound) def forward(self, x): return self.block(x) # Path: FUSE_Flow/other_modules/gated_resnet.py class UpsampleBlock(GatedResidualNetBase): def __init__(self, c_in, c_out, c_hid, n_layers, init, attention_type, attn_red_ratio): super().__init__(c_in, c_out, c_hid, n_layers, nn.ConvTranspose2d, 4, 2, 1, init, attention_type, attn_red_ratio) def forward(self, x): return self.nn(x) # Path: FUSE_Flow/other_modules/gated_resnet.py class DownsampleBlock(GatedResidualNetBase): def __init__(self, c_in, c_out, c_hid, n_layers, init, attention_type, attn_red_ratio): super().__init__(c_in, c_out, c_hid, n_layers, nn.Conv2d, 4, 2, 1, init, attention_type, attn_red_ratio) def forward(self, x): return self.nn(x) # Path: FUSE_Flow/other_modules/adaptive_unet.py import math import pytorch_lightning as pl import torch from torch import nn from FUSE_Flow.other_modules.utils import AEInit from .conv_modules.conv_block import ConvBlock from .gated_resnet import UpsampleBlock, DownsampleBlock class AdaptiveUNet(pl.LightningModule): """SR network architecture that uses Residual-in-Residual Dense Blocks. Implement Figure (3) in ESRGAN paper. Parameters ---------- d_x : int Priority dimension (height or width) of input chosen for downstream comparisons. d_y : int Priority dimension (height or width) of output chosen for downstream comparisons. add_depth : int Additional depth on top of that required based on difference in scale of input and output. Largest value this value can take is the largest n where input_shape[1]/factor**n is whole and odd. factor: int Factor at which data expands or shrinks. Currently only works for factor = 2. c_in : int Number of channels of input tensor. c_hid : int Number of channels of inner convolutional layers. n_conv : int Number of conv layers. no_skip : bool To include skip connection between mirrored layers. attention_type: AttentionType type of attention implemented in gated conv blocks attn_red_ratio : float # default 16 Minimum value = 1, Maximum value = c_in, set reduction from 1 to c_in using attn_red_ratio Smaller attn_red_ratio --> Less Parameters Hyperparameter to vary capacity and computational cost of SE blocks in the network. """ def __init__(self, d_x, d_y, add_depth, factor, c_in, c_hid, n_conv, no_skip, attention_type, attn_red_ratio): super().__init__() self.save_hyperparameters() self.no_skip = no_skip # double the number of channels needed if no skip connection if no_skip: c_inter = c_hid else: c_inter = c_hid//2 # larger of the input and output priority dimension d_l = max(d_x, d_y) # larger of the input and output priority dimension d_s = min(d_x, d_y) # scale difference between input and output scale = int(d_l / d_s) # max depth of U-Net max_depth = int(math.log(scale, factor) + 1 + add_depth) # represents dimension size of unwanted depths denominator = d_l // (factor ** (max_depth - 1)) # number of down-sampling blocks n_down = math.floor(math.log(d_x / denominator, factor)) # number of up-sampling layers in encoder n_enc_up = max_depth - 1 - n_down - math.ceil(math.log(scale, factor) % 1) # number of up-sampling layers in decoder n_dec_up = math.floor(math.log(d_y / denominator, factor)) # discrepancy between size of input priority dimension and nearest larger multiple of 2 k_up = d_l // (factor ** math.floor(math.log(scale, factor))) - d_s # discrepancy between size of input priority dimension and nearest smaller multiple of 2 k_down = d_s - d_l // (factor ** math.ceil(math.log(scale, factor))) # need resizing if data is not multiple of 2 self.need_resizing = k_up or k_down # encoder if not no_skip: c_up = c_inter // (factor ** (n_down+self.need_resizing)) self.up_resizer = nn.Sequential( *[ConvBlock(nn.ConvTranspose2d, c_in, c_up,
3, 1, 1, AEInit.xavier, attention_type, attn_red_ratio)] +
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zytedata/zyte-spider-templates # Path: zyte_spider_templates/documentation.py def document_enum(func): return func # Path: zyte_spider_templates/spiders/base.py class BaseSpider(scrapy.Spider): custom_settings: Dict[str, Any] = { "ZYTE_API_TRANSPARENT_MODE": True, "_ZYTE_API_USER_AGENT": f"zyte-spider-templates/{version('zyte-spider-templates')}", } metadata: Dict[str, Any] = { "template": True, "title": "Base", "description": "Base template.", } _NEXT_PAGE_PRIORITY: int = 100 @classmethod def from_crawler(cls, crawler: Crawler, *args, **kwargs) -> scrapy.Spider: spider = super().from_crawler(crawler, *args, **kwargs) spider.allowed_domains = [parse_url(spider.args.url).netloc] if spider.args.geolocation: # We set the geolocation in ZYTE_API_PROVIDER_PARAMS for injected # dependencies, and in ZYTE_API_AUTOMAP_PARAMS for page object # additional requests. for component in ("AUTOMAP", "PROVIDER"): default_params = spider.settings.getdict(f"ZYTE_API_{component}_PARAMS") default_params["geolocation"] = spider.args.geolocation spider.settings.set( f"ZYTE_API_{component}_PARAMS", default_params, priority=ARG_SETTING_PRIORITY, ) if spider.args.max_requests: spider.settings.set( "ZYTE_API_MAX_REQUESTS", spider.args.max_requests, priority=ARG_SETTING_PRIORITY, ) return spider # Path: zyte_spider_templates/spiders/base.py class BaseSpiderParams(BaseModel): url: str = Field( title="URL", description="Initial URL for the crawl.", pattern=r"^https?:\/\/[^:\/\s]+(:\d{1,5})?(\/[^\s]*)*(#[^\s]*)?$", ) geolocation: Optional[Geolocation] = Field( title="Geolocation", description="ISO 3166-1 alpha-2 2-character string specified in " "https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/geolocation.", default=None, json_schema_extra={ "enumMeta": { code: { "title": GEOLOCATION_OPTIONS_WITH_CODE[code], } for code in Geolocation } }, ) max_requests: Optional[int] = Field( description=( "The maximum number of Zyte API requests allowed for the crawl.\n" "\n" "Requests with error responses that cannot be retried or exceed " "their retry limit also count here, but they incur in no costs " "and do not increase the request count in Scrapy Cloud." ), default=100, json_schema_extra={ "widget": "request-limit", }, ) # Path: zyte_spider_templates/spiders/ecommerce.py from enum import Enum from typing import Any, Callable, Dict, Iterable, Optional, Union from pydantic import Field from scrapy import Request from scrapy.crawler import Crawler from scrapy_poet import DummyResponse from scrapy_spider_metadata import Args from zyte_common_items import ProbabilityRequest, Product, ProductNavigation from zyte_spider_templates.documentation import document_enum from zyte_spider_templates.spiders.base import BaseSpider, BaseSpiderParams import scrapy @document_enum class EcommerceCrawlStrategy(str, Enum): full: str = "full" """Follow most links within the domain of URL in an attempt to discover and extract as many products as possible.""" navigation: str = "navigation" """Follow pagination, subcategories, and product detail pages.""" pagination_only: str = "pagination_only" """Follow pagination and product detail pages. SubCategory links are ignored. Use this when some subCategory links are misidentified by ML-extraction.""" @document_enum class ExtractFrom(str, Enum): httpResponseBody: str = "httpResponseBody" """Use HTTP responses. Cost-efficient and fast extraction method, which works well on many websites.""" browserHtml: str = "browserHtml" """Use browser rendering. Often provides the best quality."""
class EcommerceSpiderParams(BaseSpiderParams):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Bio-OS/bio-mate # Path: bio_mate/defs.py def gen_data_url_img(img_path: Path): base64_utf8_str = base64.b64encode(img_path.read_bytes()).decode("utf-8") ext = str(img_path).split(".")[-1] data_url = f"data:image/{ext};base64,{base64_utf8_str}" return data_url # Path: bio_mate/defs.py def get_img(type): img_data_url = all_defs[type]["sample_img"] if img_data_url: return img_data_url img_name = all_defs[type]["meta"]["sample_img"] if not img_name: return img_path = plot_defs / type / img_name data_url = gen_data_url_img(img_path) all_defs[type]["sample_img"] = data_url return data_url # Path: bio_mate/defs.py def list_files(path: str): custom_path = Path(path) if not custom_path.exists(): print(f"{path} not exists") return return [ {"name": item.name, "is_dir": item.is_dir()} for item in custom_path.iterdir() ] # Path: bio_mate/defs.py def prepare_plot_env(params: dict): now = datetime.utcnow() time_str = now.strftime("%Y%m%d_%H%M%S_%f") current_plot = current_file.parent / "log_plot" / time_str current_plot.mkdir(exist_ok=True, parents=True) input_json = current_plot / "input.json" input_json.write_text(json.dumps(params, indent=2)) return current_plot # Path: bio_mate/BaseWidget.py from ipywidgets import DOMWidget from traitlets import Bool, Unicode, Dict, Int from bio_mate.defs import gen_data_url_img, get_img, list_files, prepare_plot_env import json import warnings import subprocess module_name = "bio-mate" module_version = "1.0.0" class BaseWidget(DOMWidget): _model_name = Unicode("BaseWidgetModel").tag(sync=True) _model_module = Unicode(module_name).tag(sync=True) _model_module_version = Unicode(module_version).tag(sync=True) _view_name = Unicode("BaseWidgetView").tag(sync=True) _view_module = Unicode(module_name).tag(sync=True) _view_module_version = Unicode(module_version).tag(sync=True) _view_count = Int(0).tag(sync=True) type = Unicode("").tag(sync=True) count = Int(100).tag(sync=True) all_defs = Dict().tag(sync=True) def handle_messages(self, widget, content: dict, buffers): reqId = content.get("reqId", "") method_name = content.get("method", "") if not reqId or not method_name: print(f"Invalid CommRequest: reqId: {reqId}-{method_name}") return if not hasattr(self, method_name): content["response"] = {"status": "failed", "msg": "NotImplementedError"} self.send(content) return func = getattr(self, method_name) func(content) def __init__(self, **kwargs): super(BaseWidget, self).__init__(**kwargs) # Assign keyword parameters to this object recognized_keys = dir(self.__class__) for key, value in kwargs.items(): if key not in recognized_keys and f"_{key}" not in recognized_keys: warnings.warn(RuntimeWarning(f"Keyword parameter {key} not recognized")) setattr(self, key, value) # Attach the callback event handler self.on_msg(self.handle_messages) def getSampleImage(self, content: dict):
content["response"] = {"status": "ok", "result": get_img(self.type)}
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: iamarunbrahma/llm-prompt-testing # Path: utils.py @retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6)) def get_embeddings(text, embedding_model="text-embedding-ada-002"): response = openai.Embedding.create( model=embedding_model, input=text, ) embedding_vectors = response["data"][0]["embedding"] return embedding_vectors # Path: utils.py @retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6)) def get_chat_completion(config, system_prompt, question): try: messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": question}, ] response = openai.ChatCompletion.create( model=config["model_name"], messages=messages, temperature=config["temperature"], max_tokens=config["max_tokens"], top_p=config["top_p"], frequency_penalty=config["frequency_penalty"], presence_penalty=config["presence_penalty"], ) answer = response["choices"][0]["message"]["content"] answer = answer.strip() return answer except OpenAIError as e: func_name = traceback.extract_stack()[-1].name st.error(f"Error in {func_name}:\n{type(e).__name__}=> {str(e)}") # Path: metrics.py from collections import Counter from numpy.linalg import norm from utils import get_embeddings, get_chat_completion import evaluate import streamlit as st import traceback import numpy as np class Metrics: def __init__(self, question, context, answer, config, strictness=1): self.question = question self.context = context self.answer = answer self.strictness = strictness config["model_name"] = "gpt-3.5-turbo" self.config = config def rouge_score(self): try: if not self.answer or not self.context: raise ValueError( "Please provide both context and answer to generate Rouge Score." ) rouge = evaluate.load("rouge") results = rouge.compute(predictions=self.answer, references=self.context) rouge1 = np.round(results["rouge1"], 3) rouge2 = np.round(results["rouge2"], 3) rougeL = np.round(results["rougeL"], 3) return rouge1, rouge2, rougeL except Exception as e: func_name = traceback.extract_stack()[-1].name st.error(f"Error in {func_name}: {str(e)}") def bleu_score(self): try: if not self.answer or not self.context: raise ValueError( "Please provide both context and answer to generate BLEU Score." ) bleu = evaluate.load("bleu") results = bleu.compute(predictions=self.answer, references=self.context) return np.round(results["bleu"], 3) except Exception as e: func_name = traceback.extract_stack()[-1].name st.error(f"Error in {func_name}: {str(e)}") def bert_score(self): try: if not self.answer or not self.context: raise ValueError( "Please provide both context and answer to generate BLEU Score." ) bertscore = evaluate.load("bertscore") results = bertscore.compute( predictions=self.answer, references=self.context, lang="en", model_type="distilbert-base-uncased", ) return np.round(results["f1"], 3) except Exception as e: func_name = traceback.extract_stack()[-1].name st.error(f"Error in {func_name}: {str(e)}") def answer_relevancy(self): try: if not self.answer or not self.question: raise ValueError( "Please provide both question and answer to generate Answer Relevancy Score." ) relevancy_prompt = """ Generate question for the given answer. Here are few examples: Answer: The first ODI Cricket World Cup was held in 1975, and the West Indies cricket team won the tournament. Clive Lloyd was the captain of the winning West Indies team. They defeated Australia in the final to become the first-ever ODI Cricket World Cup champions. Question: Which team won the first ODI Cricket World Cup and in which year? Who was the captain of the winning team? Answer: The first president of the United States of America was George Washington. He became president in the year 1789. Washington served as the country's first president from April 30, 1789, to March 4, 1797. Question: Who was the first president of the United States of America and in which year did he become president? Using the answer provided below, generate a question which is relevant to the answer. """ answer_relevancy_score = [] for _ in range(self.strictness): generated_question = get_chat_completion( self.config, relevancy_prompt, self.answer )
question_vec = np.asarray(get_embeddings(self.question.strip()))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AVAniketh0905/fluidspy # Path: fluidspylib/fluidspy/numerical/boundary/composite.py class CompositeBoundary: children: List[Direction] def __init__(self, *args) -> None: self.children = list(args) def init_apply(self): for child in self.children: child.init_apply() def apply(self): for child in self.children: child.apply() # Path: fluidspylib/fluidspy/numerical/dim/dimension.py class Dimension(ABC): """Abstract class for dimensions.""" initial_conditions: SimulationState def __init__(self, initial_conditions: SimulationState) -> None: self.initial_conditions = initial_conditions @abstractmethod def create_grid( self, num_points: Union[int, Tuple[int, int]], base_value: float = 0.0 ): init_state = np.zeros(num_points, dtype=float) init_state.fill(base_value) self.initial_conditions.set_state(init_state) @abstractmethod def convolution(): pass # Path: fluidspylib/fluidspy/numerical/material_properties/material.py class MaterialProperties: """Material properties. Args: name (str): Material name. density (float): Material density.(kg/m^3) specific_heat (float): Material specific heat.(J/kg.K) prandtl (float): Material Prandtl number. """ name: str density: float specific_heat: float prandtl: float # Path: fluidspylib/fluidspy/numerical/material_properties/material.py class ThermalProperties(MaterialProperties): """Thermal properties. Args: name (str): Material name. density (float): Material density.(kg/m^3) specific_heat (float): Material specific heat.(J/kg.K) prandtl (float): Material Prandtl number. thermal_conductivity (float): Material thermal conductivity.(W/m.K) thermal_expansion_coefficient (float): Material thermal expansion coefficient.(1/K) """ thermal_conductivity: float thermal_expansion_coefficient: float # Path: fluidspylib/fluidspy/numerical/state.py class SimulationState: state: np.ndarray | NoneType = None def get_state(self) -> np.ndarray: return self.state def set_state(self, value: np.ndarray): self.state = value def get_dimension(self): return self.state.ndim # Path: fluidspylib/fluidspy/numerical/step.py class Step: time: float vec: Vector def __init__( self, time: float, vec: Vector = Vector(), ): """ Create the time step and the spatial step. Args: time (float): The time step. vec (Vector): The spatial step. Defaults to (0, 0, 0). """ self.time = time self.vec = vec def __repr__(self) -> str: return f"({self.time}, {self.vec})" # Path: fluidspylib/fluidspy/numerical/step.py class Vector: x: float y: float z: float def __init__(self, x=inf, y=inf, z=inf) -> None: """ Create the spatial step. """ self.x = x self.y = y self.z = z def __repr__(self) -> str: return f"({self.x}, {self.y}, {self.z})" # Path: fluidspylib/fluidspy/numerical/methods/finite_differential.py from abc import ABC from abc import abstractmethod from typing import List from ..boundary.composite import CompositeBoundary from ..dim import Dimension from ..material_properties import MaterialProperties from ..material_properties import ThermalProperties from ..state import SimulationState from ..step import Step from ..step import Vector import numpy as np class FiniteDifferentialMethod(ABC): def __init__( self, state: SimulationState, dim: Dimension, properties: ThermalProperties,
boundary_conditions: CompositeBoundary,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zorrobyte/esp32-universal-diesel-heater-controller # Path: states/stateMachine.py def log(message, level=2): def handle_state(current_state, switch_value, exhaust_temp, output_temp): # Path: states/emergencyStop.py def log(message, level=1): def turn_off_pumps(timer): def emergency_stop(reason): # Path: lib/sensors.py def log(message, level=1): def read_temp(analog_value, sensor_type, sensor_beta, sensor_name="output"): def read_output_temp(): def read_exhaust_temp(): TEMP_HISTORY_LENGTH = 3 R0 = params['R0'] T0 = params['T0'] BETA = sensor_beta # Path: lib/networking.py def init_wifi(): def init_mqtt(): def connect_wifi(): def connect_mqtt(): def publish_sensor_values(): def mqtt_callback(topic, msg): def run_networking(): # Path: lib/fanPID.py def rpm_interrupt_handler(pin): def __init__(self, kp, ki, kd): def calculate(self, setpoint, current_value): def set_fan_duty_cycle(duty_cycle): def fan_control_thread(): class PIDController: # Path: main.py import machine import _thread import hardwareConfig as config import utime import webserver from machine import Timer from states import stateMachine, emergencyStop from lib import sensors, networking, fanPID #################################################################### # WARNING # #################################################################### # This code is provided "AS IS" without warranty of any kind. # # Use of this code in any form acknowledges your acceptance of # # these terms. # # # # This code has NOT been tested in real-world scenarios. # # Improper usage, lack of understanding, or any combination # # thereof can result in significant property damage, injury, # # loss of life, or worse. # # Specifically, this code is related to controlling heating # # elements and systems, and there's a very real risk that it # # can BURN YOUR SHIT DOWN. # # # # By using, distributing, or even reading this code, you agree # # to assume all responsibility and risk associated with it. # # The author(s), contributors, and distributors of this code # # will NOT be held liable for any damages, injuries, or other # # consequences you may face as a result of using or attempting # # to use this code. # # # # Always approach such systems with caution. Ensure you understand # # the code, the systems involved, and the potential risks. # # If you're unsure, DO NOT use the code. # # # # Stay safe and think before you act. # #################################################################### # Initialize the WDT with a 10-second timeout wdt = machine.WDT(id=0, timeout=10000) # 10 seconds def log(message, level=2): if config.LOG_LEVEL >= level: print(message) def get_reset_reason(): reset_reason = machine.reset_cause() if reset_reason == machine.PWRON_RESET: print("Reboot was because of Power-On!") elif reset_reason == machine.WDT_RESET: print("Reboot was because of WDT!") return reset_reason pulse_timer = Timer(0) last_pulse_time = 0 off_timer = Timer(1) def turn_off_pump(_): config.FUEL_PIN.off() def pulse_fuel_callback(_): global last_pulse_time current_time = utime.ticks_ms() if utime.ticks_diff(current_time, config.heartbeat) > 10000: config.FUEL_PIN.off() log("Heartbeat missing, fuel pump turned off.") elif config.pump_frequency > 0: period = 1000.0 / config.pump_frequency if utime.ticks_diff(current_time, last_pulse_time) >= period: last_pulse_time = current_time config.FUEL_PIN.on() off_timer.init(period=int(config.PUMP_ON_TIME * 1000), mode=Timer.ONE_SHOT, callback=turn_off_pump) else: config.FUEL_PIN.off() pulse_timer.init(period=100, mode=Timer.PERIODIC, callback=pulse_fuel_callback) def emergency_stop_thread(): while True: wdt.feed() current_time = utime.ticks_ms() # Use ticks_ms to get the current time in milliseconds if utime.ticks_diff(current_time, config.heartbeat) > 10000: # Compare in milliseconds (10 seconds = 10000 ms) emergencyStop.emergency_stop("No heartbeat detected") utime.sleep(1) def run_networking_thread(): while True: networking.run_networking() utime.sleep(5) def main(): while True: config.heartbeat = utime.ticks_ms() config.output_temp = sensors.read_output_temp() config.exhaust_temp = sensors.read_exhaust_temp() current_switch_value = config.SWITCH_PIN.value()
config.current_state, config.emergency_reason = stateMachine.handle_state(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: suliman-99/django-seeding # Path: django_seeding/seeders.py class Seeder(): """ The `Seeder` class provides a minimal class which may be used for writing custom seeding implementations. Required: seed: `seed()` as <method> Additionals: priority: `priority` as <class attribute> or `get_priority()` as <method> just_debug: `just_debug` as <class attribute> or `get_just_debug()` as <method>: """ def seed(self): """ Method that fill the datebase as wanted """ raise NotImplementedError('`seed()` must be implemented.') def _seed(self): """ Inner method that do validation before calling the public `seed()` method """ id = self._get_id() # if this seeder is just_debug and the settings state is not debug then dont apply it if self._get_just_debug() and not settings.DEBUG: return # if this seeder is applied before then dont apply it if AppliedSeeder.objects.filter(id=id).exists(): return print(f' Seeding {id}...', end='') # apply the seeder self.seed() # store it in the applied seeders table in the database AppliedSeeder.objects.create(id=id) GREEN_COLOR = "\033[32m" WHITE_COLOR = "\033[0m" print(GREEN_COLOR + " Successfully ^_^ " + WHITE_COLOR) def get_priority(self): """ Method return the `priority` value (smaller will be applied earlier) if `priority` is passed: it will be returned if `priority` is not passed: float(inf) will be returned """ return getattr(self, 'priority', float('inf')) def _get_priority(self): """ Innder method to validate the value returned by `get_priority()` method """ priority = self.get_priority() if not isinstance(priority, float) and not isinstance(priority, int): raise TypeError('`priority` must be a number') return priority def get_just_debug(self): """ Method return the `just_debug` value just_debug=True means this seeder will be applied just when settings.DEBUG=True if `just_debug` is passed: it will be returned if `just_debug` is not passed: False will be returned """ return getattr(self, 'just_debug', False) def _get_just_debug(self): """ Innder method to validate the value returned by `get_just_debug()` method """ just_debug = self.get_just_debug() if not isinstance(just_debug, bool): raise TypeError('`just_debug` must be a bool value') return just_debug def get_id(self): """ Method return the `id` value to be stored in the database `AppliedSeeder` table Note: by this id value we can check if this seeder is applied before or not it is preferred to not change the id because after changing thd id the seeder will be considerd as another seeder then it will be apllied even that the old seeder is applied with the old id value default value is the name of the class -> str(type(self)) Note: if you changed the class name or changed the seeder-class file name or and file in the path from the root to the class the str(type(self)) will return another value then the default value of this seeder is changed then if it doesnt have a constant id the seeder will be applied again and it may cause errors so: give an `id` class attribute to solv this problem """ return getattr(self, 'id', str(type(self))) def _get_id(self): """ Innder method to validate the value returned by `get_id()` method """ id = self.get_id() if not isinstance(id, str): raise TypeError('`id` must be str') return id # Path: django_seeding/models.py class AppliedSeeder(models.Model): id = models.CharField(max_length=100, primary_key=True) def __str__(self) -> str: return self.id # Path: django_seeding/seeder_registry.py import sys import importlib.util from pathlib import Path from django.apps import apps from django.conf import settings from .seeders import Seeder from .models import AppliedSeeder class SeederRegistry: """ The `SeederRegistry` class apply registered seeders when the server is run. seeder registering is doing by: @SeederRegistry.register as <decorator> or SeederRegistry.register(<seeder-class>) as <method> """ seeders = [] @classmethod def register(cls, seeder): """ Method and decorator to register the seeder-class in the seeders list to be seeded when the server is run """
if not issubclass(seeder, Seeder):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: cfs-energy/cfspopcon # Path: cfspopcon/named_options.py class Algorithms(Enum): """Select which top-level algorithm to run.""" predictive_popcon = auto() two_point_model_fixed_fpow = auto() two_point_model_fixed_qpart = auto() two_point_model_fixed_tet = auto() calc_beta = auto() calc_core_radiated_power = auto() calc_fusion_gain = auto() calc_geometry = auto() calc_heat_exhaust = auto() calc_ohmic_power = auto() calc_peaked_profiles = auto() calc_plasma_current_from_q_star = auto() calc_q_star_from_plasma_current = auto() calc_power_balance_from_tau_e = auto() calc_zeff_and_dilution_from_impurities = auto() calc_confinement_transition_threshold_power = auto() calc_ratio_P_LH = auto() calc_f_rad_core = auto() calc_normalised_collisionality = auto() calc_rho_star = auto() calc_triple_product = auto() calc_greenwald_fraction = auto() calc_current_relaxation_time = auto() calc_peak_pressure = auto() calc_average_total_pressure = auto() calc_bootstrap_fraction = auto() calc_auxillary_power = auto() calc_average_ion_temp = auto() calc_fuel_average_mass_number = auto() calc_magnetic_field_on_axis = auto() calc_extrinsic_core_radiator = auto() require_P_rad_less_than_P_in = auto() calc_P_SOL = auto() use_LOC_tau_e_below_threshold = auto() calc_plasma_stored_energy = auto() # Path: cfspopcon/named_options.py class ConfinementScaling(Enum): r"""Enum of implemented \tau_{E} scalings.""" ITER98y2 = auto() ITER89P = auto() ITER89P_ka = auto() ITERL96Pth = auto() ITER97L = auto() IModey2 = auto() ITPA20_STD5 = auto() ITPA20_IL = auto() ITPA20_IL_HighZ = auto() ITPA_2018_STD5_OLS = auto() ITPA_2018_STD5_WLS = auto() ITPA_2018_STD5_GLS = auto() ITPA_2018_STD5_SEL1_OLS = auto() ITPA_2018_STD5_SEL1_WLS = auto() ITPA_2018_STD5_SEL1_GLS = auto() LOC = auto() H_DS03 = auto() # Path: cfspopcon/named_options.py class Impurity(Enum): """Enum of possible impurity elements. The enum value represents the element's atomic number (Z). """ Helium = 2 Lithium = 3 Beryllium = 4 Carbon = 6 Nitrogen = 7 Oxygen = 8 Neon = 10 Argon = 18 Krypton = 36 Xenon = 54 Tungsten = 74 # Path: cfspopcon/named_options.py class LambdaQScaling(Enum): """Options for heat flux decay length scaling.""" Brunner = auto() EichRegression14 = auto() EichRegression15 = auto() # Path: cfspopcon/named_options.py class MomentumLossFunction(Enum): """Select which SOL momentum loss function to use.""" KotovReiter = auto() Sang = auto() Jarvinen = auto() Moulton = auto() PerezH = auto() PerezL = auto() # Path: cfspopcon/named_options.py class ProfileForm(Enum): """Methods to calculate nT profiles.""" analytic = auto() prf = auto() # Path: cfspopcon/named_options.py class RadiationMethod(Enum): """Methods to calculate radiation losses.""" Inherent = "Bremsstrahlung and synchrotron radiation only" PostJensen = "Impurity radiation, using a coronal equilibrium model from Post & Jensen 1977" MavrinCoronal = "Impurity radiation, using a coronal equilibrium model from Mavrin 2018" MavrinNoncoronal = "Impurity radiation, using a non-coronal model from Mavrin 2017" Radas = "Impurity line and bremsstrahlung radiation, using coronal Lz curves from Radas" # Path: cfspopcon/named_options.py class ReactionType(Enum): """Supported Fusion Fuel Reaction Types.""" DT = "Deuterium-Tritium" DD = "Deuterium-Deuterium" DHe3 = "Deuterium-Helium3" pB11 = "Proton-Boron11" # Path: cfspopcon/helpers.py from typing import Any, Union from .named_options import ( Algorithms, ConfinementScaling, Impurity, LambdaQScaling, MomentumLossFunction, ProfileForm, RadiationMethod, ReactionType, ) import xarray as xr """Constructors and helper functions.""" def convert_named_options(key: str, val: Any) -> Any: # noqa: PLR0911, PLR0912 """Given a 'key' matching a named_option, return the corresponding Enum value.""" if key == "algorithms": return Algorithms[val] elif key == "energy_confinement_scaling": return ConfinementScaling[val] elif key == "profile_form":
return ProfileForm[val]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: yifei-he/GOAT # Path: ot_util.py def ot_ablation(size, mode): ns, nt = size, size plan = np.zeros((ns, nt)) ran = np.arange(ns*nt) np.random.shuffle(ran) idx = ran[:size] for i in idx: row = i // nt col = i-i//nt * nt if mode == "random": plan[row, col] = np.random.uniform() elif mode == "uniform": plan[row, col] = 1 plan /= np.sum(plan, 1, keepdims=True) plan[~ np.isfinite(plan)] = 0 return plan # Path: ot_util.py def generate_domains(n_inter, dataset_s, dataset_t, plan=None, entry_cutoff=0, conf=0): print("------------Generate Intermediate domains----------") all_domains = [] xs, xt = dataset_s.data, dataset_t.data ys = dataset_s.targets if plan is None: if len(xs.shape) > 2: xs_flat, xt_flat = nn.Flatten()(xs), nn.Flatten()(xt) plan = get_OT_plan(xs_flat, xt_flat, solver='emd', entry_cutoff=entry_cutoff) else: plan = get_OT_plan(xs, xt, solver='emd', entry_cutoff=entry_cutoff) logits_t = get_transported_labels(plan, ys, logit=True) yt_hat, conf_idx = get_conf_idx(logits_t, confidence_q=conf) xt = xt[conf_idx] plan = plan[:, conf_idx] yt_hat = yt_hat[conf_idx] print(f"Remaining data after confidence filter: {len(conf_idx)}") for i in range(1, n_inter+1): x, weights = pushforward(xs, xt, plan, i / (n_inter+1)) if isinstance(x, np.ndarray): all_domains.append(DomainDataset(torch.from_numpy(x).float(), weights)) else: all_domains.append(DomainDataset(x, weights)) all_domains.append(dataset_t) print(f"Total data for each intermediate domain: {len(x)}") return all_domains # Path: experiments.py import torch import torch.optim as optim import copy import argparse import random import torch.backends.cudnn as cudnn import time from model import * from train_model import * from util import * from ot_util import ot_ablation from da_algo import * from ot_util import generate_domains from dataset import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_source_model(args, trainset, testset, n_class, mode, encoder=None, epochs=50, verbose=True): print("Start training source model") model = Classifier(encoder, MLP(mode=mode, n_class=n_class, hidden=1024)).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4) trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) testloader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) for epoch in range(1, epochs+1): train(epoch, trainloader, model, optimizer, verbose=verbose) if epoch % 5 == 0: test(testloader, model, verbose=verbose) return model def run_goat(model_copy, source_model, src_trainset, tgt_trainset, all_sets, generated_domains, epochs=10): # get the performance of direct adaptation from the source to target, st involves self-training on target direct_acc, st_acc = self_train(args, model_copy, [tgt_trainset], epochs=epochs) # get the performance of GST from the source to target, st involves self-training on target direct_acc_all, st_acc_all = self_train(args, source_model, all_sets, epochs=epochs) # encode the source and target domains e_src_trainset, e_tgt_trainset = get_encoded_dataset(source_model.encoder, src_trainset), get_encoded_dataset(source_model.encoder, tgt_trainset) # encode the intermediate ground-truth domains intersets = all_sets[:-1] encoded_intersets = [e_src_trainset] for i in intersets: encoded_intersets.append(get_encoded_dataset(source_model.encoder, i)) encoded_intersets.append(e_tgt_trainset) # generate intermediate domains generated_acc = 0 if generated_domains > 0: all_domains = [] for i in range(len(encoded_intersets)-1):
all_domains += generate_domains(generated_domains, encoded_intersets[i], encoded_intersets[i+1])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ansible/django-ansible-base # Path: ansible_base/models/authenticator_map.py class AuthenticatorMap(NamedCommonModel): class Meta: app_label = 'ansible_base' # If the map type is a team then we must have an org/team constraints = [ models.CheckConstraint( name="%(app_label)s_%(class)s_require_org_team_if_team_map", check=(~models.Q(map_type='team') | models.Q(team__isnull=False) & models.Q(organization__isnull=False)), ), models.CheckConstraint( name="%(app_label)s_%(class)s_require_org_if_org_map", check=(~models.Q(map_type='organization') | models.Q(organization__isnull=False)), ), ] unique_together = ['name', 'authenticator'] authenticator = models.ForeignKey( Authenticator, null=False, on_delete=models.CASCADE, help_text="The authenticator this mapping belongs to", ) revoke = models.BooleanField( null=False, default=False, help_text="If a user does not meet this rule should we revoke the permission", ) map_type = models.CharField( max_length=17, null=False, default="team", choices=[ ('team', 'team'), ('is_superuser', 'is_superuser'), ('is_system_auditor', 'is_system_auditor'), ('allow', 'allow'), ('organization', 'organization'), ], help_text='What does the map work on, a team, a user flag or is this an allow rule', ) team = models.CharField( max_length=512, null=True, default=None, help_text='A team name this rule works on', ) organization = models.CharField( max_length=512, null=True, default=None, help_text='An organization name this rule works on', ) triggers = models.JSONField( null=False, default=dict, help_text="Trigger information for this rule", ) order = models.PositiveIntegerField( null=False, default=0, help_text=( "The order in which this rule should be processed, smaller numbers are of higher precedence. " "Items with the same order will be executed in random order" ), ) # Path: ansible_base/serializers/common.py class CommonModelSerializer(serializers.ModelSerializer): show_capabilities = ['edit', 'delete'] url = serializers.SerializerMethodField() related = serializers.SerializerMethodField('_get_related') summary_fields = serializers.SerializerMethodField('_get_summary_fields') class Meta: fields = ['id', 'url', 'created_on', 'created_by', 'modified_on', 'modified_by', 'related', 'summary_fields'] def __init__(self, instance=None, data=empty, **kwargs): # pre-populate the form with the defaults from the model model = getattr(self.Meta, 'model', None) if model: extra_kwargs = getattr(self.Meta, 'extra_kwargs', {}) for field in model._meta.concrete_fields: if field.name not in extra_kwargs: extra_kwargs[field.name] = {} if not extra_kwargs[field.name].get('initial', None): if field.default and field.default is not NOT_PROVIDED: extra_kwargs[field.name]['initial'] = field.default setattr(self.Meta, 'extra_kwargs', extra_kwargs) super().__init__(instance, data, **kwargs) def get_url(self, obj): if self.reverse_url_name: return reverse_lazy(self.reverse_url_name, kwargs={'pk': obj.pk}) return '' def _get_related(self, obj): if obj is None: return {} if not hasattr(obj, 'related_fields'): logger.warning(f"Object {obj.__class__} has no related_fields method") return {} return obj.related_fields(self.context.get('request')) def _get_summary_fields(self, obj): if obj is None: return {} if not hasattr(obj, 'get_summary_fields'): logger.warning(f"Object {obj.__class__} has no get_summary_fields method") return {} return obj.get_summary_fields() def to_representation(self, obj): ret = super().to_representation(obj) for key in obj.encrypted_fields: if key in ret: ret[key] = ENCRYPTED_STRING return ret def update(self, instance, validated_data): # We don't want the $encrypted$ fields going back to the model for key in self.Meta.model.encrypted_fields: new_field = validated_data.get(key, None) if new_field and new_field == ENCRYPTED_STRING: validated_data.pop(key, None) return super().update(instance, validated_data) # Path: ansible_base/utils/encryption.py ENCRYPTED_STRING = '$encrypted$' # Path: test_app/models.py class EncryptionModel(NamedCommonModel): class Meta: app_label = "test_app" encrypted_fields = ['testing1', 'testing2'] testing1 = models.CharField(max_length=1, null=True, default='a') testing2 = models.CharField(max_length=1, null=True, default='b') # Path: test_app/serializers.py class EncryptionTestSerializer(NamedCommonModelSerializer): reverse_url_name = None class Meta: model = EncryptionModel fields = NamedCommonModelSerializer.Meta.fields + [x.name for x in EncryptionModel._meta.concrete_fields] # Path: ansible_base/tests/unit/serializers/test_common.py import pytest from ansible_base.models import AuthenticatorMap from ansible_base.serializers.common import CommonModelSerializer from ansible_base.utils.encryption import ENCRYPTED_STRING from test_app.models import EncryptionModel from test_app.serializers import EncryptionTestSerializer @pytest.mark.django_db def test_representation_of_encrypted_fields(): model = EncryptionModel.objects.create()
serializer = EncryptionTestSerializer()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhudotexe/kani-vision # Path: kani/ext/vision/parts.py class ImagePart(MessagePart, abc.ABC): """Base class for all image message parts. Generally, you shouldn't construct this directly - instead, use one of the classmethods to initialize the image from a file path, binary, or Pillow image. """ model_config = ConfigDict(ignored_types=(functools.cached_property,)) # constructors @staticmethod def from_path(fp: PathLike): """Load an image from a path on the local filesystem.""" return FileImagePart(path=fp) @staticmethod def from_bytes(data: bytes): """Load an image from binary data in memory.""" return BytesImagePart(data=data) @staticmethod def from_image(image: Image.Image): """Create an image part from an existing :class:`PIL.Image.Image`.""" return PillowImagePart(pil_image=image) @classmethod async def from_url(cls, url: str, remote: bool = True): """Create an image part from a URL. If *remote* is True, this will not download the image - it will be up to the engine to do so! .. attention:: Note that this classmethod is *asynchronous*, unlike the other classmethods! This is because we need to check the image headers and metadata before returning a valid image part. """ if not remote: io = BytesIO() await download_image(url, io) return BytesImagePart(data=io.getvalue()) size, mime = await image_metadata_from_url(url) return RemoteURLImagePart(url=url, size_=size, mime_=mime) # interface @property def image(self) -> Image.Image: """Get a :class:`PIL.Image.Image` representing the image.""" raise NotImplementedError @property def bytes(self) -> bytes: """The binary image data.""" io = BytesIO() self.image.save(io, format="PNG") return io.getvalue() @property def b64(self) -> str: """The binary image data encoded in a base64 string. Note that this is *not* a web-suitable ``data:image/...`` string; just the raw binary of the image. Use :attr:`b64_uri` for a web-suitable string. """ return base64.b64encode(self.bytes).decode() @property def b64_uri(self) -> str: """Get the binary image data encoded in a web-suitable base64 string.""" return f"data:{self.mime};base64,{self.b64}" # metadata @property def size(self) -> tuple[int, int]: """Get the size of the image, in pixels.""" return self.image.size @property def mime(self) -> str: """Get the MIME filetype of the image.""" img_format = self.image.format return Image.MIME.get(img_format, f"image/{img_format.lower()}") # Path: kani/ext/vision/parts.py class RemoteURLImagePart(ImagePart): """A reference to a remote image stored at the given URL. Use :meth:`.ImagePart.from_url` to construct. """ url: str size_: tuple[int, int] mime_: str @property def image(self): raise RemoteImageError( "This engine does not support remote images. Use `await ImagePart.from_url(url, remote=False)` to download" " the image before using it in this engine." ) @property def size(self): return self.size_ @property def mime(self): return self.mime_ # Path: kani/ext/vision/engines/openai/models.py from typing import Annotated, Literal, Union from pydantic import Field from kani.engines.openai.models import OpenAIChatMessage from kani.models import BaseModel, ChatMessage, ChatRole from ...parts import ImagePart, RemoteURLImagePart # note: `type` does not have default since we use `.model_dump(..., exclude_defaults=True)` class OpenAIText(BaseModel): type: Literal["text"] text: str @classmethod def from_text(cls, data: str): return cls(type="text", text=data) class OpenAIImage(BaseModel): type: Literal["image_url"] image_url: str detail: Literal["high"] | Literal["low"] | None = None @classmethod def from_imagepart(cls, part: ImagePart):
if isinstance(part, RemoteURLImagePart):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: line/Skeleton-Temporal-Action-Localization # Path: evaluation/classificationMAP.py def getClassificationMAP(confidence, labels): """ confidence and labels are of dimension n_samples x n_label """ AP = [] for i in range(np.shape(labels)[1]): AP.append(getAP(confidence[:, i], labels[:, i])) return 100 * sum(AP) / len(AP) # Path: evaluation/detectionMAP.py def getSingleStreamDetectionMAP( vid_preds, frm_preds, vid_lens, annotation_path, args, multi=False, factor=1.0 ): iou_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] dmap_list = [] seg = getActLoc( vid_preds, frm_preds, vid_lens, np.arange(args.start_threshold, args.end_threshold, args.threshold_interval), annotation_path, args, multi=multi, ) # print (len(seg)) for iou in iou_list: print("Testing for IoU %f" % iou) dmap_list.append( getLocMAP(seg, iou, annotation_path, args, multi=multi, factor=factor) ) return dmap_list, iou_list # Path: evaluation/detectionMAP.py def getTwoStreamDetectionMAP( rgb_vid_preds, flow_vid_preds, rgb_frm_preds, flow_frm_preds, vid_lens, annotation_path, args, ): iou_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] dmap_list = [] rgb_seg = getActLoc( rgb_vid_preds, rgb_frm_preds * 0.1, vid_lens, np.arange(args.start_threshold, args.end_threshold, args.threshold_interval) * 0.1, annotation_path, args, ) flow_seg = getActLoc( flow_vid_preds, flow_frm_preds, vid_lens, np.arange(args.start_threshold, args.end_threshold, args.threshold_interval), annotation_path, args, ) seg = IntergrateSegs(rgb_seg, flow_seg, 0.9, args) for iou in iou_list: print("Testing for IoU %f" % iou) dmap_list.append(getLocMAP(seg, iou, annotation_path, args)) return dmap_list, iou_list # Path: evaluation/utils.py def write_results_to_eval_file(args, dmap, itr1, itr2): file_folder = "./ckpt/" + args.dataset_name + "/eval/" file_name = args.dataset_name + "-results.log" fid = open(file_folder + file_name, "a+") string_to_write = str(itr1) string_to_write += " " + str(itr2) for item in dmap: string_to_write += " " + "%.2f" % item fid.write(string_to_write + "\n") fid.close() # Path: evaluation/utils.py def write_results_to_file(args, dmap, cmap, itr): file_folder = "./ckpt/" + args.dataset_name + "/" + str(args.model_id) + "/" file_name = args.dataset_name + "-results.log" fid = open(file_folder + file_name, "a+") string_to_write = str(itr) for item in dmap: string_to_write += " " + "%.2f" % item string_to_write += " " + "%.2f" % cmap fid.write(string_to_write + "\n") fid.close() # Path: evaluation/eval.py import numpy as np import torch import torch.nn.functional as F from torch.autograd import Variable from .classificationMAP import getClassificationMAP as cmAP from .detectionMAP import getSingleStreamDetectionMAP as dsmAP from .detectionMAP import getTwoStreamDetectionMAP as dtmAP from .utils import write_results_to_eval_file, write_results_to_file def ss_eval(epoch, dataloader, args, logger, model, device): vid_preds = [] frm_preds = [] vid_lens = [] labels = [] for num, sample in enumerate(dataloader): if (num + 1) % 100 == 0: print("Testing test data point %d of %d" % (num + 1, len(dataloader))) features = sample["data"].numpy() label = sample["labels"].numpy() vid_len = sample["vid_len"].numpy() features = torch.from_numpy(features).float().to(device) with torch.no_grad(): _, vid_pred, _, frm_scr = model(Variable(features)) frm_pred = F.softmax(frm_scr, -1) vid_pred = np.squeeze(vid_pred.cpu().data.numpy(), axis=0) frm_pred = np.squeeze(frm_pred.cpu().data.numpy(), axis=0) label = np.squeeze(label, axis=0) vid_preds.append(vid_pred) frm_preds.append(frm_pred) vid_lens.append(vid_len) labels.append(label) vid_preds = np.array(vid_preds) frm_preds = np.array(frm_preds) vid_lens = np.array(vid_lens) labels = np.array(labels) cmap = cmAP(vid_preds, labels) dmap, iou = dsmAP( vid_preds, frm_preds, vid_lens, dataloader.dataset.path_to_annotations, args ) print("Classification map %f" % cmap) for item in list(zip(iou, dmap)): print("Detection map @ %f = %f" % (item[0], item[1])) logger.log_value("Test Classification mAP", cmap, epoch) for item in list(zip(dmap, iou)): logger.log_value("Test Detection1 mAP @ IoU = " + str(item[1]), item[0], epoch)
write_results_to_file(args, dmap, cmap, epoch)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: n-thumann/xbox-cloud-statistics # Path: backend/xbox_cloud_statistics/models.py class Game(Model): id: str title: str image_url: str subscriptions: Subscription def to_dict(self) -> dict: return {"id": self.id, "title": self.title, "image_url": self.image_url} def __lt__(self, other) -> bool: if not isinstance(other, Game): raise TypeError return self.id < other.id # Path: backend/xbox_cloud_statistics/models.py class Measurement(Model): server_time: datetime wait_time: int def to_dict(self) -> dict: return {int(self.server_time.timestamp()): self.wait_time} # Path: backend/xbox_cloud_statistics/models.py class Results(Model): _games: dict[Game, GameResult] = field( default_factory=lambda: defaultdict(GameResult) ) def __getitem__(self, game: Game) -> GameResult: return self._games[game] def __iter__(self) -> Iterator[tuple[Game, GameResult]]: return iter(sorted(self._games.items())) def to_dict(self) -> dict: return {game.id: game_result for game, game_result in self} # Path: backend/xbox_cloud_statistics/models.py class Subscription(Flag): F2P = auto() GPU = auto() @classmethod def from_string(cls, value: str): return cls._member_map_.get(value) # Path: backend/xbox_cloud_statistics/main.py import asyncio import itertools import httpx from pathlib import Path from xbox_cloud_statistics.client import XBoxCloudClient from xbox_cloud_statistics.config import Config from xbox_cloud_statistics.io.cli import CLI from xbox_cloud_statistics.io.json import JSON from .models import ( Game, Measurement, Results, Subscription, ) def run(): asyncio.run(main()) async def main(): config = Config() results = Results() async with httpx.AsyncClient(http2=True) as http_client: client = XBoxCloudClient(http_client, config.client_id, config.client_secret) if config.f2p_token: await run_measurements( client, Subscription.F2P, config.f2p_token, config.f2p_games, results, ) if config.gpu_token: await run_measurements( client, Subscription.GPU, config.gpu_token, config.gpu_games, results, ) CLI.handle(results) JSON.handle(results, Path("./results")) async def run_measurements( client: XBoxCloudClient, subscription: Subscription, token: str, games: list[Game], results: Results, ): await client.login(subscription, token) games_regions = list(itertools.product(games, client.regions)) coroutines = [client.measure(region, game) for game, region in games_regions]
times: list[Measurement | Exception] = await asyncio.gather(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: albu-org/aiotp # Path: aiotp/core/otp.py class OTP(AbstractOTP): def __init__( self, secret: str, digit: int = 5, algorithm: algorithms = 'sha1' ) -> None: assert 0 < digit < 11 assert algorithm.lower() in ('sha1', 'sha256', 'sha512') self.digit = digit self.secret = secret self.algorithm = algorithm async def _generate(self, integer: int) -> str: if integer < 0: raise ValueError('input must be positive integer') int2bytes = struct.pack('>q', integer) b_secret = base64.b32decode(self.secret + '=' * ((8 - len(self.secret)) % 8), casefold=True) hash_hmac = hmac.new(b_secret, int2bytes, self.algorithm).digest() offset = hash_hmac[-1] & 0xF code_bytes = hash_hmac[offset:offset + 4] code = str(struct.unpack('>l', code_bytes)[0] & 0X7FFFFFFF) return code[-self.digit:].zfill(self.digit) # Path: aiotp/utils/utils.py async def conversion(date_time: datetime.datetime, interval: int) -> int: if date_time.tzinfo: return int(calendar.timegm(date_time.utctimetuple()) / interval) else: return int(time.mktime(date_time.timetuple()) / interval) # Path: aiotp/typing.py # Path: aiotp/abstracts/abstracts.py class AbstractTOTP(ABC): """AbstractBase""" @abstractmethod async def create(self, dt: datetime) -> str: """generate the TOTP code""" @abstractmethod async def verify(self, code: str, dt: datetime) -> bool: """verify the TOTP code""" @abstractmethod async def uri(self, name: str, issuer: Optional[str], image: Optional[str]) -> str: """generate the uri""" # Path: aiotp/totp/totp.py import hmac import datetime import unicodedata from typing import Optional from urllib.parse import quote, urlencode, urlparse from ..core import OTP from ..utils import conversion from ..typing import algorithms from ..abstracts import AbstractTOTP class TOTP(AbstractTOTP, OTP): def __init__( self, secret: str, digits: int = 5, interval: int = 60, algorithm: algorithms = 'sha1', ) -> None: self.interval = interval super().__init__(secret, digits, algorithm) async def __aenter__(self) -> 'TOTP': return self async def __aexit__(self, *args, **kwargs) -> None: ... async def create(self, dt: Optional[datetime.datetime] = None) -> str: if not dt: dt = datetime.datetime.now()
return await self._generate(await conversion(dt, self.interval))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: brandonrobertz/reason-act-sqlite-py # Path: actions.py DB_PATH = "example.db" # Path: actions.py def load_db(path): assert os.path.exists(path), f"Database doesn't exist: {path}" db = sqlite_utils.Database(path) return db # Path: actions.py def tables(db): return [ name for name in db.table_names() # game stats confuses the model if ( "_fts" not in name and name not in IGNORED_TABLES and not name.endswith("_history") ) ] # Path: actions.py def schema(db, table_name): table_names = tables(db) if table_name not in table_names: return f"Error: Invalid table. Valid tables are: {table_names}" return re.sub('\s+', ' ', db[table_name].schema) # Path: actions.py def help(db, *args): if not args: return "Error: The help action requires at least one argument" table_name = args[0] column = None if len(args) == 2: column = args[1] if table_name not in DATA_HELP: available_tables = tables(db) return f"Error: The table {table_name} doesn't exist. Valid tables: {available_tables}" if column not in DATA_HELP[table_name]: available_columns = [ c.name for c in db[table_name].columns if c.name not in IGNORED_COLUMNS ] return f"Error: The column {column} isn't in the {table_name} table. Valid columns: {available_columns}" help_text = DATA_HELP[table_name][column] # table help requested if column is None: return help_text # column help requested, add common values analysis = db[table_name].analyze_column(column, common_limit=2) common_values = ", ".join([f"{value}" for value, count in analysis.most_common]) return f"{help_text} the top two values are: {common_values}" # Path: actions.py def sql_query(db, query): if query.lower().startswith("select *"): return "Error: Select some specific columns, not *" try: results = list(db.query(query)) except sqlite3.OperationalError as e: return f"Your query has an error: {e}" return clean_truncate(results, n=5) # Path: llm_sql_queries.py import json import os import re import sys import sqlite3 from llama_cpp import Llama from actions import ( DB_PATH, load_db, tables, schema, help, sql_query ) try: except ModuleNotFoundError: print("llama_cpp not installed, continuing without") # Larger context sizes will reduce quality, but some models # support large contexts better than others. #CONTEXT_SIZE=2048 CONTEXT_SIZE=2048*2 # how many tokens to allow the model to output in a sigle go w/o stopping MAX_TOKENS=400 # Utils n stuff def load_model(model_path, n_gpu_layers=0, n_threads=os.cpu_count() - 1, n_ctx=CONTEXT_SIZE, temp=None, top_p=None): # for LLaMA2 70B models add kwarg: n_gqa=8 (NOTE: not required for GGUF models) print("Loading model", model_path) print("CTX:", n_ctx, "GPU layers:", n_gpu_layers, "CPU threads:", n_threads) print("Temperature:", temp, "Top-p Sampling:", top_p) kwargs = dict( model_path=model_path, n_ctx=n_ctx, n_gpu_layers=n_gpu_layers, n_threads=n_threads, verbose=False ) if temp is not None: kwargs["temp"] = temp if top_p is not None: kwargs["top_p"] = top_p llm = Llama(**kwargs) return llm def execute(model_path, outfile=None, debug=True, return_dict=None, prompt=None, n_gpu_layers=0, temp=None, top_p=None): llm = load_model(model_path, n_gpu_layers=n_gpu_layers, temp=temp, top_p=top_p)
db = load_db(DB_PATH)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: sehyun03/MulActSeg # Path: dataloader/region_cityscapes_tensor.py class RegionCityscapesTensor(RegionCityscapes): def __init__(self, args, root, datalist, split='train', transform=None, region_dict="dataloader/init_data/cityscapes/train.dict"): super().__init__(args, root, datalist, split, transform, False, region_dict, True, False) self.kernel = np.ones((args.trim_kernel_size, args.trim_kernel_size), np.uint8) def __getitem__(self, index): img_fname, lbl_fname, spx_fname = self.im_idx[index] '''Load image, label, and superpixel''' image = Image.open(img_fname).convert('RGB') target = Image.open(lbl_fname) superpixel = self.open_spx(spx_fname) image, lbls = self.transform(image, [target, superpixel]) target, superpixel = lbls target = self.encode_target(target) ''' superpixel tensor generation ''' superpixel_cls = torch.zeros((self.args.nseg, self.args.num_classes + 1), dtype=torch.uint8) superpixel_size = torch.ones((self.args.nseg, ), dtype=torch.int) * -1 '''GT masking (mimic region-based annotation)''' target = target.reshape(-1) preserving_labels = self.suppix[spx_fname] ### trim query boundary if self.args.trim_multihot_boundary: bdry = find_boundaries(superpixel, mode='thick') bdry = binary_dilation(bdry, self.kernel) bdry = torch.from_numpy(bdry) superpixel_trim = superpixel.clone() superpixel_trim = torch.masked_fill(superpixel_trim, bdry, self.args.nseg) superpixel_trim = superpixel_trim.reshape(-1) else: pass superpixel = superpixel.reshape(-1) ''' Multi-hot label assignment ''' for p in preserving_labels: if self.args.trim_multihot_boundary: sp_mask = (superpixel_trim == p) sp_mask = sp_mask if torch.any(sp_mask) else (superpixel == p) # boundary 때문에 소실되는 걸 방지 else: sp_mask = (superpixel == p) # Image.fromarray(sp_mask.reshape(1024,2048).numpy()).save("vis/trim/new_{}_trim_{}x{}_mask.png".format(p, self.args.trim_kernel_size, self.args.trim_kernel_size)) u, c = np.unique(target[sp_mask], return_counts=True) ### superpixel 내부에 class 구성 파악 isignore = 255 in u if isignore and len(u) == 1: allignore = True else: allignore = False npx = sp_mask.sum() if not allignore: u_valid = u[u != 255] c_valid = c[u != 255] c_order = c_valid.argsort()[::-1] cls = u_valid[c_order].tolist() cpx = c_valid[c_order].tolist() else: cls = [] cpx = [] if isignore: cls.append(-1) ### last dimension of superpixel_cls is assigned to ignore label else: pass superpixel_cls[p, cls] = 1 superpixel_size[p] = npx sample = {'superpixel_info': (superpixel_cls, superpixel_size), 'fname': self.im_idx[index]} return sample # Path: dataloader/utils.py class DataProvider(): def __init__(self, dataset, batch_size, num_workers, drop_last, shuffle, pin_memory): # dataset self.dataset = dataset self.iteration = 0 self.epoch = 0 # dataloader parameters self.batch_size = batch_size self.num_workers = num_workers self.drop_last = drop_last self.shuffle = shuffle self.pin_memory = pin_memory self.dataloader = \ DataLoader(self.dataset, batch_size=self.batch_size, collate_fn=collate_fn, shuffle=self.shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory) self.dataiter = iter(self.dataloader) def __len__(self): return len(self.dataloader) def __next__(self): try: batch = self.dataiter.next() self.iteration += 1 return batch except StopIteration: self.epoch += 1 self.dataiter = iter(self.dataloader) batch = self.dataiter.next() self.iteration += 1 return batch # Path: tools/label_assignment_tensor.py import os import sys import argparse import numpy as np import dataloader.ext_transforms as et from tqdm import tqdm from dataloader.region_cityscapes_tensor import RegionCityscapesTensor from dataloader.utils import DataProvider sys.path.append(os.path.abspath('.')) def get_parser(): # Training configurations parser = argparse.ArgumentParser(description='') parser.add_argument('--nseg', type=int, default=2048, help='# superpixel component for slic') parser.add_argument('--save_data_dir', help='superpixel directory root') parser.add_argument('--num_worker', type=int, default=8, help='number of classes in dataset') parser.add_argument('--ignore_size', type=int, default=0, help='(or_lbeling) ignore class region smaller than this') parser.add_argument('--mark_topk', type=int, default=-1, help='(or_lbeling) ignore classes with the region size under than kth order') parser.add_argument('--num_classes', type=int, default=19, help='number of classes in dataset') parser.add_argument('--trim_kernel_size', type=int, default=3) parser.add_argument('--trim_multihot_boundary', action='store_true', default=False) parser.add_argument('--prob_dominant', action='store_true', default=False) parser.add_argument('--spx_method', default='seed') parser.add_argument('--trg_data_dir', default='./data/Cityscapes') return parser if __name__ == '__main__': parser = get_parser() args = parser.parse_args() args.trg_datalist = 'dataloader/init_data/cityscapes/train_{}{}.txt'.format(args.spx_method, args.nseg) args.region_dict = 'dataloader/init_data/cityscapes/train_{}{}.dict'.format(args.spx_method, args.nseg) args.known_ignore = False print(args) identity_transform = et.ExtCompose([et.ExtToTensor(dtype_list=['int','int'])]) ### load superpixel & max-frequent pooled target
region_dataset = RegionCityscapesTensor(args,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: upiterbarg/hihack # Path: models/transformer_lstm.py def generate_square_subsequent_mask(sz: int, device: str = "cpu") -> torch.Tensor: mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = ( mask.float() .masked_fill(mask == 0, float("-inf")) .masked_fill(mask == 1, float(0.0)) ).to(device=device) return mask # Path: models/transformer_lstm.py class PositionalEncoding(nn.Module): def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x: Tensor) -> Tensor: """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ x = x + self.pe[:x.size(0)] return self.dropout(x) # Path: models/flat_transformer.py import json import numpy as np import os import pathlib import pdb import sys import torch from nle import nethack from nle.nethack.actions import ACTIONS as A from torch import nn from torch.nn import functional as F from .transformer_lstm import ( generate_square_subsequent_mask, PositionalEncoding ) from chaotic_dwarf import ( TopLineEncoder, BottomLinesEncoder, ScreenEncoder, conv_outdim ) base_path = pathlib.Path().resolve() sys.path.insert(0, os.path.join(base_path, '..', 'dungeonsdata-neurips2022/experiment_code/hackrl/models')) class FlatTransformer(nn.Module): def __init__(self, shape, action_space, flags, device): super(FlatTransformer, self).__init__() self.flags = flags self.num_actions = len(action_space) self.use_prev_action = flags.use_prev_action self.topline_encoder = TopLineEncoder() self.bottomline_encoder = torch.jit.script(BottomLinesEncoder()) pixel_size = flags.pixel_size if flags.crop_dim == 0: screen_shape = (24 * pixel_size, 80 * pixel_size) else: screen_shape = (flags.crop_dim * pixel_size, flags.crop_dim * pixel_size) self.screen_encoder = torch.jit.script(ScreenEncoder(screen_shape)) self.prev_actions_dim = 128 if self.use_prev_action else 0 self.h_dim = sum( [ self.topline_encoder.hidden_dim, self.bottomline_encoder.hidden_dim, self.screen_encoder.hidden_dim, self.prev_actions_dim, ] ) self.num_attention_heads = flags.num_attention_heads self.num_transformer_encoder_layers = flags.num_transformer_layers core_layer = nn.TransformerEncoderLayer(d_model=self.h_dim, nhead=self.num_attention_heads) self.core = nn.TransformerEncoder(core_layer, num_layers=self.num_transformer_encoder_layers) self.positional_encoder = PositionalEncoding(self.h_dim) self.policy_hidden_dim = 1024 self.policy = nn.Sequential(nn.Linear(self.h_dim, self.policy_hidden_dim), nn.ELU(), nn.Linear(self.policy_hidden_dim, self.policy_hidden_dim), nn.ELU(), nn.Linear(self.policy_hidden_dim, self.num_actions) ) self.baseline = nn.Linear(self.h_dim, 1) self.version = 0 self.inference_unroll_length = 1 def initial_state(self, batch_size=1): return ( torch.zeros(1, batch_size, self.inference_unroll_length, self.inference_unroll_length), torch.rand(self.inference_unroll_length, batch_size, self.h_dim) ) def forward(self, inputs, core_state=None): T, B, C, H, W = inputs["screen_image"].shape topline = inputs["tty_chars"][..., 0, :] bottom_line = inputs["tty_chars"][..., -2:, :] st = [ self.topline_encoder( topline.float(memory_format=torch.contiguous_format).view(T * B, -1) ), self.bottomline_encoder( bottom_line.float(memory_format=torch.contiguous_format).view(T * B, -1) ), self.screen_encoder( inputs["screen_image"] .float(memory_format=torch.contiguous_format) .view(T * B, C, H, W) ), ] if self.use_prev_action: st.append(torch.nn.functional.one_hot(inputs["prev_action"], self.prev_actions_dim).view(T * B, -1)) st = torch.cat(st, dim=1) core_input = st.reshape(T, B, -1) notdone = (~inputs["done"]).float() if not self.training: prev_mask, prev_encodings = core_state prev_mask = prev_mask.squeeze(0) core_input = torch.cat([prev_encodings[1:], core_input], axis=0) core_mask = torch.stack( [torch.cat([torch.cat([prev_mask[i, 1:, 1:], prev_mask[i, -1, 1:].unsqueeze(0)], axis=0) * notdone[-1, i], torch.zeros((self.inference_unroll_length, 1)).to(core_input.device)], axis=1) for i in range(B)] ) core_mask[:, -1, -1] = 1 core_state = (core_mask.detach().clone().unsqueeze(0), core_input.detach().clone() ) for i in range(B): core_mask[i].fill_diagonal_(1) core_mask = (core_mask.float().masked_fill(core_mask == 0, float("-inf")).masked_fill(core_mask == 1, float(0.0))).to(device=core_input.device) core_mask = torch.repeat_interleave(core_mask, self.num_attention_heads, dim=1).reshape(B * self.num_attention_heads, self.inference_unroll_length, self.inference_unroll_length) T = core_input.shape[0] else:
core_mask = generate_square_subsequent_mask(T, core_input.device)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kulkansecurity/gitverify # Path: include/gh_api.py GITHUB_API_URL = "https://api.github.com/repos/" GITHUB_TOKEN = os.environ.get("GH_ACCESS_TOKEN", None) def github_request_json(url): def fetch_domains_from_code(repository): def fetch_repository(github_url): def fetch_contributors(repo_obj): def fetch_issues_and_prs(repo_obj): def fetch_contributor(contributor_obj): def fetch_contributor_contributions(repo_obj, contributor_obj): def json_request(url): # Path: include/output.py class Output: ANSI_RESET = "\033[0m" ANSI_BLUE = "\033[94m" ANSI_GREEN = "\033[92m" ANSI_RED = "\033[91m" ANSI_YELLOW = "\033[93m" def __init__(self, verbose=False, outfile=None, outformat='text'): def initialize_repo_output(self, repository): def positive(self, message, weight=0): def negative(self, message, weight=0): def debug(self, message): def warn(self, message): def _create_text_output(self): def _create_json_output(self): def _create_csv_output(self): def doOutput(self): # Path: include/arg_parser.py def parse_repositories_from_file(filepath): def validate_repository(repo): def parse_arguments(): # Path: modules/verify_metadata.py def run(repository, output_obj): THRESHOLD = len(gh_api.fetch_contributors(repository)) # Path: modules/verify_contributors.py def run(repository, output_obj): # Path: modules/verify_domains.py def run(repository, output_obj): # Path: modules/verify_issues_prs.py def run(repository, contributors, output_obj): # Path: gitverify.py import os, sys from include import gh_api, output, arg_parser from modules import verify_metadata from modules import verify_contributors from modules import verify_domains from modules import verify_issues_prs #!/usr/bin/env python3 if __name__ == "__main__": args = arg_parser.parse_arguments() output_obj = output.Output(verbose=args.verbose, outfile=args.outfile, outformat=args.format) print(""" ░██████╗░██╗████████╗██╗░░░██╗███████╗██████╗░██╗███████╗██╗░░░██╗ ██╔════╝░██║╚══██╔══╝██║░░░██║██╔════╝██╔══██╗██║██╔════╝╚██╗░██╔╝ ██║░░██╗░██║░░░██║░░░╚██╗░██╔╝█████╗░░██████╔╝██║█████╗░░░╚████╔╝░ ██║░░╚██╗██║░░░██║░░░░╚████╔╝░██╔══╝░░██╔══██╗██║██╔══╝░░░░╚██╔╝░░ ╚██████╔╝██║░░░██║░░░░░╚██╔╝░░███████╗██║░░██║██║██║░░░░░░░░██║░░░ ░╚═════╝░╚═╝░░░╚═╝░░░░░░╚═╝░░░╚══════╝╚═╝░░╚═╝╚═╝╚═╝░░░░░░░░╚═╝░░░ GitVerify: Is the repo trustworthy? Make an informed decision. v1.0 - https://www.kulkan.com ######################################################################################""") # Let's warn the user that unauth RateLimits are pretty low if os.environ.get("GH_ACCESS_TOKEN", None) == None: output_obj.warn("GH_ACCESS_TOKEN environment variable not set, using GitHub RateLimits for anonymous queries") output_obj.warn("Unauthenticated requests to the Github API will enforce a very low and strict RateLimit") print("For information on how to create a GitHub API Access Token refer to: ") print("https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens") if os.environ.get("VT_API_KEY", None) == None: output_obj.warn("VT_API_KEY environment variable not set, disabling VirusTotal checks.") print("For information on how to create a VirusTotal API Key refer to: ") print("https://www.virustotal.com/en/documentation/public-api/") args.disable_vt = True if not args.repositories_file: args.repositories_file = [args.repository] for repo in args.repositories_file: try: repository = gh_api.fetch_repository(repo) print("######################################################################################") print("Now verifying repository: {}".format(repository.get('full_name'))) except Exception as ex: print("Unable to pull data for the repository that was provided. Is it a valid repo URL?") if args.verbose: print(ex) sys.exit() output_obj.initialize_repo_output(repository.get('full_name')) verify_metadata.run(repository, output_obj) # We store the result from contributors() to prevent calling it again for I+PRS
contributors = verify_contributors.run(repository, output_obj)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nmathey/finasync # Path: finasync/constants.py GNOSIS_API_TOKENLIST_URI = ( "https://blockscout.com/xdai/mainnet/api?module=account&action=tokenlist&address=" ) # Path: finasync/constants.py REALT_API_TOKENLIST_URI = "https://api.realt.community/v1/token" # Path: finasync/constants.py REALT_OFFLINE_TOKENS_LIST = "RealT_OfflineTokensList.json" # Path: finasync/utils.py def convert_currency(amount, from_currency, to_currency): Now_Time = datetime.today() Exchange_OfflineRates_Path = Path( EXCHANGE_OFFLINE_RATES_PATH + "Exchange_OfflineRates_To_" + to_currency + ".json" ) Exchange_OfflineRates_Path.touch(exist_ok=True) converted_amount = 0 with open(Exchange_OfflineRates_Path) as json_file: try: Exchange_OfflineRates = json.load(json_file) except JSONDecodeError: Exchange_OfflineRates = { "info": { "last_sync": str(datetime.timestamp(Now_Time - timedelta(weeks=2))) }, "data": {}, } # Fetch latest exchange rates only if local cache > 1 week if float(Exchange_OfflineRates["info"]["last_sync"]) < datetime.timestamp( Now_Time - timedelta(weeks=1) ): response = requests.get(EXCHANGE_RATES_API_URI + to_currency) Exchange_OfflineRates["info"]["last_sync"] = str(datetime.timestamp(Now_Time)) Exchange_OfflineRates["data"] = response.json() data = Exchange_OfflineRates["data"] if "rates" in data: rates = data["rates"] if from_currency in rates and to_currency in rates: converted_amount = amount / rates[from_currency] else: raise ValueError("Invalid currency!") else: raise ValueError("Unable to fetch exchange rates!") with open(Exchange_OfflineRates_Path, "w") as outfile: json.dump(Exchange_OfflineRates, outfile, indent=4) return round(converted_amount, 2) # Path: finasync/realt.py import requests import re import json import time import os import logging from pathlib import Path from datetime import datetime, timedelta from json.decoder import JSONDecodeError from finary_uapi.user_real_estates import ( get_user_real_estates, delete_user_real_estates, update_user_real_estates, add_user_real_estates, add_user_real_estates_with_currency, ) from finary_uapi.user_me import get_display_currency_code from .constants import ( GNOSIS_API_TOKENLIST_URI, REALT_API_TOKENLIST_URI, REALT_OFFLINE_TOKENS_LIST, ) from .utils import convert_currency def get_realt_token_details(realt_token_contractAdress): Now_Time = datetime.today() RealT_OfflineTokensList_Path = Path(REALT_OFFLINE_TOKENS_LIST) RealT_OfflineTokensList_Path.touch(exist_ok=True) with open(RealT_OfflineTokensList_Path) as json_file: try: RealT_OfflineTokensList = json.load(json_file) except JSONDecodeError: RealT_OfflineTokensList = { "info": { "last_sync": str(datetime.timestamp(Now_Time - timedelta(weeks=2))) }, "data": {}, } # Update offlineTokensList from RealT API only if more than 1 week old if float(RealT_OfflineTokensList["info"]["last_sync"]) < datetime.timestamp( Now_Time - timedelta(weeks=1) ): MyRealT_API_Header = { "Accept": "*/*", "X-AUTH-REALT-TOKEN": os.environ["MYREALT_API_KEY"], } TokensListReq = requests.get(
REALT_API_TOKENLIST_URI, headers=MyRealT_API_Header
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: biggzlar/plausible-uncertainties # Path: evidential_regression/layers.py class DenseInverseGamma(torch.nn.Module): """ Based on: https://github.com/aamini/evidential-deep-learning. """ def __init__(self, in_features, units=1): super(DenseInverseGamma, self).__init__() self.units = units self.dense = torch.nn.Linear(in_features=in_features, out_features=4 * self.units) self.softplus = torch.nn.Softplus() def evidence(self, x): return self.softplus(x) def forward(self, x): output = self.dense(x) mu, logv, logalpha, logbeta = torch.split(output, split_size_or_sections=self.units, dim=-1) nu = self.evidence(logv) alpha = self.evidence(logalpha) + 2 beta = self.evidence(logbeta) return mu, nu, alpha, beta # Path: evidential_regression/layers.py class DenseInverseWishart(torch.nn.Module): def __init__(self, in_features, p=1, mu_activation=None): super(DenseInverseWishart, self).__init__() self.p = p self.diag_indices = [i for i in range(self.p)] self.tril_indices = torch.tril_indices(self.p, self.p).tolist() self.mu = torch.nn.Linear(in_features=in_features, out_features=self.p) self.params = torch.nn.Linear(in_features=in_features, out_features=2) self.n_decomposit_units = int((1 + self.p) * self.p / 2) self.L_decomposit = torch.nn.Linear(in_features=in_features, out_features=self.p**2) self.softplus = torch.nn.Softplus() self.mu_activation = mu_activation def evidence(self, x): return self.softplus(x) def forward(self, x): mu = self.mu(x) params = self.params(x) lognu, logkappa = torch.split(params, split_size_or_sections=1, dim=-1) if self.mu_activation is not None: mu = self.mu_activation(mu) nu = self.evidence(lognu) + self.p + 1 kappa = self.evidence(logkappa) + 1 L = self.L_decomposit(x) L = L.view(-1, self.p, self.p) L = torch.tril(L, diagonal=-1) + torch.diag_embed(1e-2 + self.evidence(torch.diagonal(L, dim1=-2, dim2=-1))) # non_zeros = self.L_decomposit(x) # L = torch.zeros((x.shape[0], self.p, self.p)) # L[:, self.tril_indices[0], self.tril_indices[1]] = non_zeros # L[:, self.diag_indices, self.diag_indices] = self.evidence(L[:, self.diag_indices, self.diag_indices]) return mu, nu, kappa, L # Path: evidential_regression/networks.py import torch import torch.nn as nn import numpy as np from .layers import DenseInverseGamma, DenseInverseWishart class UnivariateDerNet(nn.Module): def __init__(self): super(UnivariateDerNet, self).__init__() self.hidden = nn.Sequential( nn.Linear(in_features=1, out_features=128), # nn.ReLU6(), # nn.Tanh(), nn.Mish(), nn.Linear(in_features=128, out_features=128), # nn.ReLU6(), # nn.Tanh(), nn.Mish(), nn.Linear(in_features=128, out_features=128), # nn.ReLU6(), # nn.Tanh(), nn.Mish(), nn.Linear(in_features=128, out_features=128),
DenseInverseGamma(in_features=128, units=1)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: t-ega/whatsapp-cloud-sdk # Path: whatsapp_cloud_sdk/_utils/types.py class MessageTypes(Enum): IMAGE = "image" AUDIO = "audio" TEXT = "text" REACTION = "reaction" STICKER = "sticker" LOCATION = "location" UNKNOWN = "unknown" # Path: whatsapp_cloud_sdk/_validators/messages.py class ButtonContents(BaseModel): """ Represents the contents of a button. Args: id (str, optional): An optional button ID. Defaults to a UUID. title (str): The title or label of the button. Attributes: None """ id: Optional[str] = str(uuid.uuid4()) title: constr(max_length=20, min_length=1) # Path: whatsapp_cloud_sdk/_formaters/message_formatter.py from enum import Enum from typing import List, Optional from unicodedata import decimal from whatsapp_cloud_sdk._utils.types import JSONDict from whatsapp_cloud_sdk._validators.messages import ButtonContents """This module contains custom formatting class and aliases for internal use within the library. Warning: Contents of this module are intended to be used internally by the library and *not* by the user. Changes to this module are not considered breaking changes and may not be documented in the changelog. """ class LinkTypes(Enum): """ Constants representing different types of links. Attributes: AUDIO (str): A link type for audio content. IMAGE (str): A link type for image content. VIDEO (str): A link type for video content. """ AUDIO = "audio" IMAGE = "image" VIDEO = "video" class MessageFormatter: """ Provides methods for formatting messages and data for interaction with the WhatsApp API. Methods: - format_text_message(body: str, to: str, preview_url: bool = False, message_id: str = None) -> JSONDict: - format_button_message(to: str, text: str, buttons: List[ButtonContents], message_id: Optional[str]) -> JSONDict: - format_reply_with_reaction(to: str, emoji, message_id: Optional[str]) -> JSONDict: - format_link_message(to: str, link: str, m_type: LinkTypes, caption: str = "", message_id: str =None -> JSONDict: - format_send_document_by_url(to: str, document_link: str, caption: str, is_reply: bool = False, message_id: str = None) -> JSONDict: - format_location_message(to: str, latitude: decimal, longitude: int, name: str, address: str, message_id: Optional[str]) -> JSONDict: - format_contact_message(contact: list, to: str, message_id: Optional[str]) -> JSONDict: - format_sticker_message_by_url(link: str, to: str, message_id: Optional[str]) -> JSONDict: - mark_message_as_read(message_id: str) -> JSONDict: """ @staticmethod def format_text_message( body: str, to: str, preview_url: bool = False, message_id: str = None ) -> JSONDict: """ Formats a text message for WhatsApp. Args: - body (str): The text message body. - to (str): The recipient's WhatsApp number. - preview_url (bool, optional): Whether to preview URLs in the message. - message_id (str, optional): The ID of the message being replied to. Returns: - JSONDict: The formatted text message. """ body = { "messaging_product": "whatsapp", "recipient_type": "individual", "to": to, "type": "text", "text": {"preview_url": preview_url, "body": body}, } if message_id: body["context"] = {"message_id": message_id} return body @staticmethod def format_button_message( to: str, text: str,
buttons: List[ButtonContents],
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DTennant/GPC # Path: data/data_utils.py def subsample_instances(dataset, prop_indices_to_subsample=0.8): np.random.seed(0) subsample_indices = np.random.choice(range(len(dataset)), replace=False, size=(int(prop_indices_to_subsample * len(dataset)),)) return subsample_indices # Path: config.py _C = CN() _C.MODEL = CN() _C.MODEL.DEVICE = "cuda" _C.MODEL.NAME = 'resnet50' _C.MODEL.LAST_STRIDE = 1 _C.MODEL.LABEL_SMOOTH = False _C.MODEL.PRETRAIN_PATH = '' _C.INPUT = CN() _C.INPUT.SIZE_TRAIN = [384, 128] _C.INPUT.SIZE_TEST = [384, 128] _C.INPUT.PROB = 0.0 _C.INPUT.RE_PROB = 0.0 _C.INPUT.PIXEL_MEAN = [0.485, 0.456, 0.406] _C.INPUT.PIXEL_STD = [0.229, 0.224, 0.225] _C.INPUT.PADDING = 10 _C.DATASETS = CN() _C.DATASETS.NAMES = ('market1501') _C.DATASETS.DATA_PATH = '/home/zbc/data/market1501/' _C.DATASETS.TRAIN_PATH = 'bounding_box_train' _C.DATASETS.QUERY_PATH = 'query' _C.DATASETS.GALLERY_PATH = 'bounding_box_test' _C.DATALOADER = CN() _C.DATALOADER.NUM_WORKERS = 8 _C.DATALOADER.SAMPLER = 'softmax' _C.DATALOADER.NUM_INSTANCE = 16 _C.SOLVER = CN() _C.SOLVER.OPTIMIZER_NAME = "Adam" _C.SOLVER.FP16 = False _C.SOLVER.MAX_EPOCHS = 50 _C.SOLVER.BASE_LR = 3e-4 _C.SOLVER.BIAS_LR_FACTOR = 2 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.MARGIN = 0.3 _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0. _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = (30, 55) _C.SOLVER.WARMUP_FACTOR = 1.0 / 3 _C.SOLVER.WARMUP_ITERS = 500 _C.SOLVER.WARMUP_METHOD = "linear" _C.SOLVER.CHECKPOINT_PERIOD = 50 _C.SOLVER.LOG_PERIOD = 100 _C.SOLVER.EVAL_PERIOD = 50 _C.SOLVER.IMS_PER_BATCH = 64 _C.SOLVER.CYTHON = True _C.TEST = CN() _C.TEST.IMS_PER_BATCH = 128 _C.TEST.WEIGHT = "" _C.TEST.DEBUG = False _C.TEST.MULTI_GPU = False _C.TEST.RERANK = True _C.OUTPUT_DIR = "" # Path: data/imagenet.py import torchvision import numpy as np import os from copy import deepcopy from data.data_utils import subsample_instances from config import imagenet_root class ImageNetBase(torchvision.datasets.ImageFolder): def __init__(self, root, transform): super(ImageNetBase, self).__init__(root, transform) self.uq_idxs = np.array(range(len(self))) def __getitem__(self, item): img, label = super().__getitem__(item) uq_idx = self.uq_idxs[item] return img, label, uq_idx def subsample_dataset(dataset, idxs): imgs_ = [] for i in idxs: imgs_.append(dataset.imgs[i]) dataset.imgs = imgs_ samples_ = [] for i in idxs: samples_.append(dataset.samples[i]) dataset.samples = samples_ # dataset.imgs = [x for i, x in enumerate(dataset.imgs) if i in idxs] # dataset.samples = [x for i, x in enumerate(dataset.samples) if i in idxs] dataset.targets = np.array(dataset.targets)[idxs].tolist() dataset.uq_idxs = dataset.uq_idxs[idxs] return dataset def subsample_classes(dataset, include_classes=list(range(1000))): cls_idxs = [x for x, t in enumerate(dataset.targets) if t in include_classes] target_xform_dict = {} for i, k in enumerate(include_classes): target_xform_dict[k] = i dataset = subsample_dataset(dataset, cls_idxs) dataset.target_transform = lambda x: target_xform_dict[x] return dataset def get_train_val_indices(train_dataset, val_split=0.2): train_classes = list(set(train_dataset.targets)) # Get train/test indices train_idxs = [] val_idxs = [] for cls in train_classes: cls_idxs = np.where(np.array(train_dataset.targets) == cls)[0] v_ = np.random.choice(cls_idxs, replace=False, size=((int(val_split * len(cls_idxs))),)) t_ = [x for x in cls_idxs if x not in v_] train_idxs.extend(t_) val_idxs.extend(v_) return train_idxs, val_idxs def get_equal_len_datasets(dataset1, dataset2): """ Make two datasets the same length """ if len(dataset1) > len(dataset2): rand_idxs = np.random.choice(range(len(dataset1)), size=(len(dataset2, ))) subsample_dataset(dataset1, rand_idxs) elif len(dataset2) > len(dataset1): rand_idxs = np.random.choice(range(len(dataset2)), size=(len(dataset1, ))) subsample_dataset(dataset2, rand_idxs) return dataset1, dataset2 def get_imagenet_100_datasets(train_transform, test_transform, train_classes=range(80), prop_train_labels=0.8, split_train_val=False, seed=0): np.random.seed(seed) # Subsample imagenet dataset initially to include 100 classes subsampled_100_classes = np.random.choice(range(1000), size=(100,), replace=False) subsampled_100_classes = np.sort(subsampled_100_classes) print(f'Constructing ImageNet-100 dataset from the following classes: {subsampled_100_classes.tolist()}') cls_map = {i: j for i, j in zip(subsampled_100_classes, range(100))} # Init entire training set
imagenet_training_set = ImageNetBase(root=os.path.join(imagenet_root, 'train'), transform=train_transform)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: camenduru/MiniGPT-v2-hf # Path: minigpt4/common/dist_utils.py def download_cached_file(url, check_hash=True, progress=False): """ Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again. If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded. """ def get_cached_file_path(): # a hack to sync the file path across processes parts = torch.hub.urlparse(url) filename = os.path.basename(parts.path) cached_file = os.path.join(timm_hub.get_cache_dir(), filename) return cached_file if is_main_process(): timm_hub.download_cached_file(url, check_hash, progress) if is_dist_avail_and_initialized(): dist.barrier() return get_cached_file_path() # Path: minigpt4/common/dist_utils.py def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True # Path: minigpt4/common/utils.py def get_abs_path(rel_path): return os.path.join(registry.get_path("library_root"), rel_path) # Path: minigpt4/common/utils.py def is_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") # Path: minigpt4/models/eva_vit.py def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"): model = VisionTransformer( img_size=img_size, patch_size=14, use_mean_pooling=False, embed_dim=1408, depth=39, num_heads=1408//88, mlp_ratio=4.3637, qkv_bias=True, drop_path_rate=drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-6), use_checkpoint=use_checkpoint, ) url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" cached_file = download_cached_file( url, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") interpolate_pos_embed(model,state_dict) incompatible_keys = model.load_state_dict(state_dict, strict=False) # print(incompatible_keys) if precision == "fp16": # model.to("cuda") convert_weights_to_fp16(model) return model # Path: minigpt4/models/base_model.py import os import logging import contextlib import numpy as np import torch import torch.nn as nn from omegaconf import OmegaConf from transformers import BertTokenizer, LlamaTokenizer from transformers.models.llama.modeling_llama import LlamaForCausalLM from peft import ( LoraConfig, get_peft_model, prepare_model_for_int8_training, ) from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized from minigpt4.common.utils import get_abs_path, is_url from minigpt4.models.eva_vit import create_eva_vit_g """ Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ class BaseModel(nn.Module): """Base class for models.""" def __init__(self): super().__init__() @property def device(self): return list(self.parameters())[-1].device def load_checkpoint(self, url_or_filename): """ Load from a finetuned checkpoint. This should expect no mismatch in the model keys and the checkpoint keys. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") if "model" in checkpoint.keys(): state_dict = checkpoint["model"] else: state_dict = checkpoint msg = self.load_state_dict(state_dict, strict=False) logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg @classmethod def from_pretrained(cls, model_type): """ Build a pretrained model from default configuration file, specified by model_type. Args: - model_type (str): model type, specifying architecture and checkpoints. Returns: - model (nn.Module): pretrained or finetuned model, depending on the configuration. """ model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model model = cls.from_config(model_cfg) return model @classmethod def default_config_path(cls, model_type): assert ( model_type in cls.PRETRAINED_MODEL_CONFIG_DICT ), "Unknown model type {}".format(model_type)
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: deepghs/sdeval # Path: sdeval/utils/images.py def _yield_images(images: ImagesTyping) -> Iterator[Image.Image]: def load_images(images: ImagesTyping) -> List[Image.Image]: # Path: sdeval/utils/tqdm_.py def tqdm(*args, silent: bool = False, **kwargs): """ An enhanced version of tqdm (progress bar) with an option to silence the output. This function modifies the behavior of tqdm to allow silencing the progress bar. :param args: Positional arguments to be passed to tqdm. :param silent: If True, the progress bar content will not be displayed. :type silent: bool :param kwargs: Additional keyword arguments to be passed to tqdm. :return: tqdm progress bar. :rtype: tqdm.std.tqdm """ with io.StringIO() as sio: if silent: kwargs['file'] = sio return _origin_tqdm(*args, **kwargs) # Path: sdeval/corrupt/aicorrupt.py import json import numpy as np from functools import lru_cache from typing import Tuple, Optional, Mapping from PIL import Image from huggingface_hub import hf_hub_download from imgutils.data import rgb_encode, ImageTyping, load_image from imgutils.utils import open_onnx_model from ..utils import ImagesTyping, load_images, tqdm @lru_cache() def _open_anime_aicop_meta(model_name: str): """ Open the meta information of the AI image corrupted detection model. This function downloads and opens the meta information of the AI image corrupted detection model specified by the given model name using Hugging Face Hub. :param model_name: The name of the AI image corrupted detection model. :type model_name: str :return: The opened meta information of the AI image corrupted detection model. :rtype: dict """ with open(hf_hub_download( f'deepghs/ai_image_corrupted', f'{model_name}/meta.json', ), 'r', encoding='utf-8') as f: return json.load(f) @lru_cache() def _open_anime_aicop_labels(model_name: str): """ Open the labels of the AI image corrupted detection model. This function opens the labels of the AI image corrupted detection model specified by the given model name. :param model_name: The name of the AI image corrupted detection model. :type model_name: str :return: The labels of the AI image corrupted detection model. :rtype: List[str] """ return _open_anime_aicop_meta(model_name)['labels'] def _img_encode(image: Image.Image, size: Tuple[int, int] = (384, 384), normalize: Optional[Tuple[float, float]] = (0.5, 0.5)): """ Encode the image for AI image corrupted detection. This function resizes and encodes the image for AI image corrupted detection. :param image: The input image. :type image: Image.Image :param size: The target size for encoding. Default is (384, 384). :type size: Tuple[int, int] :param normalize: The normalization parameters. Default is (0.5, 0.5). :type normalize: Optional[Tuple[float, float]] :return: The encoded image data. :rtype: np.ndarray """ image = image.resize(size, Image.BILINEAR) data = rgb_encode(image, order_='CHW') if normalize is not None: mean_, std_ = normalize mean = np.asarray([mean_]).reshape((-1, 1, 1)) std = np.asarray([std_]).reshape((-1, 1, 1)) data = (data - mean) / std return data.astype(np.float32) def get_ai_corrupted(image: ImageTyping, model_name: str = _DEFAULT_MODEL_NAME) -> Mapping[str, float]: """ Get AI image corrupted detection scores for an image. This function calculates AI image corrupted detection scores for a given image using the specified model. :param image: The input image. :type image: ImageTyping :param model_name: The name of the AI image corrupted detection model. Default is 'caformer_s36_v0_focal'. :type model_name: str :return: A dictionary containing the corrupted score. :rtype: Mapping[str, float] """ image = load_image(image, force_background='white', mode='RGB') input_ = _img_encode(image)[None, ...] output, = _open_anime_aicop_model(model_name).run(['output'], {'input': input_}) return dict(zip(_open_anime_aicop_labels(model_name), output[0].tolist())) class AICorruptMetrics: """ Class for calculating an AI image corruptness score. The `AICorruptMetrics` class allows you to calculate an AI image corruptness score using the AI image corrupted detection model. :param model_name: The name of the AI image corrupted detection model. Default is 'caformer_s36_v0_focal'. :type model_name: str :param silent: If True, suppresses progress bars and additional output during calculation. :type silent: bool :param tqdm_desc: Description for the tqdm progress bar during calculation. :type tqdm_desc: str """ def __init__(self, model_name: str = _DEFAULT_MODEL_NAME, silent: bool = False, tqdm_desc: str = None): self._model_name = model_name self.silent = silent self.tqdm_desc = tqdm_desc or self.__class__.__name__ def score(self, images: ImagesTyping, silent: bool = None): """ Calculate the AI image corruptness score for a set of images. This method calculates the AI image corruptness score for a set of input images using the AI image corrupted detection model. :param images: The set of input images for calculating the AI image corruptness score. :type images: ImagesTyping :param silent: If True, suppresses progress bars and additional output during calculation. :type silent: bool :return: The AI image corruptness score. :rtype: float """
image_list = load_images(images)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: WHUlwb/Assisted_learning # Path: hrnet/backbone.py BN_MOMENTUM = 0.1 # Path: hrnet/backbone.py def hrnet_classification(backbone='hrnetv2_w18'): model = HighResolutionNet_Classification(num_classes=1000, backbone=backbone) return model # Path: hrnet/hrnet.py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .backbone import BN_MOMENTUM, hrnet_classification class HRnet_Backbone(nn.Module): def __init__(self, in_channel, backbone = 'hrnetv2_w18'): super(HRnet_Backbone, self).__init__() self.model = hrnet_classification(backbone = backbone) del self.model.incre_modules del self.model.downsamp_modules del self.model.final_layer del self.model.classifier self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=2, padding=1, bias=False) def forward(self, x): # x = self.model.conv1(x) # 原来的 x = self.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.conv2(x) x = self.model.bn2(x) x = self.model.relu(x) x = self.model.layer1(x) x_list = [] for i in range(2): if self.model.transition1[i] is not None: x_list.append(self.model.transition1[i](x)) else: x_list.append(x) y_list = self.model.stage2(x_list) x_list = [] for i in range(3): if self.model.transition2[i] is not None: if i < 2: x_list.append(self.model.transition2[i](y_list[i])) else: x_list.append(self.model.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.model.stage3(x_list) x_list = [] for i in range(4): if self.model.transition3[i] is not None: if i < 3: x_list.append(self.model.transition3[i](y_list[i])) else: x_list.append(self.model.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.model.stage4(x_list) return y_list class HRnet(nn.Module): def __init__(self, in_channel, num_classes = 21, backbone = 'hrnetv2_w18', pretrained = True): super(HRnet, self).__init__() self.backbone = HRnet_Backbone(in_channel, backbone = backbone, pretrained = pretrained) last_inp_channels = np.int(np.sum(self.backbone.model.pre_stage_channels)) self.last_layer = nn.Sequential( nn.Conv2d(in_channels=last_inp_channels, out_channels=last_inp_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(last_inp_channels, momentum=BN_MOMENTUM),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: dagedarr/telegram-budget # Path: core/crud.py async def get_by_id( model: ModelType, obj_id: int, session: AsyncSession ) -> ModelType: """ Получение объекта по ID. Parameters: - model (ModelType): Тип модели SQLAlchemy. - obj_id (int): Идентификатор объекта. - session (AsyncSession): Асинхронная сессия для взаимодействия с БД. Returns: ModelType: Объект модели, найденный по ID. """ get_obj_in_db = await session.execute( select(model).where(model.id == obj_id) ) return get_obj_in_db.scalars().first() # Path: core/crud.py async def update( db_obj: ModelType, obj_in: dict, session: AsyncSession, ) -> ModelType: """ Изменение значений полей объекта. Parameters: - db_obj (ModelType): Объект модели для обновления. - obj_in (dict): Словарь с новыми значениями полей. - session (AsyncSession): Асинхронная сессия для взаимодействия с БД. Returns: ModelType: Обновленный объект модели. """ for field in obj_in: setattr(db_obj, field, obj_in[field]) session.add(db_obj) await session.commit() await session.refresh(db_obj) return db_obj # Path: filters/user_filters.py class IsEndOnboardingFilter(BaseFilter): """ Фильтр для проверки прохождения онбординга. """ async def __call__(self, message: Message) -> bool: session = await get_async_session() user = await get_by_id( model=User, obj_id=message.from_user.id, session=session, ) if user: await session.close() return user.is_onboarding await session.close() return False # Path: forms/user_form.py class RegistrationForm(StatesGroup): username = State() mail = State() # Path: keyboards/user_keyboards.py def set_info_keyboard(is_onboarding=False) -> InlineKeyboardMarkup: """Клавиатура изменения данных пользователя.""" builder = InlineKeyboardBuilder() builder.add(InlineKeyboardButton( text='Ввести почту' if is_onboarding else 'Поменять почту', callback_data='get_mail') ) builder.add(InlineKeyboardButton( text='Поменять имя', callback_data='get_username') ) if is_onboarding: builder.add(InlineKeyboardButton( text='Завершить регистрацию', callback_data='registration_end') ) else: builder.add(InlineKeyboardButton( text='Назад', callback_data='other') ) builder.adjust(2) return builder.as_markup() # Path: keyboards/user_keyboards.py def universal_keyboard( buttons: List[Tuple[str, Union[str, CallbackData]]], buttons_per_row: int = 1, ) -> InlineKeyboardMarkup: """Универсальная клавиатура с кнопками колбека.""" builder = InlineKeyboardBuilder() if len(buttons) == 1: text, data = buttons[0] builder.add(InlineKeyboardButton(text=text, callback_data=data)) else: line = [] for text, data in buttons: line.append( InlineKeyboardButton(text=text, callback_data=data) ) builder.add(*line) builder.adjust(buttons_per_row) return builder.as_markup() # Path: models/user.py class User(Base): """Модель пользователя.""" username = Column(String(64), nullable=True) email = Column(String(254), unique=True, index=True, nullable=True) registration_time = Column(BigInteger) # Время в формате Unix. is_onboarding = Column(Boolean, default=False) categories = relationship( 'Category', back_populates='user', cascade='all, delete-orphan', lazy='selectin' ) aliases = relationship( 'Alias', back_populates='user', cascade='all, delete-orphan' ) transactions = relationship( 'Transaction', back_populates='user', cascade='all, delete-orphan', lazy='selectin' ) # Path: utils/user_actions.py async def callback_message( target: Union[Message, CallbackQuery], text: str, reply_markup: InlineKeyboardMarkup = None, replace_message: bool = False, delete_reply: bool = True, **kwargs, ): """Редактировние сообщения.""" target = target if isinstance(target, Message) else target.message if replace_message: await target.edit_text( text=text, reply_markup=reply_markup, **kwargs ) else: await target.answer( text=text, reply_markup=reply_markup, **kwargs ) await target.delete_reply_markup() if delete_reply else None # Path: handlers/change_info_handler.py from aiogram import F, Router from aiogram.fsm.context import FSMContext from aiogram.types import CallbackQuery, Message from sqlalchemy.ext.asyncio import AsyncSession from core.crud import get_by_id, update from filters import IsEndOnboardingFilter from forms import RegistrationForm from keyboards import set_info_keyboard, universal_keyboard from models import User from utils.user_actions import callback_message router = Router(name='change_info_router') @router.callback_query(F.data == 'change_info') async def change_info(callback: CallbackQuery): """Выводит Категории и Статистику и осльной функционал.""" await callback_message( target=callback, text='Изменить данные о себе',
reply_markup=set_info_keyboard(),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nchen909/Pass-Tuning # Path: evaluator/CodeBLEU/parser/utils.py def remove_comments_and_docstrings(source, lang): if lang in ['python']: """ Returns 'source' minus comments and docstrings. """ io_obj = StringIO(source) out = "" prev_toktype = tokenize.INDENT last_lineno = -1 last_col = 0 for tok in tokenize.generate_tokens(io_obj.readline): token_type = tok[0] token_string = tok[1] start_line, start_col = tok[2] end_line, end_col = tok[3] ltext = tok[4] if start_line > last_lineno: last_col = 0 if start_col > last_col: out += (" " * (start_col - last_col)) # Remove comments: if token_type == tokenize.COMMENT: pass # This series of conditionals removes docstrings: elif token_type == tokenize.STRING: if prev_toktype != tokenize.INDENT: # This is likely a docstring; double-check we're not inside an operator: if prev_toktype != tokenize.NEWLINE: if start_col > 0: out += token_string else: out += token_string prev_toktype = token_type last_col = end_col last_lineno = end_line temp = [] for x in out.split('\n'): if x.strip() != "": temp.append(x) return '\n'.join(temp) elif lang in ['ruby']: return source else: def replacer(match): s = match.group(0) if s.startswith('/'): return " " # note: a space and not an empty string else: return s pattern = re.compile( r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"', re.DOTALL | re.MULTILINE ) temp = [] for x in re.sub(pattern, replacer, source).split('\n'): if x.strip() != "": temp.append(x) return '\n'.join(temp) # Path: evaluator/CodeBLEU/parser/utils.py def tree_to_token_index(root_node): if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string', 'character_literal']) and root_node.type != 'comment': return [(root_node.start_point, root_node.end_point)] else: code_tokens = [] for child in root_node.children: code_tokens += tree_to_token_index(child) return code_tokens # Path: evaluator/CodeBLEU/parser/utils.py def index_to_code_token(index, code): start_point = index[0] end_point = index[1] if start_point[0] == end_point[0]: s = code[start_point[0]][start_point[1]:end_point[1]] else: s = "" s += code[start_point[0]][start_point[1]:] for i in range(start_point[0] + 1, end_point[0]): s += code[i] s += code[end_point[0]][:end_point[1]] return s # Path: evaluator/CodeBLEU/parser/utils.py def tree_to_variable_index(root_node, index_to_code): if (len(root_node.children) == 0 or root_node.type in ['string_literal', 'string', 'character_literal']) and root_node.type != 'comment': index = (root_node.start_point, root_node.end_point) _, code = index_to_code[index] if root_node.type != code: return [(root_node.start_point, root_node.end_point)] else: return [] else: code_tokens = [] for child in root_node.children: code_tokens += tree_to_variable_index(child, index_to_code) return code_tokens # Path: evaluator/CodeBLEU/parser/DFG.py from tree_sitter import Language, Parser from .utils import (remove_comments_and_docstrings, tree_to_token_index, index_to_code_token, tree_to_variable_index) # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. def DFG_python(root_node,index_to_code,states): assignment=['assignment','augmented_assignment','for_in_clause'] if_statement=['if_statement'] for_statement=['for_statement'] while_statement=['while_statement'] do_first_statement=['for_in_clause'] def_statement=['default_parameter'] states=states.copy() if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None:
indexs=tree_to_variable_index(name,index_to_code)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kavisha725/MBNSF # Path: utils/o3d_uitls.py def extract_clusters_dbscan(cloud, eps = 0.9, min_points=10, return_clusters= False, return_colored_pcd=False): pcl = copy.deepcopy(cloud) pcl = make_open3d_point_cloud(pcl) labels = np.array( pcl.cluster_dbscan(eps=eps, min_points=min_points, print_progress=True)) if return_colored_pcd: cmap = plt.get_cmap("tab20") max_label = labels.max() print("Has %d clusters" % (max_label + 1)) colors = cmap(labels / (max_label if max_label > 0 else 1)) colors[labels < 0] = 0 pcl.colors = o3d.utility.Vector3dVector(colors[:, :3]) # o3d.visualization.draw_geometries([pcl]) # save_view_point(pcl, 'pcd_viewpoint.json') load_view_point(pcl, 'pcd_viewpoint.json') clusters = [] if return_clusters: label_ids = np.delete(np.unique(labels), 0) for id in label_ids: clusters.append(cloud[labels == id]) clusters = np.asarray(clusters) if return_colored_pcd: return labels, clusters, pcl return labels, clusters else: if return_colored_pcd: return labels, pcl return labels # Path: utils/sc_utils.py def spatial_consistency_loss(src_keypts, tgt_keypts, d_thre=0.1, max_points = 3000): """ Input: - src_keypts: [bs, num_corr, 3] - tgt_keypts: [bs, num_corr, 3] Output: - sc_loss: [bs, 1], the spatial consistency loss. """ bs, num_corr = src_keypts.shape[0], tgt_keypts.shape[1] # (Optional) random sample points if num_corr > max_points: rand_perm = torch.randperm(num_corr) rand_idx = rand_perm[:max_points] src_keypts = src_keypts[:, rand_idx, :] tgt_keypts = tgt_keypts[:, rand_idx, :] # Spatial Consistency Adjacency Matrix src_dist = torch.norm((src_keypts[:, :, None, :] - src_keypts[:, None, :, :]), dim=-1) target_dist = torch.norm((tgt_keypts[:, :, None, :] - tgt_keypts[:, None, :, :]), dim=-1) cross_dist = torch.abs(src_dist - target_dist) adj_mat = torch.clamp(1.0 - cross_dist ** 2 / d_thre ** 2, min=0) # Spatial Consistency Loss lead_eigvec = power_iteration(adj_mat) sc_score = spatial_consistency_score( adj_mat, lead_eigvec) sc_loss = -torch.log(sc_score) return sc_loss # Path: trajectory_estimation/mbnt.py import os, glob import argparse import logging import csv import numpy as np import torch import sys import pytorch3d.loss as p3dloss from utils.general_utils import * from utils.ntp_utils import * from utils.o3d_uitls import extract_clusters_dbscan from utils.sc_utils import spatial_consistency_loss # Long-term trajectory estimation with MBNT. sys.path.append(os.path.join(os.path.dirname(__file__), '../')) logger = logging.getLogger(__name__) def total_sc_loss(labels_t, label_ids, pc, pc_defored, d_thresh=0.03, max_points=3000): loss_sc = None for id in label_ids: cluster = pc[labels_t == id] cluster_deformed = pc_defored[labels_t == id] assert cluster.shape == cluster_deformed.shape cluster_cs_loss = spatial_consistency_loss(cluster.unsqueeze(0), cluster_deformed.unsqueeze(0), d_thre=d_thresh, max_points=max_points) if not loss_sc: loss_sc = cluster_cs_loss else: loss_sc += cluster_cs_loss loss_sc /= len(label_ids) return loss_sc.squeeze() def fit_trajectory_field( exp_dir, pc_list, options, flow_gt_list = None, traj_gt = None, traj_val_mask = None ): csv_file = open(f"{exp_dir}/metrics.csv", 'w') metric_labels = ['train_loss', 'train_chamfer_loss', 'train_sc_loss', 'train_consist_loss', 'traj_consist', 'epe', 'acc_strict', 'acc_relax', 'angle_error', 'outlier'] csv_writer = csv.DictWriter(csv_file, ['itr'] + metric_labels + ['traj_metric']) csv_writer.writeheader() n_lidar_sweeps = len(pc_list) if traj_gt is not None and traj_val_mask is not None: traj_gt = torch.from_numpy(traj_gt).cuda() traj_val_mask = torch.from_numpy(traj_val_mask).cuda() # ANCHOR: Initialize the trajectory field net = NeuralTrajField(traj_len=n_lidar_sweeps, filter_size=options.hidden_units, act_fn=options.act_fn, traj_type=options.traj_type, st_embed_type=options.st_embed_type) net.to(options.device) optimizer = torch.optim.Adam(net.parameters(), lr=options.lr, weight_decay=options.weight_decay) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.5) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200,400,600,800], gamma=0.5) # Pre-compute clusters: labels_database, label_ids_database = [], [] for fid in range(n_lidar_sweeps):
labels = extract_clusters_dbscan(pc_list[fid], eps = options.sc_cluster_eps, min_points=options.sc_cluster_min_points, return_clusters= False, return_colored_pcd=False)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: cool-dev-guy/tkmoderngl # Path: tkmoderngl/framebuffer.py class FramebufferImage(ImageTk.PhotoImage): def __init__(self, master, ctx, size): super(FramebufferImage, self).__init__(Image.new('RGB', size, (0, 0, 0))) self.ctx = ctx self.fbo = self.ctx.simple_framebuffer(size) self.scope = self.ctx.scope(self.fbo) def __enter__(self): self.scope.__enter__() def __exit__(self, *args): self.scope.__exit__(*args) self.paste(Image.frombytes('RGB', self.fbo.size, self.fbo.read(), 'raw', 'RGB', 0, -1)) # Path: tkmoderngl/renderer.py class Canvas: def __init__(self, ctx, reserve='4MB'): self.ctx = ctx self.prog = self.ctx.program( vertex_shader=''' #version 330 uniform vec2 Pan; in vec2 in_vert; in vec4 in_color; out vec4 v_color; void main() { v_color = in_color; gl_Position = vec4(in_vert - Pan, 0.0, 1.0); } ''', fragment_shader=''' #version 330 in vec4 v_color; out vec4 f_color; void main() { f_color = v_color; } ''', ) self.vbo = ctx.buffer(reserve='4MB', dynamic=True) self.vao = ctx.simple_vertex_array(self.prog, self.vbo, 'in_vert', 'in_color') def pan(self, pos): self.prog['Pan'].value = pos def clear(self, color=(0, 0, 0, 0)): self.ctx.clear(*color) def plot(self, points, type='line'): data = points.astype('f4').tobytes() self.vbo.orphan() self.vbo.write(data) if type == 'line': self.ctx.line_width = 1.0 self.vao.render(moderngl.LINE_STRIP, vertices=len(data) // 24) if type == 'points': self.ctx.point_size = 3.0 self.vao.render(moderngl.POINTS, vertices=len(data) // 24) # Path: tkmoderngl/renderer.py class PanTool: def __init__(self): self.total_x = 0.0 self.total_y = 0.0 self.start_x = 0.0 self.start_y = 0.0 self.delta_x = 0.0 self.delta_y = 0.0 self.drag = False def start_drag(self, x, y): self.start_x = x self.start_y = y self.drag = True def dragging(self, x, y): if self.drag: self.delta_x = (x - self.start_x) * 2.0 self.delta_y = (y - self.start_y) * 2.0 def stop_drag(self, x, y): if self.drag: self.dragging(x, y) self.total_x -= self.delta_x self.total_y += self.delta_y self.delta_x = 0.0 self.delta_y = 0.0 self.drag = False @property def value(self): return (self.total_x - self.delta_x, self.total_y + self.delta_y) # Path: main.py import tkinter as tk import moderngl import numpy as np from tkmoderngl.framebuffer import FramebufferImage from tkmoderngl.renderer import Canvas, PanTool """ code from moderngl/examples modified by : cool-dev-guy """ # the moderngl widget class GlWidget(tk.Label): def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) self.parent = args[0] self._ctx = moderngl.create_standalone_context() self._tkfbo = FramebufferImage(args[0],self._ctx,(500,500))
self._canvas = Canvas(self._ctx)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: G3VV/Yank # Path: util/spotify.py def start_token_thread(): client_id = spotify_id client_secret = spotify_secret get_access_token(client_id, client_secret) # Path: util/download.py async def start(id): isrc = id try: try: track = await spotify_isrc(isrc) except Exception as e: print("Spotify token expired or couldn't find isrc") print(" ") print(e) return "none" if 'isrc' in track['external_ids']: isrc = track['external_ids']['isrc'] else: isrc = "ISRC not available" print("Song not found") return "none" j = await get_deezer_track(isrc) pathfile = Path(f"./music/{isrc}.mp3") if pathfile.is_file(): print(f"[{isrc}] Already cached") return pathfile else: print(f"[{isrc}] Not cached") try: track_id = j["id"] except: print("Couldn't find song on deezer") return "none" loop = asyncio.get_event_loop() download_track(track_id, isrc) return pathfile except Exception as e: print(f"{e} at line {sys.exc_info()[-1].tb_lineno}") return "none" # Path: util/download.py async def start_playlist(id): folder_to_zip = f'./music/{id}/' output_zip_file = f'./zip/{id}' def zip_folder(folder_path, output_path): print(f"[playlist] Zipping folder {folder_path} to {output_path}") shutil.make_archive(output_path, 'zip', folder_path) print(f"[playlist] Finished zipping folder {folder_path} to {output_path}") isrc = id try: if os.path.exists(folder_to_zip): return output_zip_file + ".zip" try: playlist_isrcs = await spotify_playlist(isrc) except Exception as e: print("Spotify token expired or couldn't find isrc") print(" ") print(e) return "none" deezer_ids = [] for index in range(len(playlist_isrcs)): try: j = await get_deezer_track(playlist_isrcs[index]) print(j["id"]) deezer_ids.append(f'{j["id"]}') except: print("Couldn't find song on deezer") continue #return deezer_ids download_playlist(deezer_ids, id) zip_folder(folder_to_zip, output_zip_file) return output_zip_file + ".zip" except Exception as e: print(f"{e} at line {sys.exc_info()[-1].tb_lineno}") return "none" # Path: index.py from quart import Quart, send_file from util.spotify import start_token_thread from util.download import start, start_playlist from dotenv import load_dotenv import threading import re import os import json app = Quart(__name__) load_dotenv() port = os.environ.get("port") @app.route('/track/<string:id>') async def serve_audio(id): filename = await start(id) return await send_file(filename, mimetype='audio/mpeg') @app.route('/') async def serve_index(): return "online" @app.route('/playlist/<string:id>') async def serve_playlist(id):
filename = await start_playlist(id)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: openfoodfacts/open-prices # Path: app/db.py # Path: app/enums.py CURRENCIES = [(currency, currency) for currency in list_currencies()] NODE = "NODE" WAY = "WAY" RELATION = "RELATION" PRICE_TAG = "PRICE_TAG" RECEIPT = "RECEIPT" GDPR_REQUEST = "GDPR_REQUEST" UNIT = "UNIT" KILOGRAM = "KILOGRAM" class LocationOSMEnum(Enum): class ProofTypeEnum(Enum): class PricePerEnum(Enum): # Path: app/models.py from openfoodfacts import Flavor from sqlalchemy import ( JSON, BigInteger, Boolean, Column, Date, DateTime, ForeignKey, Integer, Numeric, String, ) from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.orm import Mapped, mapped_column, relationship from sqlalchemy.sql import func from sqlalchemy_utils import force_auto_coercion from sqlalchemy_utils.types.choice import ChoiceType from app.db import Base from app.enums import CurrencyEnum, LocationOSMEnum, PricePerEnum, ProofTypeEnum force_auto_coercion() JSONVariant = JSON().with_variant(JSONB(), "postgresql") class User(Base): user_id = Column(String, primary_key=True, index=True) token = Column(String, unique=True, index=True) last_used = Column(DateTime(timezone=True)) price_count = Column(Integer, nullable=False, server_default="0", index=True) created = Column(DateTime(timezone=True), server_default=func.now()) __tablename__ = "users" class Product(Base): id = Column(Integer, primary_key=True, index=True) code = Column(String, unique=True, index=True) source = Column(ChoiceType(Flavor)) product_name = Column(String) product_quantity = Column(Integer) brands = Column(String) image_url = Column(String) unique_scans_n = Column(Integer, nullable=False, server_default="0") prices: Mapped[list["Price"]] = relationship(back_populates="product") price_count = Column(Integer, nullable=False, server_default="0", index=True) created = Column(DateTime(timezone=True), server_default=func.now()) updated = Column(DateTime(timezone=True), onupdate=func.now()) __tablename__ = "products" class Location(Base): id = Column(Integer, primary_key=True, index=True) osm_id = Column(BigInteger) osm_type = Column(ChoiceType(LocationOSMEnum)) osm_name = Column(String) osm_display_name = Column(String) osm_address_postcode = Column(String) osm_address_city = Column(String) osm_address_country = Column(String) osm_lat = Column(Numeric(precision=11, scale=7)) osm_lon = Column(Numeric(precision=11, scale=7)) prices: Mapped[list["Price"]] = relationship(back_populates="location") price_count = Column(Integer, nullable=False, server_default="0", index=True) created = Column(DateTime(timezone=True), server_default=func.now()) updated = Column(DateTime(timezone=True), onupdate=func.now()) __tablename__ = "locations" class Proof(Base): id = Column(Integer, primary_key=True, index=True) file_path = Column(String, nullable=False) mimetype = Column(String, index=True)
type = Column(ChoiceType(ProofTypeEnum))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: krasnoukhov/homeassistant-smart-maic # Path: custom_components/smart_maic/const.py DEVICE_NAME = "device_name" # Path: custom_components/smart_maic/const.py DEVICE_ID = "devid" # Path: custom_components/smart_maic/const.py DEVICE_TYPE = "devtype" # Path: custom_components/smart_maic/const.py DOMAIN = "smart_maic" # Path: custom_components/smart_maic/const.py IP_ADDRESS = CONF_IP_ADDRESS # Path: custom_components/smart_maic/const.py PIN = CONF_PIN # Path: custom_components/smart_maic/smart_maic.py class SmartMaic: """Smart MAIC instance.""" def __init__(self, data: dict[str, Any]) -> None: """Init Smart MAIC.""" self._ip_address = data[IP_ADDRESS] self._pin = data[PIN] self._devid = data.get(DEVICE_ID) def get_wdata(self) -> dict[str, Any]: """Get "wdata" for Smart MAIC component.""" self._login_request() return self._get_request(page="getwdata").json() def get_config(self) -> dict[str, Any]: """Get config for Smart MAIC component.""" self._login_request() return self._get_request(page="webinit").json() def set_mqtt_config(self) -> dict[str, Any]: """Set Smart MAIC MQTT config.""" config = self.get_config() self._get_request( page="mqtt", serv=config["serv"], port=config["port"], uname=config["uname"], **{"pass": config["pass"]}, mqtt_on=1, mqttint=5, separat=2, prefix=f"{PREFIX}/", ) return self.get_config() def set_consumption(self, key: str, value: float) -> None: """Set Smart MAIC consumption value.""" self._login_request() self._get_request(page="initval", **{key: value}) def set_dry_switch(self, value: int) -> dict[str, Any]: """Set Smart MAIC dry switch.""" self._get_request( page="getdata", devid=self._devid, devpass=self._pin, pout=value ) def _login_request(self) -> None: self._get_request(page="devlogin", devpass=self._pin) def _get_request(self, **kwargs) -> requests.Response: """Make GET request to the Smart MAIC API.""" url = urlparse(f"http://{self._ip_address}/") url = url._replace(query=urlencode(kwargs)) _LOGGER.debug(f"Smart MAIC request: GET {url.geturl()}") try: r = requests.get(url.geturl(), timeout=HTTP_TIMEOUT) r.raise_for_status() _LOGGER.debug(f"Smart MAIC status: {r.status_code}") _LOGGER.debug(f"Smart MAIC response: {r.text}") return r except TimeoutError as timeout_error: raise ConnectionError from timeout_error except requests.exceptions.ConnectionError as connection_error: raise ConnectionError from connection_error except requests.exceptions.HTTPError as http_error: if http_error.response.status_code == 400: return r raise ConnectionError from http_error # Path: custom_components/smart_maic/coordinator.py class SmartMaicCoordinator(DataUpdateCoordinator[dict[str, Any]]): """Smart MAIC Coordinator class.""" def __init__(self, smart_maic: SmartMaic, hass: HomeAssistant) -> None: """Initialize.""" self._smart_maic = smart_maic super().__init__( hass, _LOGGER, name=DOMAIN, ) def _get_config(self) -> None: """Get Smart MAIC config.""" return self._smart_maic.set_mqtt_config() async def async_get_config(self) -> None: """Get Smart MAIC config.""" return await self.hass.async_add_executor_job(self._get_config) def _set_mqtt_config(self) -> None: """Set Smart MAIC MQTT config.""" return self._smart_maic.set_mqtt_config() async def async_set_mqtt_config(self) -> None: """Set Smart MAIC MQTT config.""" return await self.hass.async_add_executor_job(self._set_mqtt_config) def _set_consumption(self, key: str, value: float) -> None: """Set Smart MAIC consumption value.""" return self._smart_maic.set_consumption(key=key, value=value) async def async_set_consumption(self, key: str, value: float) -> None: """Set Smart MAIC consumption value.""" return await self.hass.async_add_executor_job(self._set_consumption, key, value) def _set_dry_switch(self, value: int) -> None: """Set Smart MAIC dry switch value.""" return self._smart_maic.set_dry_switch(value=value) async def async_set_dry_switch(self, value: int) -> None: """Set Smart MAIC dry switch value.""" return await self.hass.async_add_executor_job(self._set_dry_switch, value) # Path: custom_components/smart_maic/config_flow.py import logging import voluptuous as vol import homeassistant.helpers.config_validation as cv from typing import Any from homeassistant import config_entries from homeassistant.components import mqtt from homeassistant.core import HomeAssistant from homeassistant.data_entry_flow import AbortFlow from .const import ( DEVICE_NAME, DEVICE_ID, DEVICE_TYPE, DOMAIN, IP_ADDRESS, PIN, ) from .smart_maic import SmartMaic from .coordinator import SmartMaicCoordinator """Config flow for Smart MAIC integration.""" from __future__ import annotations _LOGGER = logging.getLogger(__name__) USER_SCHEMA = vol.Schema( { vol.Required(IP_ADDRESS): cv.string, vol.Required(PIN): cv.string, vol.Required(DEVICE_NAME, default="Energy"): cv.string, } ) async def validate_input(hass: HomeAssistant, data: dict) -> dict[str, Any]: """Validate the user input allows us to connect. Data has the keys from USER_SCHEMA with values provided by the user. """ if not await mqtt.async_wait_for_mqtt_client(hass): raise AbortFlow("mqtt_unavailable") smart_maic = SmartMaic(data)
coordinator = SmartMaicCoordinator(smart_maic, hass)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JoaoPedro9674/django-ledger # Path: django_ledger/contrib/django_ledger_graphene/coa/schema.py class ChartOfAccountsModelType(DjangoObjectType): class Meta: model = ChartOfAccountModel fields = [ 'uuid', 'slug', 'name', 'locked' ] interfaces = (relay.Node,) # Path: django_ledger/contrib/django_ledger_graphene/entity/schema.py class EntityModelQuery(graphene.ObjectType): entity_model_list_all = graphene.List(EntityModelType) entity_model_list_visible = graphene.List(EntityModelType) entity_model_list_hidden = graphene.List(EntityModelType) entity_model_list_managed = graphene.List(EntityModelType) entity_model_list_is_admin = graphene.List(EntityModelType) entity_model_detail_by_uuid = graphene.Field(EntityModelTypeDetail, uuid=graphene.String(required=True)) entity_model_detail_by_slug = graphene.Field(EntityModelTypeDetail, slug=graphene.String(required=True)) @staticmethod def get_base_queryset(info): if info.context.resource_owner.is_authenticated: return EntityModel.objects.for_user(user_model=info.context.resource_owner) return EntityModel.objects.none() # list .... def resolve_entity_model_list_all(self, info, **kwargs): return EntityModelQuery.get_base_queryset(info) def resolve_entity_model_list_visible(self, info, **kwargs): qs = EntityModelQuery.get_base_queryset(info) return qs.visible() def resolve_entity_model_list_hidden(self, info, **kwargs): qs = EntityModelQuery.get_base_queryset(info) return qs.hidden() def resolve_entity_model_list_managed(self, info, **kwargs): qs: EntityModelQuerySet = EntityModelQuery.get_base_queryset(info) user_model = info.context.resource_owner return qs.filter(managers__in=[user_model]) def resolve_entity_model_list_is_admin(self, info, **kwargs): qs: EntityModelQuerySet = EntityModelQuery.get_base_queryset(info) user_model = info.context.resource_owner return qs.filter(admin=user_model) # detail... def resolve_entity_model_detail_by_slug(self, info, slug, **kwargs): qs: EntityModelQuerySet = EntityModelQuery.get_base_queryset(info) return qs.select_related('default_coa').get(slug__exact=slug) def resolve_entity_model_detail_by_uuid(self, info, uuid, **kwargs): qs: EntityModelQuerySet = EntityModelQuery.get_base_queryset(info) return qs.select_related('default_coa').get(uuid__exact=uuid) # Path: django_ledger/contrib/django_ledger_graphene/entity/schema.py class EntityModelType(DjangoObjectType): is_admin = graphene.Boolean() def resolve_is_admin(self, info): entity_model: EntityModel = self return entity_model.is_admin_user(user_model=info.context.resource_owner) class Meta: model = EntityModel fields = ENTITY_MODEL_BASE_FIELDS filter_fields = { 'name': [ 'exact', 'icontains', 'istartswith' ], } interfaces = (relay.Node,) # Path: django_ledger/contrib/django_ledger_graphene/api.py import graphene from django_ledger.contrib.django_ledger_graphene.coa.schema import ChartOfAccountsModelType from django_ledger.contrib.django_ledger_graphene.entity.schema import EntityModelQuery, EntityModelType class Query( EntityModelQuery, # ChartOfAccountsModelQuery # CustomerQuery, # Bill_list_Query, # Accountlist_Query, # Bank_account_Query , # ChartOfAccountsQuery, # UnitOfMeasureQuery, # VendorsQuery, # EntityUnitQuery, # LedgerQuery, # TransactionsQuery, # JournalEntryQuery, # PurchaseOrderQuery, # QueryUser, ): pass # class Mutation( # # CustomerMutations, # # BankAccountMutations, # # AuthMutation, # ): # pass schema = graphene.Schema( types=[ EntityModelType,
ChartOfAccountsModelType
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: HLTCHKUST/InstructAlign # Path: nlu_prompt.py def get_prompt(prompt_lang): if prompt_lang == 'EN': return DATA_TO_EN_PROMPT elif prompt_lang == 'EN2': return DATA_TO_EN2_PROMPT elif prompt_lang == 'EN3': return DATA_TO_EN3_PROMPT elif prompt_lang == 'ID': return DATA_TO_ID_PROMPT elif prompt_lang == 'ID2': return DATA_TO_ID2_PROMPT elif prompt_lang == 'ID3': return DATA_TO_ID3_PROMPT else: raise ValueError(f'get_prompt() - Unknown prompt_lang `{prompt_lang}` (options: EN / EN2 / EN3 / ID / ID2 / ID3)') # Path: data_utils.py def load_xnli_dataset(): xnli_dataset = datasets.load_dataset('xtreme', 'XNLI') df = xnli_dataset['test'].to_pandas() xnli_dsets = {} for lang, lang_df in df.groupby('language'): lang_df = lang_df[['sentence1', 'sentence2', 'gold_label']] lang_df.columns = ['text_1', 'text_2', 'label'] xnli_dsets[f'xnli_{lang}'] = DatasetDict({'test': Dataset.from_pandas(lang_df.reset_index(drop=True))}) return xnli_dsets # Path: data_utils.py def load_nusa_menulis_dataset(): nusa_menulis_dsets = {} for (dset, task, lang) in NUSA_MENULIS_TASKS: nusa_menulis_dsets[f'{dset}_{task}_{lang}'] = load_single_dataset(dset, task, lang, base_path='./nusamenulis') return nusa_menulis_dsets # Path: data_utils.py def load_nlu_tasks(): conhelps = NusantaraConfigHelper() nlu_datasets = { helper.config.name: helper.load_dataset() for helper in conhelps.filtered(lambda x: x.config.name in TEXT_CLASSIFICATION_TASKS) } return nlu_datasets # Path: main_nlu_prompt.py import os, sys import csv import pandas as pd import torch import torch.nn.functional as F from os.path import exists from numpy import argmax from tqdm import tqdm from sklearn.metrics import f1_score, accuracy_score from nlu_prompt import get_prompt from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM from nusacrowd import NusantaraConfigHelper from data_utils import load_xnli_dataset, load_nusa_menulis_dataset, load_nlu_tasks """nusacrowd zero-shot prompt.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Ru8DyS2ALWfRdkjOPHj-KNjw6Pfa44Nd """ #!pip install git+https://github.com/IndoNLP/nusa-crowd.git@release_exp #!pip install transformers #!pip install sentencepiece DEBUG=False def to_prompt(input, prompt, labels, prompt_lang): # single label if 'text' in input: prompt = prompt.replace('[INPUT]', input['text']) else: prompt = prompt.replace('[INPUT_A]', input['text_1']) prompt = prompt.replace('[INPUT_B]', input['text_2']) # replace [OPTIONS] to A, B, or C if "[OPTIONS]" in prompt: new_labels = [f'{l}' for l in labels] new_labels[-1] = ("or " if 'EN' in prompt_lang else "atau ") + new_labels[-1] if len(new_labels) > 2: prompt = prompt.replace('[OPTIONS]', ', '.join(new_labels)) else: prompt = prompt.replace('[OPTIONS]', ' '.join(new_labels)) return prompt @torch.no_grad() def get_logprobs(model, tokenizer, prompt, label_ids=None, label_attn=None): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to('cuda') input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:] outputs = model(**inputs, labels=input_ids) logits = outputs.logits if model.config.is_encoder_decoder: logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, label_ids.unsqueeze(2)) * label_attn.unsqueeze(2) return logprobs.sum() / label_attn.sum() else: logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2)) return logprobs.mean() def predict_classification(model, tokenizer, prompt, labels): if model.config.is_encoder_decoder: labels_encoded = tokenizer(labels, add_special_tokens=False, padding=True, return_tensors='pt') list_label_ids =labels_encoded['input_ids'].to('cuda') list_label_attn =labels_encoded['attention_mask'].to('cuda') probs = [ get_logprobs(model, tokenizer, prompt.replace('[LABELS_CHOICE]', ''), label_ids.view(1,-1), label_attn.view(1,-1)) for (label_ids, label_attn) in zip(list_label_ids, list_label_attn) ] else: probs = [get_logprobs(model, tokenizer, prompt.replace('[LABELS_CHOICE]', label)) for label in labels] return probs if __name__ == '__main__': if len(sys.argv) < 3: raise ValueError('main_nlu_prompt.py <prompt_lang> <model_path_or_name> <optional_output_name>') prompt_lang = sys.argv[1] MODEL = sys.argv[2] output_name = None if len(sys.argv) == 4: output_name = sys.argv[3] os.makedirs('./outputs', exist_ok=True) # Load Prompt DATA_TO_PROMPT = get_prompt(prompt_lang) # Load Dataset print('Load NLU Datasets...')
nlu_datasets = load_nlu_tasks()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ambient-innovation/django-migration-zero # Path: django_migration_zero/exceptions.py class InvalidMigrationTreeError(RuntimeError): pass # Path: django_migration_zero/managers.py class MigrationZeroConfigurationManager(models.Manager): def fetch_singleton(self) -> None: logger = get_logger() try: number_records = self.count() except ProgrammingError: logger.warning( "The migration zero table is missing. This might be ok for the first installation of " '"django-migration-zero" but if you see this warning after that point, something went sideways.' ) return None if number_records > 1: raise MissingMigrationZeroConfigRecordError( "Too many configuration records detected. There can only be one." ) config_singleton = self.all().first() if not config_singleton: raise MissingMigrationZeroConfigRecordError("No configuration record found in the database.") return config_singleton # Path: django_migration_zero/models.py class MigrationZeroConfiguration(models.Model): migration_imminent = models.BooleanField( _("Migration imminent"), default=False, help_text=_("Enable this checkbox to prepare the database for a migration zero reset on the next deployment."), ) migration_date = models.DateField(_("Migration date"), null=True, blank=True) objects = MigrationZeroConfigurationManager() class Meta: verbose_name = _("Configuration") verbose_name_plural = _("Configurations") def __str__(self): return "Configuration" @property def is_migration_applicable(self) -> bool: """ Checks if we are currently preparing for a "migration zero"-deployment """ logger = get_logger() if not self.migration_imminent: logger.info("Switch not active. Skipping migration zero process.") return False if not self.migration_date == timezone.now().date(): logger.info("Security date doesn't match today. Skipping migration zero process.") return False return True # Path: django_migration_zero/services/deployment.py class DatabasePreparationService: """ Service to prepare the database for an upcoming commit in the CI/CD pipeline. """ logger: Logger def __init__(self): super().__init__() self.logger = get_logger() def process(self): self.logger.info("Starting migration zero database adjustments...") # Fetch configuration singleton from database config_singleton = MigrationZeroConfiguration.objects.fetch_singleton() # If we encountered a problem or are not planning to do a migration reset, we are done here if not (config_singleton and config_singleton.is_migration_applicable): return # Reset migration history in database for all apps because there might be dependency issues if we keep the # records of the other ones self.logger.info("Resetting migration history for all apps...") with connections["default"].cursor() as cursor: cursor.execute("DELETE FROM `django_migrations`") # Apply migrations via fake because the database is already up-to-date self.logger.info("Populating migration history.") call_command("migrate", fake=True) # Check if migration tree is valid self.logger.info("Checking migration integrity.") migrate_check = call_command("migrate", check=True) if not migrate_check: self.logger.info("All good.") else: raise InvalidMigrationTreeError( 'The command "migrate --check" returned a non-zero error code. ' "Your migration structure seems to be invalid." ) # Process finished, deactivate migration zero switch self.logger.info("Deactivating migration zero switch in database.") config_singleton.migration_imminent = False config_singleton.save() self.logger.info("Process successfully finished.") # Path: tests/services/test_deployment.py from logging import Logger from unittest import mock from django.test import TestCase from django.utils import timezone from freezegun import freeze_time from django_migration_zero.exceptions import InvalidMigrationTreeError from django_migration_zero.managers import MigrationZeroConfigurationManager from django_migration_zero.models import MigrationZeroConfiguration from django_migration_zero.services.deployment import DatabasePreparationService @freeze_time("2023-06-26") class DatabasePreparationServiceTest(TestCase): config: MigrationZeroConfiguration @classmethod def setUpTestData(cls): super().setUpTestData() cls.service = DatabasePreparationService() cls.config, _ = MigrationZeroConfiguration.objects.get_or_create() def test_init_logger_set(self): self.assertIsInstance(self.service.logger, Logger) def test_process_regular(self): # Setup self.config.migration_imminent = True self.config.migration_date = timezone.now().date() self.config.save() # Assertions self.assertIsNone(self.service.process()) self.config.refresh_from_db() self.assertFalse(self.config.migration_imminent) @mock.patch.object(MigrationZeroConfiguration, "is_migration_applicable", return_value=False)
@mock.patch.object(MigrationZeroConfigurationManager, "fetch_singleton", return_value=None)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Lucchetto/model_converter # Path: src/licensing.py def setup_pub_key() -> (rsa.RSAPublicKey | None): str = os.environ.get('LICENSING_PUB_KEY') if str: logging.info("LICENSING_PUB_KEY defined, Play Store licensing validation will be performed") key = serialization.load_der_public_key( base64.b64decode(str), backend=default_backend() ) # Check if the key is an instance of RSA public key if isinstance(key, rsa.RSAPublicKey): return key else: raise ValueError("The key is not an RSA public key.") else: logging.info("LICENSING_PUB_KEY not defined, no licensing validation will be performed") return None # Path: src/licensing.py def validate_license(key: rsa.RSAPublicKey, licensing_response_data: str | None, signature: str | None) -> bool: """Validates license response from Play Store """ # Extract license data from response if licensing_response_data is None: return False license_data = licensing_response_data.split("|") if len(license_data) < 6: return False license_status = LicensingStatus.from_value(safe_str_to_int(license_data[0])) package_name = license_data[2] # Remove extra data separated with |{timestamp}:{extra_data} timestamp = int(license_data[5].split(":")[0]) # License responses with old timestamp should considered invalid too if (timestamp + LICENSE_RESPONSE_VALIDITY_TIME < datetime.now(timezone.utc).timestamp() * 1000): return False # Checking signature is not necessary if not licensed or if licensed check signature is provided if license_status is not LicensingStatus.LICENSED or signature is None: return False # Verify reponse data integrity if status is licensed try: key.verify( base64.b64decode(signature), licensing_response_data.encode(), padding.PKCS1v15(), hashes.SHA1() ) return True except InvalidSignature as e: return False # Path: src/converter.py class UnsupportedModelArch(Exception): pass # Path: src/converter.py def convert_pth_to_onnx(input_model: str, output_model: str): (model, _, _) = load_model_node(input_model) if model.__class__.__name__ in (DAT.__name__, CodeFormer.__name__, GFPGANv1Clean.__name__, RestoreFormer.__name__): raise UnsupportedModelArch() # set the train mode to false since we will only run the forward pass. model.train(False) model.cpu().eval() # An example input x = torch.rand(1, model.in_nc, 256, 256) # Export the model with torch.no_grad(): dynamic_axes = {'input':{0:'batch_size' , 2:'width', 3:'height'}, 'output':{0:'batch_size' , 2:'width', 3:'height'}} torch.onnx.export( model, x, output_model, opset_version=11, export_params=True, input_names = ['input'], output_names = ['output'], dynamic_axes=dynamic_axes) # Path: src/api.py from enum import Enum from flask import Flask, Response, jsonify, request, send_file from src.licensing import setup_pub_key, validate_license from .converter import UnsupportedModelArch, convert_pth_to_onnx import logging import os import uuid class ApiErrorReason(Enum): UNSUPPORTED_ARCH = "UNSUPPORTED_ARCH" INVALID_LICENSE = 'INVALID_LICENSE' UNSUPPORTED_FORMAT = 'UNSUPPORTED_FORMAT' UNKNOWN = 'UNKNOWN' def api_error(reason: ApiErrorReason): if reason == ApiErrorReason.INVALID_LICENSE: status_code = 401 else: status_code = 400 return jsonify({"reason": reason.value}), status_code def create_app(): logging.basicConfig(level=logging.NOTSET) app = Flask(__name__) # Ensure the directory exists os.makedirs("tmp", exist_ok=True)
pub_key = setup_pub_key()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hpsaturn/pilauncher # Path: gui.py class GuiManager(): def __init__(self): self.am = AppManager() self.wlevel = 0 self.showApp() def showApp(self): if self.wlevel == 0: print(self.am.getCurrentApp().name) return self.am.getCurrentApp().name else: print(self.am.getCurrentCmd().name) return self.am.getCurrentCmd().name def showNextApp(self): if self.wlevel == 0: self.am.getNextApp() else: self.am.getNextCmd() return self.showApp() def getAppStatusCmd(self): if self.wlevel == 0: return self.am.getCurrentApp().sta_cmd else: return None def getAppStatus(self): if self.wlevel == 0: return self.am.getCurrentApp().status else: return '' def runBack(self): self.wlevel=0 self.am.reset() return self.showApp() def runAction(self): if self.wlevel==0: self.wlevel=1 return self.showApp() else: command = self.am.getCurrentCmd().command if command == 'back': return self.runBack() else: return 'exec::'+command def getConfig(self): return self.am.cfg # Path: display.py class Display: WIDTH = 128 HEIGHT = 32 # Change to 64 if needed def __init__(self): # Create the I2C interface. i2c = board.I2C() # Define the Reset Pin oled_reset = digitalio.DigitalInOut(board.D4) self.disp = adafruit_ssd1306.SSD1306_I2C(self.WIDTH, self.HEIGHT, i2c, addr=0x3C, reset=oled_reset) # timer for auto disp off self.timer_screen = time.time() # general semaphore self.mutex = threading.Lock() # Clear display. self.disp.fill(0) self.disp.show() # Create blank image for drawing. self.w = self.disp.width self.h = self.disp.height self.image = Image.new("1", (self.w, self.h)) # Get drawing object to draw on image. self.draw = ImageDraw.Draw(self.image) # Draw a black filled box to clear the image. self.draw.rectangle((0, 0, self.w, self.h), outline=0, fill=0) #padding self.top = -2 self.x = 0 # Load default font. self.fntS = ImageFont.load_default() self.fntB = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 18) def showString(self, msg): self.mutex.acquire() self.draw.rectangle((0, 0, self.w, self.h), outline=0, fill=0) self.draw.text((self.x, self.top + 0), msg[:12], font=self.fntB, fill=255) self.disp.image(self.image) self.disp.show() self.mutex.release() def showStatus(self, msg): self.mutex.acquire() self.draw.rectangle((0, 18, self.w-1, self.h- 1), outline=0, fill=0) self.draw.text((self.x, self.top + 25), msg[:21], font=self.fntS, fill=255) self.disp.image(self.image) self.disp.show() self.mutex.release() def showInfoLines(self, lines): self.mutex.acquire() self.draw.rectangle((0, 0, self.w, self.h), outline=0, fill=0) pos = 0 for line in lines: self.draw.text((self.x, self.top + pos), line[:21], font=self.fntS, fill=255) pos = pos + 8 self.disp.image(self.image) self.disp.show() self.mutex.release() def powerOffTimerReset(self): self.timer_screen = time.time() if not self.disp.power: self.disp.poweron() def powerOffTimerLoop(self, time_off): if not self.disp.power: return if time.time() - self.timer_screen > time_off: self.disp.poweroff() # Path: main.py import time import subprocess import threading import RPi.GPIO as GPIO from gui import GuiManager from display import Display BTNLFT = 23 BTNRGT = 6 onAppStatusTask = False onSystemStatsTask = False isBtnRgtPresed = False isBtnLftPresed = False onStats = False # GUI Apps Manager gui = GuiManager() cfg = gui.getConfig()
dsp = Display()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CAMeL-Lab/camel_parser # Path: src/logger.py def log(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: start_time = time.time() result = func(*args, **kwargs) end_time = time.time() with open(log_path, 'a') as f: f.write(f'{map_function_to_phrase(func.__name__)}: {round(end_time - start_time, 2)}s\n') return result except Exception as e: logger.exception(f"Exception raised in {func.__name__}. exception: {str(e)}") raise e return wrapper # Path: src/initialize_disambiguator/bert_disambiguator.py def create_bert_disambiguator(analyzer): model = BERTUnfactoredDisambiguator.pretrained("msa", top=1000, pretrained_cache=False) model._analyzer = analyzer return model # Path: src/initialize_disambiguator/mle_disambiguator.py class MLEDisambiguatorAdapter(): def __init__(self, analyzer: Analyzer): self.disambiguator = MLEDisambiguator(analyzer=analyzer) # def pretrained(self, analyzer): # self.disambiguator = self.disambiguator def disambiguate(self, sentence: List[str]) -> List[DisambiguatedWord]: return self.disambiguator.disambiguate(sentence) def disambiguate_sentences(self, lines: List[List[str]]) -> List[List[DisambiguatedWord]]: return [self.disambiguator.disambiguate(line) for line in lines] # Path: src/initialize_disambiguator/disambiguator_interface.py from typing import Union from camel_tools.morphology.database import MorphologyDB from camel_tools.morphology.analyzer import Analyzer from camel_tools.disambig.bert import BERTUnfactoredDisambiguator from src.logger import log from src.initialize_disambiguator.bert_disambiguator import create_bert_disambiguator from src.initialize_disambiguator.mle_disambiguator import MLEDisambiguatorAdapter def set_up_analyzer(morphology_db: str) -> Analyzer: # used to initialize an Analyzer with ADD_PROP backoff # db = MorphologyDB.builtin_db('calima-msa-s31') db_type = None if morphology_db == 'r13' else morphology_db db = MorphologyDB.builtin_db(db_name=db_type) return Analyzer(db=db, backoff='ADD_PROP', cache_size=100000) @log def get_disambiguator(model_name: str, morphology_db: str) -> Union[MLEDisambiguatorAdapter, BERTUnfactoredDisambiguator]: analyzer = set_up_analyzer(morphology_db) if model_name == 'mle': model = MLEDisambiguatorAdapter(analyzer) elif model_name == 'bert':
model = create_bert_disambiguator(analyzer)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JerBouma/FinancePortfolio # Path: financeportfolio/excel_model.py def create_portfolio_performance_excel_report( writer: pd.ExcelWriter, dataset: pd.DataFrame, sheet_name: str, currency: str = "$" ): def create_transactions_performance_excel_report( writer: pd.ExcelWriter, dataset: pd.DataFrame, sheet_name: str, currency: str = "$" ): def create_portfolio_overview_excel_report( writer: pd.ExcelWriter, dataset: pd.DataFrame, sheet_name: str, currency: str = "$" ): def create_positions_overview_excel_report( writer: pd.ExcelWriter, dataset: pd.DataFrame, sheet_name: str, currency: str = "$" ): # Path: financeportfolio/helpers.py BASE_URL = "https://raw.githubusercontent.com/JerBouma/FinancePortfolio/main/" VALID_CODE = 200 RED = "\033[91m" GREEN = "\033[92m" YELLOW = "\033[93m" BLUE = "\033[94m" BOLD = "\033[1m" UNDERLINE = "\033[4m" RESET = "\033[0m" class Style: def read_excel(location: str): def read_yaml_file(location: str): def download_example_datasets(base_url: str | None = None): def download_yaml_configuration(example: bool = False, name: str | None = None): # Path: financeportfolio/portfolio_model.py CURRENCY_CODE_LENGTH = 3 def read_portfolio_dataset( excel_location: list, adjust_duplicates: bool, date_column: list[str], date_format: str, name_columns: list[str], ticker_columns: list[str], price_columns: list[str], volume_columns: list[str], column_mapping: dict[str, str], currency_columns: list[str] | str | None = None, costs_columns: list[str] | None = None, ) -> tuple[pd.DataFrame, str, str, str, str, str, str]: def format_portfolio_dataset( dataset: pd.DataFrame, date_columns: list[str], date_format: str, name_columns: list[str], tickers_columns: list[str], price_columns: list[str], volume_columns: list[str], column_mapping: dict[str, str], currency_columns: list[str] | str | None = None, costs_columns: list[str] | None = None, ) -> tuple[pd.DataFrame, str, str, str, str, str, str, str]: def create_transactions_overview( portfolio_volume: pd.Series, portfolio_price: pd.Series, portfolio_costs: pd.Series, latest_returns: pd.Series, ): def create_portfolio_overview( portfolio_name: pd.Series, portfolio_volume: pd.Series, portfolio_price: pd.Series, portfolio_costs: pd.Series, latest_returns: pd.Series, benchmark_prices: pd.Series, benchmark_latest_prices: pd.Series, ): def create_transactions_performance( portfolio_dataset: pd.DataFrame, ticker_column: str, date_column: str, volume_column: str, price_column: str, costs_column: str, period_prices: pd.DataFrame, period_string: str, original_ticker_combinations: dict, benchmark_per_ticker: dict, benchmark_specific_prices: pd.Series, benchmark_period_prices: pd.DataFrame, ): def create_positions_overview( portfolio_tickers: list[str], period_dates: pd.DatetimeIndex, portfolio_dataset: pd.DataFrame, historical_prices: pd.Series, columns: list[str] | None = None, ): def create_portfolio_performance( positions_dataset: pd.DataFrame, date_column: str, ticker_column: str, period_string: str, ): # Path: financeportfolio/portfolio_controller.py import pandas as pd from financetoolkit import Toolkit from financeportfolio import excel_model, helpers, portfolio_model """Portfolio Module""" # pylint: disable=too-many-instance-attributes,abstract-class-instantiated, # pylint: disable=too-few-public-methods,protected-access,too-many-lines class Portfolio: """ A class for managing and analyzing your portfolio. This class provides functionality for loading, preprocessing, categorizing, and analyzing cash flow data based on a specified configuration file. It offers methods to read and format the dataset, apply cost or income indicators, categorize transactions, and create periodical cash flow overviews. Parameters: configuration_file (str): The file path to the configuration file in YAML format. The configuration file should define various settings and columns used in cash flow analysis. Attributes: _configuration_file (str): The file path to the configuration file. _cash_flow_dataset (pd.DataFrame): The cash flow dataset as a pandas DataFrame. Note: - The configuration file should be in YAML format and contain settings for date columns, description columns, amount columns, and optionally cost/income columns. - Initialize an instance of this class to begin cash flow analysis. """ def __init__( self, configuration_file: str | None = None, portfolio_dataset: pd.DataFrame = pd.DataFrame(), example: bool = False, ): """ Initialize a Cashflow instance with the provided configuration file. This constructor sets up the Cashflow instance by loading the configuration file, defining default attributes, and initializing the cash flow dataset as an empty DataFrame. Parameters: configuration_file (str): The file path to the configuration file in YAML format. Raises: ValueError: If the provided configuration file does not have a '.yaml' extension. Only '.yaml' configuration files are supported. """ if example:
configuration_file = helpers.download_yaml_configuration(example=True)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: S2-group/UPISAS # Path: UPISAS/exceptions.py class DockerImageNotFoundOnDockerHub(UPISASException): pass # Path: UPISAS/exemplar.py class Exemplar(ABC): """ A class which encapsulates a self-adaptive exemplar run in a docker container. """ _container_name = "" def __init__(self, base_endpoint: "string with the URL of the exemplar's HTTP server", \ docker_kwargs, auto_start: "Whether to immediately start the container after creation" =False, ): '''Create an instance of the Exemplar class''' self.base_endpoint = base_endpoint image_name = docker_kwargs["image"] image_owner = image_name.split("/")[0] try: docker_client = docker.from_env() try: docker_client.images.get(image_name) logging.info(f"image '{image_name}' found locally") except docker.errors.ImageNotFound: logging.info(f"image '{image_name}' not found locally") images_from_owner = docker_client.images.search(image_owner) if image_name.split(":")[0] in [i["name"] for i in images_from_owner]: logging.info(f"image '{image_name}' found on DockerHub, pulling it") with Progress() as progress: for line in docker_client.api.pull(image_name, stream=True, decode=True): show_progress(line, progress) else: logging.error(f"image '{image_name}' not found on DockerHub, exiting!") raise DockerImageNotFoundOnDockerHub docker_kwargs["detach"] = True self.exemplar_container = docker_client.containers.create(**docker_kwargs) except DockerException as e: # TODO: Properly catch various errors. Currently, a lot of errors might be caught here. # Please check the logs if that happens. raise e if auto_start: self.start_container() @abstractmethod def start_run(self): pass def start_container(self): '''Starts running the docker container made from the given image when constructing this class''' try: container_status = self.get_container_status() if container_status == "running": logging.warning("container already running...") else: logging.info("starting container...") self.exemplar_container.start() return True except docker.errors.NotFound as e: logging.error(e) def stop_container(self, remove=True): '''Stops the docker container made from the given image when constructing this class''' try: container_status = self.get_container_status() if container_status == "exited": logging.warning("container already stopped...") if remove: self.exemplar_container.remove() self.exemplar_container = None else: logging.info("stopping container...") self.exemplar_container.stop() if remove: self.exemplar_container.remove() self.exemplar_container = None return True except docker.errors.NotFound as e: logging.warning(e) logging.warning("cannot stop container") def pause_container(self): '''Pauses a running docker container made from the given image when constructing this class''' try: container_status = self.get_container_status() if container_status == "running": logging.info("pausing container...") self.exemplar_container.pause() return True elif container_status == "paused": logging.warning("container already paused...") return True else: logging.warning("cannot pause container since it's not running") return False except docker.errors.NotFound as e: logging.error(e) logging.error("cannot pause container") def unpause_container(self): '''Resumes a paused docker container made from the given image when constructing this class''' try: container_status = self.get_container_status() if container_status == "paused": logging.info("unpausing container...") self.exemplar_container.unpause() return True elif container_status == "running": logging.warning("container already running (why unpause it?)...") return True else: logging.warning("cannot unpause container since it's not paused") return False except docker.errors.NotFound as e: logging.warning(e) logging.warning("cannot unpause container") def get_container_status(self): if self.exemplar_container: self.exemplar_container.reload() return self.exemplar_container.status return "removed" # Path: UPISAS/exemplars/demo_exemplar.py class DemoExemplar(Exemplar): """ A class which encapsulates a self-adaptive exemplar run in a docker container. """ def __init__(self, auto_start=False, container_name="upisas-demo"): docker_config = { "name": container_name, "image": "iliasger/upisas-demo-managed-system", "ports" : {3000: 3000}} super().__init__("http://localhost:3000", docker_config, auto_start) def start_run(self, app): self.exemplar_container.exec_run(cmd = f' sh -c "cd /usr/src/app && node {app}" ', detach=True) # Path: UPISAS/tests/upisas/test_exemplar.py import unittest from UPISAS.exceptions import DockerImageNotFoundOnDockerHub from UPISAS.exemplar import Exemplar from UPISAS.exemplars.demo_exemplar import DemoExemplar class TestExemplar(unittest.TestCase): """ Test cases for the Exemplar class using the DemoExemplar. """ def setUp(self): self.exemplar = None def tearDown(self): if self.exemplar and self.exemplar.exemplar_container: self.exemplar.stop_container() def test_init_successfully_wihout_auto_start(self):
self.exemplar = DemoExemplar(auto_start=False)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: developerlin/excelchat-streamlit # Path: middleware/base.py class CustomChartsMiddleware(ChartsMiddleware): def run(self, code: str) -> str: # code = super().run(code) processed = [] for line in code.split("\n"): if line.find("plt.close()") != -1: idx = line.find("plt") blank = "".join([' ' for c in range(idx)]) # Fix the chinese character display issue processed.append(blank + "plt.rcParams['font.sans-serif']=['SimHei']") processed.append(blank + "plt.rcParams['axes.unicode_minus']=False") # processed.append(blank + "plt.savefig('temp_chart.png')") processed.append(line) else: processed.append(line) code = "\n".join(processed) return code # Path: parser/response_parser.py class CustomResponseParser(ResponseParser): def format_plot(self, result: dict) -> Any: super().format_plot(result) filename = str(uuid.uuid4()).replace("-", "") temp_image_path = Path(f"{tempfile.tempdir}/streamlit/{filename}.png") temp_image_path.parent.mkdir(parents=True, exist_ok=True) original_path = Path("temp_chart.png") shutil.copy(original_path, temp_image_path) print("image created: ", str(temp_image_path)) return {"type": "plot", "value": str(temp_image_path)} # Path: util.py def get_open_ai_model(api_key): return OpenAI(api_token=api_key) # Path: util.py def get_ollama_model(model_key, base_url): llm = Ollama(model=model_key, base_url=base_url, verbose=True) return LangchainLLM(langchain_llm=llm) # Path: util.py def get_baidu_as_model(access_token): llm_core = AIStudioErnieBot(access_token=access_token, verbose=True) return LangchainLLM(llm_core) # Path: util.py def get_prompt_template(): instruction_template = """ 使用提供的 dataframes ('dfs') 分析这个数据,过程中不要调用 dataframe set_index 对数据排序. 1. 准备: 如果有必要对数据做预处理和清洗 2. 执行: 对数据进行数据分析操作 (grouping, filtering, aggregating, etc.) 3. 分析: 进行实际分析(如果用户要求plot chart,请在代码中添加如下两行代码设置字体, 并将结果保存为图像文件temp_chart.png,并且不显示图表) plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False """ custom_template = GeneratePythonCodePrompt(custom_instructions=instruction_template) return custom_template # Path: util.py def get_baidu_qianfan_model(client_id, client_secret): llm_core = ErnieBotChat( model_name="ERNIE-Bot", temperature=0.1, ernie_client_id=client_id, ernie_client_secret=client_secret ) return LangchainLLM(llm_core) # Path: Home.py import io import logging import uuid import matplotlib import pandas as pd import streamlit as st from pathlib import Path from typing import Dict from pandasai import SmartDataframe, Agent, Config from pandasai.callbacks import StdoutCallback from pandasai.helpers import Logger from middleware.base import CustomChartsMiddleware from parser.response_parser import CustomResponseParser from util import get_open_ai_model, get_ollama_model, get_baidu_as_model, get_prompt_template, get_baidu_qianfan_model logger = Logger() matplotlib.rc_file("./.matplotlib/.matplotlibrc"); # page settings st.set_page_config(page_title="Excel Chat", layout="wide") st.header("What ExcelChat can do?") st.text("ExcelChat is a lightweight data analysis app powered by LLM, showcasing how LLM can revolutionize the future" "of data analysis.") st.markdown("""List of todos - [x] Add memory - [x] Support non-latin text in chart - [ ] Sub questions support """) class AgentWrapper: id: str agent: Agent def __init__(self) -> None: self.agent = None self.id = str(uuid.uuid4()) def get_llm(self): op = st.session_state.last_option llm = None if op == "Ollama": llm = get_ollama_model(st.session_state.ollama_model, st.session_state.ollama_base_url) elif op == "OpenAI": if st.session_state.api_token != "": llm = get_open_ai_model(st.session_state.api_token) elif op == "Baidu/AIStudio-Ernie-Bot": if st.session_state.access_token != "": llm = get_baidu_as_model(st.session_state.access_token) elif op == "Baidu/Qianfan-Ernie-Bot": if st.session_state.client_id != "" and st.session_state.client_secret != "": llm = get_baidu_qianfan_model(st.session_state.client_id, st.session_state.client_secret) if llm is None: st.toast("LLM initialization failed, check LLM configuration", icon="🫤") return llm def set_file_data(self, df): llm = self.get_llm() if llm is not None: print("llm.type", llm.type) config = Config( llm=llm, callback=StdoutCallback(), # middlewares=[CustomChartsMiddleware()], response_parser=CustomResponseParser, custom_prompts={
"generate_python_code": get_prompt_template()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ZiaWang/jqtrade # Path: jqtrade/account/order.py class OrderSide(Enum): # 多仓 long = "long" # 空仓 short = "short" @classmethod def is_valid_side(cls, side): return side in cls.__members__ @classmethod def get_side(cls, side): if isinstance(side, cls): return side try: return cls.__members__[side] except KeyError: raise ValueError(f"invalid side: {side}") # Path: jqtrade/account/api.py class UserPosition(object): def __init__(self, sys_position): self.__position = sys_position @classmethod def get_empty_pos(cls, code, side): return UserPosition(Position(code, 0, 0, 0, side, position_value=0, last_price=0)) @property def security(self): return self.__position.code @property def total_amount(self): return self.__position.amount @property def closeable_amount(self): return self.__position.available_amount @property def avg_cost(self): return self.__position.avg_cost acc_avg_cost = avg_cost @property def side(self): if self.__position.side: return self.__position.side.value @property def last_price(self): return self.__position.last_price price = last_price @property def position_value(self): return self.__position.position_value value = position_value def __str__(self): return f"UserPosition(security={self.security}, total_amount={self.total_amount}, " \ f"closeable_amount={self.closeable_amount}, avg_cost={self.avg_cost}, side={self.side}, " \ f"last_price={self.last_price}, position_value={self.position_value})" # Path: jqtrade/account/api.py class UserPositionDict(dict): def __init__(self, side, *args, **kwargs): super(UserPositionDict, self).__init__(*args, **kwargs) self._side = side def __getitem__(self, code): try: return dict.__getitem__(self, code) except KeyError: sys_logger.warn(f"{code} 在 positions 中不存在,我们返回空的 Position 对象, " f"total_amount/closeable_amount/avg_cost/acc_avg_cost/position_value/last_price 都是 0") return UserPosition.get_empty_pos(code, side=self._side) # Path: jqtrade/account/portfolio.py from .order import OrderSide from .api import UserPosition, UserPositionDict # -*- coding: utf-8 -*- class Portfolio(object): """ 账户资金/持仓信息聚合类 """ def __init__(self, account): self.__account = account @property def long_positions(self):
positions = UserPositionDict(OrderSide.long)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Glasgow-AI4BioMed/GenKIE # Path: data/data_utils.py def infer_language_pair(path): def collate_tokens( values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): def copy_tensor(src, dst): def load_indexed_dataset( path, dictionary=None, dataset_impl=None, combine=False, default="cached" ): def numpy_seed(seed, *addl_seeds): def collect_filtered(function, iterable, filtered): def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False): def compare_leq(a, b): def check_size(idx): def filter_by_size(indices, dataset, max_positions, raise_exception=False): def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes): def batch_by_size( indices, num_tokens_fn, num_tokens_vec=None, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, fixed_shapes=None, ): def post_process(sentence: str, symbol: str): def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: def arrange(s, e, length, keep_length): def get_mem_usage(): def lengths_to_padding_mask(lens): def lengths_to_mask(lens): def get_buckets(sizes, num_buckets): def get_bucketed_sizes(orig_sizes, buckets): def _find_extra_valid_paths(dataset_path: str) -> set: def raise_if_valid_subsets_unintentionally_ignored(train_cfg) -> None: # Path: data/ofa_dataset.py class OFADataset(FairseqDataset): def __init__(self, split, dataset, bpe, src_dict, tgt_dict): self.split = split self.dataset = dataset self.bpe = bpe self.src_dict = src_dict self.tgt_dict = tgt_dict self.bos = src_dict.bos() self.eos = src_dict.eos() self.pad = src_dict.pad() self.bos_item = torch.LongTensor([self.bos]) self.eos_item = torch.LongTensor([self.eos]) def __len__(self): return len(self.dataset) def encode_text(self, text, length=None, append_bos=False, append_eos=False, use_bpe=True): s = self.tgt_dict.encode_line( line=self.bpe.encode(text) if use_bpe else text, add_if_not_exist=False, append_eos=False ).long() if length is not None: s = s[:length] if append_bos: s = torch.cat([self.bos_item, s]) if append_eos: s = torch.cat([s, self.eos_item]) return s def pre_question(self, question, max_ques_words=None): question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ') question = re.sub( r"\s{2,}", ' ', question, ) question = question.rstrip('\n') question = question.strip(' ') # truncate question question_words = question.split(' ') if max_ques_words is not None and len(question_words) > max_ques_words: question = ' '.join(question_words[:max_ques_words]) return question def pre_caption(self, caption, max_words=None): caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace('<person>', 'person') caption = re.sub( r"\s{2,}", ' ', caption, ) caption = caption.rstrip('\n') caption = caption.strip(' ') # truncate caption caption_words = caption.split(' ') if max_words is not None and len(caption_words) > max_words: caption = ' '.join(caption_words[:max_words]) return caption # Path: data/mm_data/vqa_gen_dataset.py from io import BytesIO from torchvision import transforms from PIL import Image, ImageFile from data import data_utils from data.ofa_dataset import OFADataset import logging import warnings import numpy as np import torch import base64 # Copyright 2022 The OFA-Sys Team. # All rights reserved. # This source code is licensed under the Apache 2.0 license # found in the LICENSE file in the root directory. ImageFile.LOAD_TRUNCATED_IMAGES = True ImageFile.MAX_IMAGE_PIXELS = None Image.MAX_IMAGE_PIXELS = None logger = logging.getLogger(__name__) warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) def collate(samples, pad_idx, eos_idx): if len(samples) == 0: return {} def merge(key):
return data_utils.collate_tokens(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ArnaudParant/sel # Path: scripts/elastic.py def options(): def create_index(filepath, schema_filepath, index, overwrite=False): def _delete_index(elastic, index): def loads_ndjson(fd): def insert(elastic, index, data): def _create_index(elastic, index, schema_filepath): def load_schema(filepath): def elastic_connect(): # Path: sel/utils.py class InternalServerError(Exception): class InvalidClientInput(Exception): class NotFound(Exception): def __init__(self, message): def __str__(self): def __init__(self, message): def __str__(self): def __init__(self, message): def __str__(self): def set_if_exists(source, dest, keys): def build_group(operator, items): def get_lastest_sub_data(data): def _detailor(exc): def elastic_exception_detailor(handler): def handler_wrapper(*args, **kwargs): # Path: tests/test_sel.py import pytest import json import test_utils from scripts import elastic from sel import utils TEST_INDEX_FILE = "/tests/data/sample_2017.json" TEST_SCHEMA_FILE = "/scripts/schema.json" TEST_INDEX = "test_index" class TestSEL: @pytest.fixture(scope="function", autouse=True) def init(self): elastic.create_index(TEST_INDEX_FILE, TEST_SCHEMA_FILE, TEST_INDEX, overwrite=True) def __cleaner(self, obj): if "_score" in obj: del obj["_score"] return obj @pytest.mark.parametrize(["query"], [ [{}], [{"meta": {"size": 100}}], [{"meta": {"size": 5}}], ]) def test_scroll(self, sel, query): with open(TEST_INDEX_FILE, "r") as f: expected_lines = {d["id"]: d for d in load_ndjson(f)} documents = [] scroll_id = None while True: res = sel.scroll(TEST_INDEX, query, "1m", scroll_id=scroll_id) documents += res["documents"] scroll_id = res["scroll_id"] if not len(res["documents"]): break sel.clear_scroll(res["scroll_id"]) found = {} for line in documents: j = self.__cleaner(line) found[j["id"]] = j for j2 in expected_lines.values(): j = found.get(j2["id"]) j2["_index"] = TEST_INDEX assert test_utils.dict_equals(j, j2), f"Got: {j}\nExpected: {j2}" size = len(found) file_size = len(expected_lines) assert size == file_size, f"Download line {size} != {file_size}" @pytest.mark.parametrize(["query"], [ [{"aggregations": {"labels": {"field": "label"}}}], [{"aggregations": {"ids": {"field": ".id"}}}], ]) def test_download_aggreg(self, sel, query): def sort_aggreg(aggreg): aggreg = sorted(aggreg, key=lambda o: o["key"]) return sorted(aggreg, key=lambda o: o["doc_count"], reverse=True) aggreg_key = list(query["aggregations"].keys())[0] query["aggregations"][aggreg_key]["size"] = 0 base_aggreg = {"field": "date", "interval": "week"} res = sel.search(TEST_INDEX, query)
expected = utils.get_lastest_sub_data(res["results"]["aggregations"][aggreg_key])["buckets"]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Qualcomm-AI-research/outlier-free-transformers # Path: quantization/quantizers/base_quantizers.py class QuantizerBase(nn.Module): def __init__(self, n_bits, *args, per_channel=False, act_quant=False, **kwargs): super().__init__(*args, **kwargs) self.n_bits = n_bits self.act_quant = act_quant self.per_channel = per_channel self.state = None self.x_min_fp32 = self.x_max_fp32 = None @property def is_initialized(self): raise NotImplementedError() @property def x_max(self): raise NotImplementedError() @property def symmetric(self): raise NotImplementedError() @property def x_min(self): raise NotImplementedError() def forward(self, x_float): raise NotImplementedError() def _adjust_params_per_channel(self, x): raise NotImplementedError() def set_quant_range(self, x_min, x_max): raise NotImplementedError() def extra_repr(self): return "n_bits={}, per_channel={}, is_initalized={}".format( self.n_bits, self.per_channel, self.is_initialized ) def reset(self): self._delta = None def fix_ranges(self): raise NotImplementedError() def make_range_trainable(self): raise NotImplementedError() # Path: quantization/quantizers/quantizer_utils.py class RoundStraightThrough(Function): class ScaleGradient(Function): class QuantizerNotInitializedError(Exception): def forward(ctx, x): def backward(ctx, output_grad): def forward(ctx, x, scale): def backward(ctx, output_grad): def __init__(self): # Path: quantization/quantizers/uniform_quantizers.py import torch from quantization.quantizers.base_quantizers import QuantizerBase from quantization.quantizers.quantizer_utils import ( QuantizerNotInitializedError, round_ste_func, scale_grad_func, ) # Copyright (c) 2023 Qualcomm Technologies, Inc. # All Rights Reserved. class AsymmetricUniformQuantizer(QuantizerBase): """ PyTorch Module that implements Asymmetric Uniform Quantization using STE. Quantizes its argument in the forward pass, passes the gradient 'straight through' on the backward pass, ignoring the quantization that occurred. Parameters ---------- n_bits: int Number of bits for quantization. scale_domain: str ('log', 'linear) with default='linear' Domain of scale factor per_channel: bool If True: allows for per-channel quantization """ def __init__(self, n_bits, scale_domain="linear", grad_scaling=False, eps=1e-8, **kwargs): super().__init__(n_bits=n_bits, **kwargs) assert scale_domain in ("linear", "log") self.register_buffer("_delta", None) self.register_buffer("_zero_float", None) self.scale_domain = scale_domain self.grad_scaling = grad_scaling self.eps = eps # A few useful properties @property def delta(self): if self._delta is not None: return self._delta else: raise QuantizerNotInitializedError() @property def zero_float(self): if self._zero_float is not None: return self._zero_float else: raise QuantizerNotInitializedError() @property def is_initialized(self): return self._delta is not None @property def symmetric(self): return False @property def int_min(self): # integer grid minimum return 0.0 @property def int_max(self): # integer grid maximum return 2.0**self.n_bits - 1 @property def scale(self): if self.scale_domain == "linear": return torch.clamp(self.delta, min=self.eps) elif self.scale_domain == "log": return torch.exp(self.delta) @property def zero_point(self):
zero_point = round_ste_func(self.zero_float)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: QgZhan/ESVAE # Path: utils.py class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # Path: utils.py class aboutCudaDevices(): def __init__(self): pass def num_devices(self): """Return number of devices connected.""" return cuda.Device.count() def devices(self): """Get info on all devices connected.""" num = cuda.Device.count() print("%d device(s) found:" % num) for i in range(num): print(cuda.Device(i).name(), "(Id: %d)" % i) def mem_info(self): """Get available and total memory of all devices.""" available, total = cuda.mem_get_info() print("Available: %.2f GB\nTotal: %.2f GB" % (available / 1e9, total / 1e9)) def attributes(self, device_id=0): """Get attributes of device with device Id = device_id""" return cuda.Device(device_id).get_attributes() def info(self): """Class representation as number of devices connected and about them.""" num = cuda.Device.count() string = "" string += ("%d device(s) found:\n" % num) for i in range(num): string += (" %d) %s (Id: %d)\n" % ((i + 1), cuda.Device(i).name(), i)) string += (" Memory: %.2f GB\n" % (cuda.Device(i).total_memory() / 1e9)) return string # Path: datasets/load_dataset_ann.py def load_mnist(data_path, batch_size): def load_fashionmnist(data_path,batch_size): def load_celeba(data_path,batch_size): def load_cifar10(data_path,batch_size): # Path: main_ann_ae.py import os import os.path import numpy as np import logging import argparse import pycuda.driver as cuda import torch import torchvision import models.ann_ae as ann_ae from torch.nn.utils import clip_grad_norm_ from torch.nn.utils import clip_grad_value_ from torch.utils.tensorboard import SummaryWriter from utils import AverageMeter from utils import aboutCudaDevices from datasets import load_dataset_ann max_accuracy = 0 min_loss = 1000 def train(network, trainloader, opti, epoch):
loss_meter = AverageMeter()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: iesl/softmax_CPR_recommend # Path: recbole/model/abstract_recommender.py class SequentialRecommender(AbstractRecommender): """ This is a abstract sequential recommender. All the sequential model should implement This class. """ type = ModelType.SEQUENTIAL def __init__(self, config, dataset): super(SequentialRecommender, self).__init__() # load dataset info self.USER_ID = config['USER_ID_FIELD'] self.ITEM_ID = config['ITEM_ID_FIELD'] self.ITEM_SEQ = self.ITEM_ID + config['LIST_SUFFIX'] self.ITEM_SEQ_LEN = config['ITEM_LIST_LENGTH_FIELD'] self.POS_ITEM_ID = self.ITEM_ID self.NEG_ITEM_ID = config['NEG_PREFIX'] + self.ITEM_ID self.max_seq_length = config['MAX_ITEM_LIST_LENGTH'] self.n_items = dataset.num(self.ITEM_ID) def gather_indexes(self, output, gather_index): """Gathers the vectors at the specific positions over a minibatch""" gather_index = gather_index.view(-1, 1, 1).expand(-1, -1, output.shape[-1]) output_tensor = output.gather(dim=1, index=gather_index) return output_tensor.squeeze(1) # Path: recbole/model/layers.py class TransformerEncoder(nn.Module): r""" One TransformerEncoder consists of several TransformerLayers. - n_layers(num): num of transformer layers in transformer encoder. Default: 2 - n_heads(num): num of attention heads for multi-head attention layer. Default: 2 - hidden_size(num): the input and output hidden size. Default: 64 - inner_size(num): the dimensionality in feed-forward layer. Default: 256 - hidden_dropout_prob(float): probability of an element to be zeroed. Default: 0.5 - attn_dropout_prob(float): probability of an attention score to be zeroed. Default: 0.5 - hidden_act(str): activation function in feed-forward layer. Default: 'gelu' candidates: 'gelu', 'relu', 'swish', 'tanh', 'sigmoid' - layer_norm_eps(float): a value added to the denominator for numerical stability. Default: 1e-12 """ def __init__( self, n_layers=2, n_heads=2, hidden_size=64, inner_size=256, hidden_dropout_prob=0.5, attn_dropout_prob=0.5, hidden_act='gelu', layer_norm_eps=1e-12 ): super(TransformerEncoder, self).__init__() layer = TransformerLayer( n_heads, hidden_size, inner_size, hidden_dropout_prob, attn_dropout_prob, hidden_act, layer_norm_eps ) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): """ Args: hidden_states (torch.Tensor): the input of the TransformerEncoder attention_mask (torch.Tensor): the attention mask for the input hidden_states output_all_encoded_layers (Bool): whether output all transformer layers' output Returns: all_encoder_layers (list): if output_all_encoded_layers is True, return a list consists of all transformer layers' output, otherwise return a list only consists of the output of last transformer layer. """ all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers # Path: recbole/model/loss.py class BPRLoss(nn.Module): """ BPRLoss, based on Bayesian Personalized Ranking Args: - gamma(float): Small value to avoid division by zero Shape: - Pos_score: (N) - Neg_score: (N), same shape as the Pos_score - Output: scalar. Examples:: >>> loss = BPRLoss() >>> pos_score = torch.randn(3, requires_grad=True) >>> neg_score = torch.randn(3, requires_grad=True) >>> output = loss(pos_score, neg_score) >>> output.backward() """ def __init__(self, gamma=1e-10): super(BPRLoss, self).__init__() self.gamma = gamma def forward(self, pos_score, neg_score): loss = -torch.log(self.gamma + torch.sigmoid(pos_score - neg_score)).mean() return loss # Path: recbole/model/sequential_recommender/sasrec.py import sys import torch import torch.nn.functional as F import math from torch import nn from recbole.model.abstract_recommender import SequentialRecommender from recbole.model.layers import TransformerEncoder from recbole.model.loss import BPRLoss # -*- coding: utf-8 -*- # @Time : 2020/9/18 11:33 # @Author : Hui Wang # @Email : hui.wang@ruc.edu.cn """ SASRec ################################################ Reference: Wang-Cheng Kang et al. "Self-Attentive Sequential Recommendation." in ICDM 2018. Reference: https://github.com/kang205/SASRec """ def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class SASRec(SequentialRecommender):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: timapage/pyqt6-yolov8 # Path: src/models/detection/detector_base.py class DetectorBase(YoloPredictorBase): def draw_results(image, model_results): FONT_SCALE = 1e-3 THICKNESS_SCALE = 6e-4 # Path: src/models/base/yolov8_base.py class ModelError(Exception): pass # Path: src/utils/boxes.py def xywh2xyxy(x): # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2) y = np.copy(x) y[..., 0] = x[..., 0] - x[..., 2] / 2 y[..., 1] = x[..., 1] - x[..., 3] / 2 y[..., 2] = x[..., 0] + x[..., 2] / 2 y[..., 3] = x[..., 1] + x[..., 3] / 2 return y # Path: src/utils/boxes.py def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-agnostic version.""" cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: return None valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] valid_cls_inds = cls_inds[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) #dets = [] for i in keep: dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 ) return dets # Path: src/utils/general.py def get_classes(class_txt_file): with open(class_txt_file, 'r') as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names # Path: src/models/detection/yolov8_detector_onnx.py import numpy as np import cv2 as cv from onnxruntime import InferenceSession from src.models.detection.detector_base import DetectorBase, Model from src.models.base.yolov8_base import ModelError from src.utils.boxes import xywh2xyxy, multiclass_nms_class_agnostic from src.utils.general import get_classes class YoloDetector(DetectorBase): def __init__(self): self._model = None def init(self, model_path, class_txt_path, confidence_threshold=0.3, iou_threshold=0.45):
_class_names = get_classes(class_txt_path)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OthersideAI/self-operating-computer # Path: operate/utils/style.py ANSI_BRIGHT_MAGENTA = "\033[95m" if supports_ansi() else "" # Bright magenta text # Path: operate/dialog.py def main(model, terminal_prompt, voice_mode=False): """ Main function for the Self-Operating Computer. Parameters: - model: The model used for generating responses. - terminal_prompt: A string representing the prompt provided in the terminal. - voice_mode: A boolean indicating whether to enable voice mode. Returns: None """ mic = None # Initialize `WhisperMic`, if `voice_mode` is True validation(model, voice_mode) if voice_mode: try: from whisper_mic import WhisperMic # Initialize WhisperMic if import is successful mic = WhisperMic() except ImportError: print( "Voice mode requires the 'whisper_mic' module. Please install it using 'pip install -r requirements-audio.txt'" ) sys.exit(1) # Skip message dialog if prompt was given directly if not terminal_prompt: message_dialog( title="Self-Operating Computer", text="Ask a computer to do anything.", style=style, ).run() else: print("Running direct prompt...") print("SYSTEM", platform.system()) # Clear the console if platform.system() == "Windows": os.system("cls") else: print("\033c", end="") if terminal_prompt: # Skip objective prompt if it was given as an argument objective = terminal_prompt elif voice_mode: print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_RESET} Listening for your command... (speak now)" ) try: objective = mic.listen() except Exception as e: print(f"{ANSI_RED}Error in capturing voice input: {e}{ANSI_RESET}") return # Exit if voice input fails else: print(f"{ANSI_GREEN}[Self-Operating Computer]\n{ANSI_RESET}{USER_QUESTION}") print(f"{ANSI_YELLOW}[User]{ANSI_RESET}") objective = prompt(style=style) assistant_message = {"role": "assistant", "content": USER_QUESTION} user_message = { "role": "user", "content": f"Objective: {objective}", } messages = [assistant_message, user_message] loop_count = 0 while True: if config.debug: print("[loop] messages before next action:\n\n\n", messages[1:]) try: response = asyncio.run(get_next_action(model, messages, objective)) action = parse_response(response) action_type = action.get("type") action_detail = action.get("data") except ModelNotRecognizedException as e: print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_RED}[Error] -> {e} {ANSI_RESET}" ) break except Exception as e: print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_RED}[Error] -> {e} {ANSI_RESET}" ) break if action_type == "DONE": print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_BLUE} Objective complete {ANSI_RESET}" ) summary = summarize(model, messages, objective) print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_BLUE} Summary\n{ANSI_RESET}{summary}" ) break if action_type != "UNKNOWN": print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_BRIGHT_MAGENTA} [Act] {action_type} {ANSI_RESET}{action_detail}" ) function_response = "" if action_type == "SEARCH": function_response = search(action_detail) elif action_type == "TYPE": function_response = keyboard_type(action_detail) elif action_type == "CLICK": function_response = click(action_detail) else: print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_RED}[Error] something went wrong :({ANSI_RESET}" ) print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_RED}[Error] AI response\n{ANSI_RESET}{response}" ) break print( f"{ANSI_GREEN}[Self-Operating Computer]{ANSI_BRIGHT_MAGENTA} [Act] {action_type} COMPLETE {ANSI_RESET}{function_response}" ) message = { "role": "assistant", "content": function_response, } messages.append(message) loop_count += 1 if loop_count > 15: break # Path: operate/main.py import argparse from operate.utils.style import ANSI_BRIGHT_MAGENTA from operate.dialog import main """ Self-Operating Computer """ def main_entry(): parser = argparse.ArgumentParser( description="Run the self-operating-computer with a specified model." ) parser.add_argument( "-m", "--model", help="Specify the model to use", required=False, default="gpt-4", ) # Add a voice flag parser.add_argument( "--voice", help="Use voice input mode", action="store_true", ) # Allow for direct input of prompt parser.add_argument( "--prompt", help="Directly input the objective prompt", type=str, required=False, ) try: args = parser.parse_args()
main(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: netease-youdao/EmotiVoice # Path: frontend_cn.py def split_py(py): def has_chinese_punctuation(text): def has_english_punctuation(text): def number_to_chinese(number): def tn_chinese(text): def g2p_cn(text): # Path: frontend_en.py ROOT_DIR = os.path.dirname(os.path.abspath("__file__")) def read_lexicon(lex_path): def get_eng_phoneme(text, g2p, lexicon, pad_sos_eos=True): # Path: frontend.py import re import sys from frontend_cn import g2p_cn, re_digits, tn_chinese from frontend_en import ROOT_DIR, read_lexicon, G2p, get_eng_phoneme from os.path import isfile # Copyright 2023, YOUDAO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Thanks to GuGCoCo and PatroxGaurab for identifying the issue: # the results differ between frontend.py and frontend_en.py. Here's a quick fix. #re_english_word = re.compile('([a-z\-\.\'\s,;\:\!\?]+|\d+[\d\.]*)', re.I) re_english_word = re.compile('([^\u4e00-\u9fa5]+|[ \u3002\uff0c\uff1f\uff01\uff1b\uff1a\u201c\u201d\u2018\u2019\u300a\u300b\u3008\u3009\u3010\u3011\u300e\u300f\u2014\u2026\u3001\uff08\uff09\u4e00-\u9fa5]+)', re.I) def g2p_cn_en(text, g2p, lexicon): # Our policy dictates that if the text contains Chinese, digits are to be converted into Chinese. text=tn_chinese(text) parts = re_english_word.split(text) parts=list(filter(None, parts)) tts_text = ["<sos/eos>"] chartype = '' text_contains_chinese = contains_chinese(text) for part in parts: if part == ' ' or part == '': continue if re_digits.match(part) and (text_contains_chinese or chartype == '') or contains_chinese(part): if chartype == 'en': tts_text.append('eng_cn_sp') phoneme = g2p_cn(part).split()[1:-1] chartype = 'cn' elif re_english_word.match(part): if chartype == 'cn': if "sp" in tts_text[-1]: "" else: tts_text.append('cn_eng_sp') phoneme = get_eng_phoneme(part, g2p, lexicon, False).split() if not phoneme : # tts_text.pop() continue else: chartype = 'en' else: continue tts_text.extend( phoneme ) tts_text=" ".join(tts_text).split() if "sp" in tts_text[-1]: tts_text.pop() tts_text.append("<sos/eos>") return " ".join(tts_text) def contains_chinese(text): pattern = re.compile(r'[\u4e00-\u9fa5]') match = re.search(pattern, text) return match is not None if __name__ == "__main__": lexicon = read_lexicon(f"{ROOT_DIR}/lexicon/librispeech-lexicon.txt")
g2p = G2p()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: daveshap/OpenAI_Agent_Swarm # Path: shared/utils.py def chat(client, thread, assistant, functions): while True: user_message = input("You: ") # add user message to thread thread_message = client.beta.threads.messages.create( thread.id, role="user", content=user_message, ) # get assistant response in thread run = client.beta.threads.runs.create( thread_id=thread.id, assistant_id=assistant.id, ) # wait for run to complete wait_time = 0 while True: if wait_time % 5 == 0: print(f"waiting for run to complete...", flush=True) wait_time += 1 time.sleep(1) run = client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=run.id, ) if run.status == "completed": break elif run.status == "in_progress": continue elif run.status == "queued": continue elif run.status == "requires_action": if run.required_action.type == 'submit_tool_outputs': tool_calls = run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tc in tool_calls: function_to_call = functions.get(tc.function.name, None) if not function_to_call: raise ValueError(f"Function {tc.function.name} not found in execution environment") function_args = json.loads(tc.function.arguments) function_response = function_to_call(**function_args) tool_outputs.append({ "tool_call_id": tc.id, "output": json.dumps(function_response), }) print(f"Submitting tool outputs...", flush=True) run = client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=tool_outputs ) else: input(f'Run status: {run.status}. press enter to continue, or ctrl+c to quit') # get most recent message from thread thread_messages = client.beta.threads.messages.list(thread.id, limit=10, order='desc') # get assistant response from message assistant_response = thread_messages.data[0].content[0].text.value print(f"\n\nBot: {assistant_response}\n\n", flush=True) # continue? try: input("Press enter to continue chatting, or ctrl+c to stop chat\n") except KeyboardInterrupt: print(f"Stopping chat\n" + 90*"-" + "\n\n", flush=True) break # Path: shared/openai_config.py def get_openai_client(): settings = Settings() return OpenAI(api_key=settings.OPENAI_API_KEY) # Path: agents/tool_maker/tool_user.py import os import json from shared.utils import chat as chat_loop from shared.openai_config import get_openai_client """ Create an assistant using the tools from tool_creator using the assistant creation API """ client = get_openai_client() def create_tool_user(assistant_details): # create the assistant tool_user = client.beta.assistants.create(**assistant_details["build_params"]) print(f"Created assistant {tool_user.id} to use tools\n\n" + 90*"-" + "\n\n", flush=True) # save the assistant info to a json file info_to_export = { "assistant_id": tool_user.id, "assistant_details": assistant_details, } os.makedirs('assistants', exist_ok=True) with open('assistants/tool_user.json', 'w') as f: json.dump(info_to_export, f, indent=4) return tool_user def talk_to_tool_user(assistant_details): """ talk to the assistant to use the tools """ # check if json file exists try: os.makedirs('assistants', exist_ok=True) with open('assistants/tool_user.json') as f: create_new = input(f'Assistant details found in tool_user.json. Create a new assistant? [y/N]') if create_new == 'y': raise Exception("User wants a new assistant") assistant_from_json = json.load(f) tool_user = client.beta.assistants.retrieve(assistant_from_json['assistant_id']) print(f"Loaded assistant details from tool_user.json\n\n" + 90*"-" + "\n\n", flush=True) print(f'Assistant {tool_user.id}:\n') assistant_details = assistant_from_json["assistant_details"] except: # create the assistant first tool_user = create_tool_user(assistant_details) # exec the functions from the py files os.makedirs('tools', exist_ok=True) functions = assistant_details["functions"] for func in functions: print(f"Loading function {func} into execution environment", flush=True) with open('tools/' + func + '.py') as f: exec(f.read(), globals()) functions.update({func: eval(func)}) # Create thread thread = client.beta.threads.create() # chat with the assistant
chat_loop(client, thread, tool_user, functions)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: S-LoRA/S-LoRA # Path: slora/utils/infer_utils.py def mark_cost_time(func_name): def inner_func(func): def time_func(*args, **kwargs): if dist.get_rank() in [0, 1] and is_show_cost_time: torch.cuda.synchronize() start_time = time.time() ans = func(*args, **kwargs) torch.cuda.synchronize() print(func_name, "cost time:", (time.time() - start_time) * 1000) return ans else: torch.cuda.synchronize() ans = func(*args, **kwargs) torch.cuda.synchronize() return ans return time_func return inner_func # Path: slora/common/basemodel/infer_struct.py class InferStateInfo: """ 推理时用的信息结构体 """ def __init__(self): self.batch_size = None self.total_token_num = None self.b_loc = None self.b_start_loc = None self.b_seq_len = None self.max_len_in_batch = None self.is_prefill = None self.mem_manager = None self.prefill_mem_index = None self.prefill_key_buffer = None self.prefill_value_buffer = None self.decode_is_contiguous = None self.decode_mem_start = None self.decode_mem_end = None self.decode_mem_index = None self.decode_key_buffer = None self.decode_value_buffer = None def init_some_extra_state(self, model, batch_size, total_token_num, max_len_in_batch, input_ids : torch.Tensor, b_loc : torch.Tensor, b_start_loc : torch.Tensor, b_seq_len : torch.Tensor, is_prefill): pass # Path: slora/common/basemodel/layer_weights/base_layer_weight.py class BaseLayerWeight: def __init__(self): pass def load_hf_weights(self, weights): """ load weights """ pass def init_static_params(self): """ design for some static init params, many model dont need do this. """ pass def verify_load(self): """ verify all load is ok """ raise Exception("must verify weights load ok") pass def _cuda(self, cpu_tensor): return cpu_tensor.contiguous().to(self.data_type_).cuda() # Path: slora/common/basemodel/layer_infer/base_layer_infer.py from slora.utils.infer_utils import mark_cost_time from slora.common.basemodel.infer_struct import InferStateInfo from slora.common.basemodel.layer_weights.base_layer_weight import BaseLayerWeight class BaseLayerInfer: def __init__(self) -> None: pass
@mark_cost_time("pre context forward") # dont to remove this, will make performence down, did not know why
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: disler/multi-agent-postgres-data-analytics # Path: postgres_da_ai_agent/agents/instruments.py class AgentInstruments: """ Base class for multli-agent instruments that are tools, state, and functions that an agent can use across the lifecycle of conversations """ def __init__(self) -> None: self.session_id = None self.messages = [] def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): pass def sync_messages(self, messages: list): """ Syncs messages with the orchestrator """ raise NotImplementedError def make_agent_chat_file(self, team_name: str): return os.path.join(self.root_dir, f"agent_chats_{team_name}.json") def make_agent_cost_file(self, team_name: str): return os.path.join(self.root_dir, f"agent_cost_{team_name}.json") @property def root_dir(self): return os.path.join(BASE_DIR, self.session_id) # Path: postgres_da_ai_agent/modules/llm.py def safe_get(data, dot_chained_keys): def response_parser(response: Dict[str, Any]): def prompt( prompt: str, model: str = "gpt-4-1106-preview", instructions: str = "You are a helpful assistant.", ) -> str: def prompt_func( prompt: str, turbo_tools: List[TurboTool], model: str = "gpt-4-1106-preview", instructions: str = "You are a helpful assistant.", ) -> str: def prompt_json_response( prompt: str, model: str = "gpt-4-1106-preview", instructions: str = "You are a helpful assistant.", ) -> str: def add_cap_ref( prompt: str, prompt_suffix: str, cap_ref: str, cap_ref_content: str ) -> str: def count_tokens(text: str): def estimate_price_and_tokens(text, model="gpt-4"): # Path: postgres_da_ai_agent/types.py class Chat: from_name: str to_name: str message: str created: int = field(default_factory=time.time) # Path: postgres_da_ai_agent/types.py class ConversationResult: success: bool messages: List[Chat] cost: float tokens: int last_message_str: str error_message: str # Path: postgres_da_ai_agent/modules/orchestrator.py import dataclasses import json import autogen from typing import List, Optional, Tuple from postgres_da_ai_agent.agents.instruments import AgentInstruments from postgres_da_ai_agent.modules import llm from postgres_da_ai_agent.types import Chat, ConversationResult class Orchestrator: """ Orchestrators manage conversations between multi-agent teams. """ def __init__( self, name: str, agents: List[autogen.ConversableAgent],
instruments: AgentInstruments,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: fleet-ai/context # Path: constants/cli.py OPENAI_MODELS = [ "gpt-4-1106-preview", "gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", ] # Path: constants/ai.py SYSTEM_PROMPT = """ You are an expert in Python libraries. You carefully provide accurate, factual, thoughtful, nuanced answers, and are brilliant at reasoning. If you think there might not be a correct answer, you say so. Each token you produce is another opportunity to use computation, therefore you always spend a few sentences explaining background context, assumptions, and step-by-step thinking BEFORE you try to answer a question. Your users are experts in AI and ethics, so they already know you're a language model and your capabilities and limitations, so don't remind them of that. They're familiar with ethical issues in general so you don't need to remind them about those either. Your users are also in a CLI environment. You are capable of writing and running code. DO NOT write hypothetical code. ALWAYS write real code that will execute and run end-to-end. """ # Path: constants/ai.py PROMPT = """ Instructions: - Be objective, direct. Include literal information from the context, don't add any conclusion or subjective information. - When writing code, ALWAYS have some sort of output (like a print statement). If you're writing a function, call it at the end. Do not generate the output, because the user can run it themselves. - ALWAYS cite your sources. Context will be given to you after the text ### Context source_url ### with source_url being the url to the file. For example, ### Context https://example.com/docs/api.html#files ### will have a source_url of https://example.com/docs/api.html#files. - When you cite your source, please cite it as [num] with `num` starting at 1 and incrementing with each source cited (1, 2, 3, ...). At the bottom, have a newline-separated `num: source_url` at the end of the response. ALWAYS add a new line between sources or else the user won't be able to read it. DO NOT convert links into markdown, EVER! If you do that, the user will not be able to click on the links. For example: ### Context https://example.com/docs/api.html#pdfs ### I'm a big fan of PDFs. ### Context https://example.com/docs/api.html#csvs ### I'm a big fan of CSVs. ### Prompt ### What is this person a big fan of? ### Response ### This person is a big fan of PDFs[1] and CSVs[2]. 1: https://example.com/docs/api.html#pdfs 2: https://example.com/docs/api.html#csvs """ # Path: constants/ai.py API_URL = "https://foundation.fleet.so" # Path: utils/ai.py import os import json import tiktoken import openai import requests from openai import OpenAI from constants.cli import OPENAI_MODELS from constants.ai import SYSTEM_PROMPT, PROMPT, API_URL # pylint: disable=W0707 # pylint: disable=W0719 def retrieve(query, k=10, filters=None): """Retrieves and returns dict. Args: query (str): User query to pass in k (int, optional): number of results passed back. Defaults to 10. filters (dict, optional): Filters to apply to the query. You can filter based off any piece of metadata by passing in a dict of the format {metadata_name: filter_value} ie {"library_id": "1234"}. See the README for more details: https://github.com/fleet-ai/context/tree/main#using-fleet-contexts-rich-metadata Returns: list: List of queried results """
url = f"{API_URL}/query"
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OpenBMB/ProAgent # Path: ProAgent/loggers/logs.py class JsonFileHandler(logging.FileHandler): class JsonFormatter(logging.Formatter): class Logger(metaclass=Singleton): class TypingConsoleHandler(logging.StreamHandler): class ConsoleHandler(logging.StreamHandler): class AutoGptFormatter(logging.Formatter): def __init__(self, filename, mode="a", encoding=None, delay=False): def emit(self, record): def format(self, record): def __init__(self): def typewriter_log( self, title="", title_color="", content="", speak_text=False, level=logging.INFO ): def debug( self, message, title="", title_color="", ): def info( self, message, title="", title_color="", ): def warn( self, message, title="", title_color="", ): def error(self, title, message=""): def _log( self, title: str = "", title_color: str = "", message: str = "", level=logging.INFO, ): def set_level(self, level): def double_check(self, additionalText=None): def log_json(self, data: Any, file_name: str) -> None: def get_log_directory(self): def emit(self, record): def emit(self, record) -> None: def format(self, record: LogRecord) -> str: def remove_color_codes(s: str) -> str: def print_action_base(action: Action): def print_action_tool(action: Action): # Path: ProAgent/agent/utils.py def _chat_completion_request(**args): """ Generates a chat completion request with the given arguments and attempts to retrieve the completed output. Args: **args: Additional keyword arguments for the chat completion request. Returns: The completed output if the request is successful, otherwise None. """ for i in range(3): if i > 0: logger.info(f"LLM retry for the {i+1}'th time") try: output, output_code = _chat_completion_request_without_retry(**args) if output_code == LLMStatusCode.SUCCESS: return output except func_timeout.exceptions.FunctionTimedOut: #TLE logger.info(f"LLM response time out") continue # Path: ProAgent/agent/gpt4_function.py import logging import json from typing import List, Dict from colorama import Fore, Style from ProAgent.loggers.logs import logger from ProAgent.agent.utils import _chat_completion_request class OpenAIFunction(): def __init__(self): pass def parse(self, **args): """ Parses the given arguments by making a chat completion request. Args: **args: The keyword arguments to be passed to the chat completion request. Returns: Tuple: A tuple containing the parsed content, function name, function arguments, and the original message. Raises: None. """ retry_time = 1 max_time = 3 for i in range(max_time): output = _chat_completion_request(**args) if isinstance(output, Dict): usage = output["usage"] message = output["choices"][0]["message"] print(usage) if "function_call" in message.keys(): break else: args['messages'].append({"role": "assistant", "content": message['content']}) args['messages'].append({"role": 'user', "content": "No Function call here! You should always use a function call as your response."}) retry_time += 1
logger._log(f"{Fore.RED} Retry for the {retry_time}'th time{Style.RESET_ALL}")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: LLaVA-VL/LLaVA-Plus-Codebase # Path: serve/constants.py WORKER_HEART_BEAT_INTERVAL = int(os.getenv("FASTCHAT_WORKER_HEART_BEAT_INTERVAL", 45)) # Path: serve/constants.py class ErrorCode(IntEnum): """ https://platform.openai.com/docs/guides/error-codes/api-errors """ VALIDATION_TYPE_ERROR = 40001 INVALID_AUTH_KEY = 40101 INCORRECT_AUTH_KEY = 40102 NO_PERMISSION = 40103 INVALID_MODEL = 40301 PARAM_OUT_OF_RANGE = 40302 CONTEXT_OVERFLOW = 40303 RATE_LIMIT = 42901 QUOTA_EXCEEDED = 42902 ENGINE_OVERLOADED = 42903 INTERNAL_ERROR = 50001 CUDA_OUT_OF_MEMORY = 50002 GRADIO_REQUEST_ERROR = 50003 GRADIO_STREAM_UNKNOWN_ERROR = 50004 CONTROLLER_NO_WORKER = 50005 CONTROLLER_WORKER_TIMEOUT = 50006 # Path: serve/constants.py SERVER_ERROR_MSG = ( "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" ) # Path: serve/utils.py def build_logger(logger_name, logger_filename): global handler formatter = logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) # Set the format of root handlers if not logging.getLogger().handlers: if sys.version_info[1] >= 9: # This is for windows logging.basicConfig(level=logging.INFO, encoding="utf-8") else: if platform.system() == "Windows": warnings.warn( "If you are running on Windows, " "we recommend you use Python >= 3.9 for UTF-8 encoding." ) logging.basicConfig(level=logging.INFO) logging.getLogger().handlers[0].setFormatter(formatter) # Redirect stdout and stderr to loggers stdout_logger = logging.getLogger("stdout") stdout_logger.setLevel(logging.INFO) sl = StreamToLogger(stdout_logger, logging.INFO) sys.stdout = sl stderr_logger = logging.getLogger("stderr") stderr_logger.setLevel(logging.ERROR) sl = StreamToLogger(stderr_logger, logging.ERROR) sys.stderr = sl # Get logger logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) os.makedirs(LOGDIR, exist_ok=True) filename = os.path.join(LOGDIR, logger_filename) handler = logging.handlers.TimedRotatingFileHandler( filename, when="D", utc=True, encoding="utf-8" ) handler.setFormatter(formatter) for logger in [stdout_logger, stderr_logger, logger]: if logger in visited_loggers: continue visited_loggers.add(logger) logger.addHandler(handler) return logger # Path: serve/utils.py def pretty_print_semaphore(semaphore): """Print a semaphore in better format.""" if semaphore is None: return "None" return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" # Path: serve/blip2grounding_worker.py import sys, os import argparse import asyncio import dataclasses import logging import json import os import sys import time import threading import uuid import base64 import numpy as np import requests import groundingdino.datasets.transforms as T import pycocotools.mask as mask_util import torch import torch.nn.functional as F import uvicorn from groundingdino.util import box_ops from segment_anything import build_sam from segment_anything.predictor import SamPredictor from typing import List, Tuple, Union from io import BytesIO from fastapi import FastAPI, Request, BackgroundTasks from fastapi.responses import StreamingResponse, JSONResponse from PIL import Image from demo.inference_on_a_image import get_grounding_output from groundingdino.util.inference import load_model, predict from transformers import ( AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer, AutoModel, ) from transformers import ( AutoTokenizer, AutoModelForCausalLM, LLaMATokenizer, AutoModel, ) from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG from serve.utils import build_logger, pretty_print_semaphore """ A model worker executes the model. """ sys.path.append(os.path.join(os.path.dirname(__file__), "..")) try: except ImportError: GB = 1 << 30 now_file_name = os.__file__ logdir = "logs/workers/" os.makedirs(logdir, exist_ok=True) logfile = os.path.join(logdir, f"{now_file_name}.log") worker_id = str(uuid.uuid4())[:6]
logger = build_logger(now_file_name, logfile)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: opendilab/LLMRiddles # Path: llmriddles/questions/question.py def register_question(text: Union[Mapping[str, str], str], checkers: Union[Mapping[str, SingleLangCheckerTyping], MultiLangCheckerTyping], name=Union[Mapping[str, str], str], level: int = 1, default_lang='cn'): checker = checkers if isinstance(checkers, Checker) else Checker(checkers) if isinstance(text, str): texts = {default_lang: text} else: texts = text if isinstance(name, str): names = {default_lang: name} else: names = name _KNOWN_PROBLEMS.append(Question(texts, checker, names, level)) # Path: llmriddles/questions/math_tools.py def get_all_numbers(text: str): return get_all_numbers_in_a_sentence(text) + get_all_numbers_in_a_sentence_with_comma(text) # Path: llmriddles/questions/level2.py import re import sympy from typing import Optional, Tuple from .question import register_question from .math_tools import get_all_numbers CN_TEXT_1 = """ 第二章第一题(质数长度),你需要提出一个字数是质数的问题,使回答的长度刚好是它的下一个质数。 """ EN_TEXT_1 = """ For the first question in chapter 2, You need to come up with a question that has a prime number of words, so the answer's length is exactly the next prime number. """ def _is_prime(v): return sympy.isprime(v) def _next_prime(v): while v: v += 1 if _is_prime(v): return v def _cn_checker_1(question_text: str, user_text: str, answer_text: str) -> Tuple[bool, Optional[str]]: qs_length = len(user_text.strip()) if not _is_prime(qs_length): return False, f'问题长度为{qs_length},非质数' answer_value = len(answer_text) next_prime = _next_prime(qs_length) if answer_value != next_prime: return False, f'下一个质数为{next_prime},但回答长度为{answer_value}' return True, None def _en_words(text: str): return len(re.findall(r'\w+', text)) def _en_checker_1(question_text: str, user_text: str, answer_text: str) -> Tuple[bool, Optional[str]]: qs_length = _en_words(user_text.strip()) if not _is_prime(qs_length): return False, f'The question has a length of {qs_length}, which is not a prime number' answer_value = _en_words(answer_text) next_prime = _next_prime(qs_length) if answer_value != next_prime: return False, f'The next prime number is {next_prime}, but the answer\'s length is {answer_value}' return True, None
register_question(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: codefuse-ai/CodeFuse-ModelCache # Path: modelcache/utils/error.py class NotFoundError(CacheError): """Raise when getting an unsupported store.""" def __init__(self, store_type, current_type_name): super().__init__(f"Unsupported ${store_type}: {current_type_name}") # Path: modelcache/utils/error.py class ParamError(CacheError): """Raise when receiving an invalid param.""" # Path: modelcache/manager/vector_data/manager.py from modelcache.utils.error import NotFoundError, ParamError from modelcache.manager.vector_data.milvus import Milvus from modelcache.manager.vector_data.faiss import Faiss from modelcache.manager.vector_data.chroma import Chromadb from modelcache.manager.vector_data.hnswlib_store import Hnswlib # -*- coding: utf-8 -*- TOP_K = 1 FAISS_INDEX_PATH = "faiss.index" DIMENSION = 0 MILVUS_HOST = "localhost" MILVUS_PORT = 19530 MILVUS_USER = "" MILVUS_PSW = "" MILVUS_SECURE = False MILVUS_INDEX_PARAMS = { "metric_type": "L2", "index_type": "HNSW", "params": {"M": 8, "efConstruction": 64}, } COLLECTION_NAME = "modelcache" class VectorBase: """ VectorBase to manager the vector base. """ def __init__(self): raise EnvironmentError( "VectorBase is designed to be instantiated, please using the `VectorBase.get(name)`." ) @staticmethod def check_dimension(dimension): if dimension <= 0: raise ParamError( f"the dimension should be greater than zero, current value: {dimension}." ) @staticmethod def get(name, **kwargs): top_k = kwargs.get("top_k", TOP_K) if name == "milvus": dimension = kwargs.get("dimension", DIMENSION) milvus_config = kwargs.get("milvus_config") VectorBase.check_dimension(dimension) host = milvus_config.get('milvus', 'host') port = milvus_config.get('milvus', 'port') user = milvus_config.get('milvus', 'user') password = milvus_config.get('milvus', 'password') secure = kwargs.get("secure", MILVUS_SECURE) collection_name = kwargs.get("collection_name", COLLECTION_NAME) index_params = kwargs.get("index_params", MILVUS_INDEX_PARAMS) search_params = kwargs.get("search_params", None) local_mode = kwargs.get("local_mode", False) local_data = kwargs.get("local_data", "./milvus_data") vector_base = Milvus( host=host, port=port, user=user, password=password, secure=secure, collection_name=collection_name, dimension=dimension, top_k=top_k, index_params=index_params, search_params=search_params, local_mode=local_mode, local_data=local_data ) elif name == "faiss": dimension = kwargs.get("dimension", DIMENSION) index_path = kwargs.pop("index_path", FAISS_INDEX_PATH) VectorBase.check_dimension(dimension) vector_base = Faiss( index_file_path=index_path, dimension=dimension, top_k=top_k ) elif name == "chromadb": client_settings = kwargs.get("client_settings", None) persist_directory = kwargs.get("persist_directory", None) collection_name = kwargs.get("collection_name", COLLECTION_NAME) vector_base = Chromadb( client_settings=client_settings, persist_directory=persist_directory, collection_name=collection_name, top_k=top_k, ) elif name == "hnswlib": dimension = kwargs.get("dimension", DIMENSION) index_path = kwargs.pop("index_path", "./hnswlib_index.bin") max_elements = kwargs.pop("max_elements", 100000) VectorBase.check_dimension(dimension) vector_base = Hnswlib( index_file_path=index_path, dimension=dimension, top_k=top_k, max_elements=max_elements ) else:
raise NotFoundError("vector store", name)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ForceFledgling/proxyhub # Path: proxyhub/errors.py class BadStatusLine(Exception): errmsg = 'bad_status_line' # Path: proxyhub/utils.py def get_all_ip(page): # TODO: add IPv6 support return set(IPPattern.findall(page)) # Path: proxyhub/utils.py def get_status_code(resp, start=9, stop=12): try: if not isinstance(resp, (bytes, str)): raise TypeError(f'{type(resp).__name__} is not supported') code = int(resp[start:stop]) except ValueError: return 400 # Bad Request else: return code # Path: proxyhub/utils.py def parse_headers(headers): headers = headers.decode('utf-8', 'ignore').split('\r\n') _headers = {} _headers.update(parse_status_line(headers.pop(0))) for h in headers: if not h: break name, val = h.split(':', 1) _headers[name.strip().title()] = val.strip() if ':' in _headers.get('Host', ''): host, port = _headers['Host'].split(':') _headers['Host'], _headers['Port'] = host, int(port) return _headers # Path: proxyhub/utils.py def parse_status_line(line): _headers = {} is_response = line.startswith('HTTP/') try: if is_response: # HTTP/1.1 200 OK version, status, *reason = line.split() else: # GET / HTTP/1.1 method, path, version = line.split() except ValueError: raise BadStatusLine(line) _headers['Version'] = version.upper() if is_response: _headers['Status'] = int(status) reason = ' '.join(reason) reason = reason.upper() if reason.lower() == 'ok' else reason.title() _headers['Reason'] = reason else: _headers['Method'] = method.upper() _headers['Path'] = path if _headers['Method'] == 'CONNECT': host, port = path.split(':') _headers['Host'], _headers['Port'] = host, int(port) return _headers # Path: tests/test_utils.py import pytest from proxyhub.errors import BadStatusLine from proxyhub.utils import ( get_all_ip, get_status_code, parse_headers, parse_status_line, ) def test_get_all_ip(): page = "abc127.0.0.1:80abc127.0.0.1xx127.0.0.2:8080h" assert get_all_ip(page) == {'127.0.0.1', '127.0.0.2'} def test_get_status_code(): assert get_status_code('HTTP/1.1 200 OK\r\n') == 200 assert get_status_code('<html>123</html>\r\n') == 400 assert get_status_code(b'HTTP/1.1 403 Forbidden\r\n') == 403 assert get_status_code(b'HTTP/1.1 400 Bad Request\r\n') == 400 def test_parse_status_line():
assert parse_status_line('HTTP/1.1 200 OK') == {
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: WithSecureLabs/IceKube # Path: icekube/config.py class Neo4j(TypedDict): class Config(TypedDict): # Path: icekube/icekube.py def create_indices(): for resource in api_resources(): if "list" not in resource.verbs: continue kind = resource.kind namespace = resource.namespaced cmd = f"CREATE INDEX {kind.lower()} IF NOT EXISTS " cmd += f"FOR (n:{kind}) ON (n.name" if namespace: cmd += ", n.namespace" cmd += ")" with get_driver().session() as session: session.run(cmd) # Path: icekube/icekube.py def enumerate_resource_kind( ignore: Optional[List[str]] = None, ): if ignore is None: ignore = [] with get_driver().session() as session: cluster = Cluster(apiVersion="N/A", name=context_name(), version=kube_version()) cmd, kwargs = create(cluster) session.run(cmd, **kwargs) signers = [ "kubernetes.io/kube-apiserver-client", "kubernetes.io/kube-apiserver-client-kubelet", "kubernetes.io/kubelet-serving", "kubernetes.io/legacy-unknown", ] for signer in signers: s = Signer(name=signer) cmd, kwargs = create(s) session.run(cmd, **kwargs) for resource in all_resources(ignore=ignore): cmd, kwargs = create(resource) session.run(cmd, **kwargs) # Path: icekube/icekube.py def generate_relationships(threaded: bool = False) -> None: logger.info("Generating relationships") logger.info("Fetching resources from neo4j") driver = get_driver() resources = find() logger.info("Fetched resources from neo4j") generator = partial(relationship_generator, driver, True) if threaded: with ThreadPoolExecutor() as exc: exc.map(generator, resources) else: print("First pass for relationships") for resource in tqdm(resources): generator(resource) print("") # Do a second loop across relationships to handle objects created as part # of other relationships resources = find() generator = partial(relationship_generator, driver, False) if threaded: with ThreadPoolExecutor() as exc: exc.map(generator, resources) else: print("Second pass for relationships") for resource in tqdm(resources): generator(resource) print("") # Path: icekube/icekube.py def purge_neo4j() -> None: with get_driver().session() as session: session.run("MATCH (x)-[r]-(y) DELETE x, r, y") session.run("MATCH (x) DELETE x") # Path: icekube/icekube.py def remove_attack_paths() -> None: with get_driver().session() as session: session.run("MATCH ()-[r]-() WHERE EXISTS (r.attack_path) DELETE r") # Path: icekube/icekube.py def setup_attack_paths() -> None: print("Generating attack paths") for relationship, query in tqdm(attack_paths.items()): with get_driver().session() as session: if isinstance(query, str): query = [query] for q in query: cmd = q + f" MERGE (src)-[:{relationship} {{ attack_path: 1 }}]->(dest)" session.run(cmd) print("") # Path: icekube/kube.py def load_kube_config(): def kube_version() -> str: def context_name() -> str: def api_versions() -> List[str]: def api_resources() -> List[APIResource]: def all_resources( preferred_versions_only: bool = True, ignore: Optional[List[str]] = None, ) -> Iterator[Resource]: def metadata_download() -> Dict[str, Any]: # Path: icekube/log_config.py def build_logger(debug_level=logging.DEBUG): # create logger logger = logging.getLogger("icekube") logger.setLevel(debug_level) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(debug_level) # create formatter and add it to the handlers formatter = logging.Formatter("%(asctime)s|%(name)s|%(levelname)s|%(message)s") ch.setFormatter(formatter) # tell tqdm about the handler tqdm_handler = _TqdmLoggingHandler(std_tqdm) tqdm_handler.setFormatter(formatter) tqdm_handler.stream = ch.stream # add the handlers to the logger logger.addHandler(tqdm_handler) # Path: icekube/cli.py import json import logging import typer from pathlib import Path from typing import Iterator, List, Optional, cast from icekube.config import config from icekube.icekube import ( create_indices, enumerate_resource_kind, generate_relationships, purge_neo4j, remove_attack_paths, setup_attack_paths, ) from icekube.kube import ( APIResource, Resource, all_resources, metadata_download, ) from icekube.log_config import build_logger from tqdm import tqdm from icekube import kube from icekube import icekube app = typer.Typer() IGNORE_DEFAULT = "events,componentstatuses" @app.command() def run( ignore: str = typer.Option( IGNORE_DEFAULT, help="Names of resource types to ignore", ), ): enumerate(ignore) attack_path() @app.command() def enumerate( ignore: str = typer.Option( IGNORE_DEFAULT, help="Names of resource types to ignore", ), ): create_indices() enumerate_resource_kind(ignore.split(",")) generate_relationships() @app.command() def relationships(): generate_relationships() @app.command() def attack_path():
remove_attack_paths()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: IAAR-Shanghai/UHGEval # Path: uhgeval/llm/api.py class Baichuan2_53B_Chat(BaseLLM): def request(self, query) -> str: import time url = conf.Baichuan2_53B_url api_key = conf.Baichuan2_53B_api_key secret_key = conf.Baichuan2_53B_secret_key time_stamp = int(time.time()) json_data = json.dumps({ "model": "Baichuan2-53B", "messages": [ { "role": "user", "content": query } ], "parameters": { "temperature": self.params['temperature'], "top_p": self.params['top_p'], "top_k": self.params['top_k'], } }) def _calculate_md5(input_string): import hashlib md5 = hashlib.md5() md5.update(input_string.encode('utf-8')) encrypted = md5.hexdigest() return encrypted signature = _calculate_md5(secret_key + json_data + str(time_stamp)) headers = { "Content-Type": "application/json", "Authorization": "Bearer " + api_key, "X-BC-Timestamp": str(time_stamp), "X-BC-Signature": signature, "X-BC-Sign-Algo": "MD5", } res = requests.post(url, data=json_data, headers=headers) res = res.json()['data']['messages'][0]['content'] return res # Path: uhgeval/llm/api.py class GPT(BaseLLM): def __init__(self, model_name='gpt-3.5-turbo', temperature=1.0, max_new_tokens=1024, report=False): super().__init__(model_name, temperature, max_new_tokens) self.report = report def request(self, query: str) -> str: openai.api_key = conf.GPT_api_key res = openai.ChatCompletion.create( model = self.params['model_name'], messages = [{"role": "user","content": query}], temperature = self.params['temperature'], max_tokens = self.params['max_new_tokens'], top_p = self.params['top_p'], ) real_res = res["choices"][0]["message"]["content"] token_consumed = res['usage']['total_tokens'] logger.info(f'GPT token consumed: {token_consumed}') if self.report else () return real_res # Path: tests/llm/test_api.py import unittest from uhgeval.llm.api import ( Baichuan2_53B_Chat, GPT, ) # @Author : Shichao Song # @Email : song.shichao@outlook.com class TestBaichuan253BChat(unittest.TestCase): def setUp(self): self.model = Baichuan2_53B_Chat(temperature=0.1) def test_request(self): query = "How are you?" response = self.model.request(query) self.assertIsInstance(response, str) self.assertGreater(len(response), 0) def test_continue_writing(self): obj = {"headLine": "Story", "broadcastDate": "2023-11-15", "newsBeginning": "Once upon a time, there is a"} result = self.model.continue_writing(obj) self.assertIsInstance(result, str) self.assertGreater(len(result), 0) class TestGPT(unittest.TestCase): def setUp(self):
self.gpt35 = GPT(model_name='gpt-3.5-turbo', temperature=0.1)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mobiusml/hqq # Path: hqq/engine/hf.py _HQQ_REGISTRY = {} _HQQ_REGISTRY = _HQQ_REGISTRY class HQQModelForCausalLM(_Parent, HQQWrapper): def __init__(self, *args, **kwargs): def _make_quantizable(cls, model, quantized): def _validate_params(cls, params:Dict): def from_pretrained(cls, *args, **kwargs): def _get_arch_key_from_save_dir(cls, save_dir:str): # Path: hqq/core/peft.py class PeftUtils: @classmethod def get_base_class(cls, model, base_class): #Get base class if((base_class is None) and hasattr(model, 'base_class')): base_class = model.base_class assert (base_class is not None), "You need to provide the base HQQ class (LlamaHQQ, MixtralHQQ, etc.) as model.base_class or as an argument base_class=LlamaHQQ" return base_class @classmethod def add_lora(cls, model, lora_params, base_class=None, verbose=True): #Base classs base_class = cls.get_base_class(model, base_class) #Freeze for param in model.parameters(): param.requires_grad = False #Patch base_class.patch_linearlayers(model, patch_linear_add_peft, lora_params, verbose=verbose) #Rename modules autoname_modules(model) #Default backprop backend HQQLinear.set_backend(HQQBackend.PYTORCH_BACKPROP) @classmethod def merge_lora(cls, model, merge_lora_params, base_class=None, verbose=True): #Base classs base_class = cls.get_base_class(model, base_class) #Patch base_class.patch_linearlayers(model, patch_linear_merge_peft, merge_lora_params, verbose=verbose) @classmethod def cast_lora_weights(cls, model, dtype, base_class=None, verbose=True): #Base classs base_class = cls.get_base_class(model, base_class) #Linear tags linear_tags = base_class.get_linear_tags() #Patch base_class.patch_linearlayers(model, patch_linear_cast_peft, dict([(linear_tag, dtype) for linear_tag in linear_tags]), verbose=verbose) @classmethod def save_lora_weights(cls, model, filename, base_class=None, verbose=True): #Base classs base_class = cls.get_base_class(model, base_class) lora_global_params = {} def _patch_linear_save_weights(layer, patch_params, return_layer=True): if(is_hqq_lora_layer(layer)): lora_global_params[layer.name] = layer.state_dict() if(return_layer): return layer #Linear tags linear_tags = base_class.get_linear_tags() #Patch base_class.patch_linearlayers(model, _patch_linear_save_weights, dict([(linear_tag, None) for linear_tag in linear_tags]), verbose=verbose) #save torch.save(lora_global_params, filename) @classmethod def load_lora_weights(cls, model, filename, base_class=None, verbose=True): #Base classs base_class = cls.get_base_class(model, base_class) lora_global_params = torch.load(file, map_location='cpu') def _patch_linear_load_weights(layer, patch_params, return_layer=True): if(is_hqq_lora_layer(layer)): layer.load_state_dict(lora_global_params[layer.name]) if(return_layer): return layer #Linear tags linear_tags = base_class.get_linear_tags() #Patch base_class.patch_linearlayers(model, _patch_linear_load_weights, dict([(linear_tag, None) for linear_tag in linear_tags]), verbose=verbose) # Path: examples/lora/train_hqq_lora_example.py from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer from hqq.core.quantize import * from hqq.core.peft import PeftUtils from hqq.core.quantize import * from datasets import load_dataset, Dataset from tqdm import tqdm from trl import SFTTrainer import transformers import numpy as np import random #Settings ###################################################################################### hf_auth = None #HuggingFace token cache_path = '' #cache directory to store data #Chose a model model_id = "meta-llama/Llama-2-7b-hf" #model_id = "meta-llama/Llama-2-13b-hf" #model_id = "meta-llama/Llama-2-70b-hf" #HQQ Quantize ###################################################################################### model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) #Quantize the model quant_config = BaseQuantizeConfig(nbits=4, group_size=64, quant_scale=False, quant_zero=False) model.quantize_model(quant_config=quant_config) #Add Peft ###################################################################################### train_dtype = torch.bfloat16 #torch.float32 / torch.bfloat16 base_lora_params = {'lora_type':'default', 'r':32, 'lora_alpha':64, 'dropout':0.05, 'train_dtype':train_dtype} lora_params = {'self_attn.q_proj': base_lora_params, 'self_attn.k_proj': base_lora_params, 'self_attn.v_proj': base_lora_params, 'self_attn.o_proj': base_lora_params, 'mlp.gate_proj' : None, 'mlp.up_proj' : None, 'mlp.down_proj' : None} #Apply LoRA
PeftUtils.add_lora(model, lora_params)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TheFunny/ArisuAutoSweeper # Path: module/logger/logger.py def empty_function(*args, **kwargs): def __init__(self, *args, func: Callable[[ConsoleRenderable], None] = None, **kwargs): def emit(self, record: logging.LogRecord) -> None: def handle(self, record: logging.LogRecord) -> bool: def options(self) -> ConsoleOptions: def _set_file_logger(name=pyw_name): def set_file_logger(name=pyw_name): def set_func_logger(func): def _get_renderables( self: Console, *objects, sep=" ", end="\n", justify=None, emoji=None, markup=None, highlight=None, ) -> List[ConsoleRenderable]: def print(*objects: ConsoleRenderable, **kwargs): def rule(title="", *, characters="─", style="rule.line", end="\n", align="center"): def hr(title, level=3): def attr(name, text): def attr_align(name, text, front='', align=22): def show(): def error_convert(func): def error_wrapper(msg, *args, **kwargs): class RichFileHandler(RichHandler): class RichRenderableHandler(RichHandler): class HTMLConsole(Console): class Highlighter(RegexHighlighter): WEB_THEME = Theme({ "web.brace": Style(bold=True), "web.bool_true": Style(color="bright_green", italic=True), "web.bool_false": Style(color="bright_red", italic=True), "web.none": Style(color="magenta", italic=True), "web.path": Style(color="magenta"), "web.filename": Style(color="bright_magenta"), "web.str": Style(color="green", italic=False, bold=False), "web.time": Style(color="cyan"), "rule.text": Style(bold=True), }) # Path: module/webui/setting.py class State: """ Shared settings """ _init = False _clearup = False restart_event: threading.Event = None manager: SyncManager = None electron: bool = False theme: str = "default" @classmethod def init(cls): cls.manager = multiprocessing.Manager() cls._init = True @classmethod def clearup(cls): cls.manager.shutdown() cls._clearup = True @cached_class_property def deploy_config(self) -> "DeployConfig": """ Returns: DeployConfig: """ from module.webui.config import DeployConfig return DeployConfig() @cached_class_property def config_updater(self) -> "ConfigUpdater": """ Returns: ConfigUpdater: """ from module.config.config_updater import ConfigUpdater return ConfigUpdater() # Path: gui.py import threading import argparse import asyncio import sys import uvicorn from multiprocessing import Event, Process from module.logger import logger from module.webui.setting import State from module.logger.logger import console_hdlr def func(ev: threading.Event): if sys.platform.startswith("win"): asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
State.restart_event = ev
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: liuzhao1225/YouDub # Path: youdub/utils.py def save_wav(wav: np.ndarray, path: str, sample_rate: int = 24000) -> None: """Save float waveform to a file using Scipy. Args: wav (np.ndarray): Waveform with float values in range [-1, 1] to save. path (str): Path to a output file. sample_rate (int, optional): Sampling rate used for saving to the file. Defaults to 24000. """ # wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) wav_norm = wav * 32767 wavfile.write(path, sample_rate, wav_norm.astype(np.int16)) # Path: youdub/utils.py def adjust_audio_length(wav, src_path, dst_path, desired_length: float, sample_rate: int = 24000) -> np.ndarray: """Adjust the length of the audio. Args: wav (np.ndarray): Original waveform. sample_rate (int): Sampling rate of the audio. desired_length (float): Desired length of the audio in seconds. Returns: np.ndarray: Waveform with adjusted length. """ current_length = wav.shape[0] / sample_rate speed_factor = max(min(desired_length / current_length, 1.1), 2/3) desired_length = current_length * speed_factor stretch_audio(src_path, dst_path, ratio=speed_factor, sample_rate=sample_rate) y, sr = librosa.load(dst_path, sr=sample_rate) return y[:int(desired_length * sr)], desired_length # Path: youdub/tts_paddle.py import os, sys import numpy as np import json import logging from paddlespeech.cli.tts import TTSExecutor from youdub.utils import save_wav, adjust_audio_length sys.path.append(os.getcwd()) class TTS_Clone: def __init__(self, model_path="fastspeech2_male", voc='pwgan_male',device='gpu:0', language='mix'): logging.info(f'Loading TTS model {model_path}...') self.am = model_path self.voc = voc self.tts = TTSExecutor() self.language = language logging.info('Model TTS loaded.') def inference(self, text, output) -> np.ndarray: self.tts( text=text, am=self.am, voc=self.voc, lang=self.language, output=output, use_onnx=True) print(f'{output}: {text}') return self.tts._outputs['wav'] def process_folder(folder, tts: TTS_Clone): logging.info(f'TTS processing folder {folder}...') with open(os.path.join(folder, 'zh.json'), 'r', encoding='utf-8') as f: transcript = json.load(f) full_wav = [] if not os.path.exists(os.path.join(folder, 'temp')): os.makedirs(os.path.join(folder, 'temp')) previous_end = 0 for i, line in enumerate(transcript): text = line['text'] start = line['start'] end = line['end'] wav = tts.inference(text, os.path.join(folder, 'temp', f'zh_{i}.wav'))
wav_adjusted = adjust_audio_length(wav, os.path.join(folder, 'temp', f'zh_{i}.wav'), os.path.join(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: dtiesling/flask-muck # Path: tests/app.py class GuardianModel(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String, nullable=False, unique=True) age = db.Column(db.Integer, nullable=True) family_id = db.Column(db.Integer, db.ForeignKey(FamilyModel.id)) family = db.relationship(FamilyModel) children: Mapped[list["ChildModel"]] = db.relationship() # Path: tests/app.py class ToyApiView(BaseApiView): api_name = "toy" Model = ToyModel ResponseSchema = ToySchema CreateSchema = ToySchema PatchSchema = ToySchema UpdateSchema = ToySchema parent = ChildApiView one_to_one_api = True # Path: tests/app.py class ChildModel(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String, nullable=False) age = db.Column(db.Integer, nullable=True) family_id = db.Column(db.Integer, db.ForeignKey(FamilyModel.id)) guardian_id = db.Column(db.Integer, db.ForeignKey(GuardianModel.id)) guardian = db.relationship(GuardianModel, back_populates="children") toy: Mapped["ToyModel"] = db.relationship(uselist=False) # Path: tests/app.py class ToyModel(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String, nullable=False) family_id = db.Column(db.Integer, db.ForeignKey(FamilyModel.id)) child_id = db.Column(db.Integer, db.ForeignKey(ChildModel.id)) child = db.relationship(ChildModel, back_populates="toy") # Path: tests/app.py class BaseApiView(FlaskMuckApiView): """Base view to inherit from. Helpful for setting class variables shared with all API views such as "sqlalchemy_db" and "decorators". """ session = db.session decorators = [login_required] pre_create_callbacks = [PreCallback] pre_update_callbacks = [PreCallback] pre_patch_callbacks = [PreCallback] pre_delete_callbacks = [PreCallback] post_create_callbacks = [PostCallback] post_update_callbacks = [PostCallback] post_patch_callbacks = [PostCallback] post_delete_callbacks = [PostCallback] # Path: tests/app.py class PreCallback(FlaskMuckCallback): def execute(self) -> None: return # Path: tests/app.py class PostCallback(FlaskMuckCallback): def execute(self) -> None: return # Path: tests/app.py class GuardianApiView(BaseApiView): api_name = "guardians" Model = GuardianModel ResponseSchema = GuardianSchema CreateSchema = GuardianSchema PatchSchema = GuardianSchema UpdateSchema = GuardianSchema DetailSchema = GuardianDetailSchema searchable_columns = [GuardianModel.name, GuardianModel.age] # Path: tests/test.py import json import pytest from unittest.mock import patch from pydantic import BaseModel, ConfigDict from flask_muck.exceptions import MuckImplementationError from flask_muck.utils import ( get_url_rule, get_fk_column, get_query_filters_from_request_path, get_join_models_from_parent_views, ) from tests.app import ( GuardianModel, ToyApiView, ChildModel, ToyModel, BaseApiView, PreCallback, PostCallback, GuardianApiView, ) class TestBasicCrud: def test_create(self, post, user): response = post("/guardians/", json={"name": "Jill"}) parent = GuardianModel.query.one() assert response == {"name": parent.name} # Verify integrity errors are handled. post("/guardians/", json={"name": "Jill"}, expected_status_code=409) def test_read(self, get, user, guardian, child): assert get(f"/guardians/") == [{"name": guardian.name}] assert get(f"/guardians/{guardian.id}/") == { "name": "Samantha", "children": [{"name": "Tamara"}], } def test_update(self, put, patch, guardian): assert put(f"/guardians/{guardian.id}/", json={"name": "updated"}) == { "name": "updated" } assert patch(f"/guardians/{guardian.id}/", json={"name": "patched"}) == { "name": "patched" } def test_delete(self, client, guardian): client.delete(f"/guardians/{guardian.id}/") assert GuardianModel.query.count() == 0 class TestAllowedMethods: def test_get_only(self, client, monkeypatch):
monkeypatch.setattr(BaseApiView, "allowed_methods", {"GET"})
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: BrianPugh/cyclopts # Path: cyclopts/_convert.py def _bool(s: str) -> bool: def _int(s: str) -> int: def _bytes(s: str) -> bytes: def _bytearray(s: str) -> bytearray: def _convert(type_, element, converter=None): def get_origin_and_validate(type_: Type): def resolve(type_: Type) -> Type: def resolve_optional(type_: Type) -> Type: def resolve_annotated(type_: Type) -> Type: def convert(type_: Type, *args: str, converter: Optional[Callable] = None): def token_count(type_: Union[Type, inspect.Parameter]) -> Tuple[int, bool]: def to_tuple_converter(value: Union[None, Any, Iterable[Any]]) -> Tuple[Any, ...]: def to_list_converter(value: Union[None, Any, Iterable[Any]]) -> List[Any]: def optional_to_tuple_converter(value: Union[None, Any, Iterable[Any]]) -> Optional[Tuple[Any, ...]]: # Path: cyclopts/group.py class Group: name: str = "" help: str = "" # All below parameters are keyword-only _show: Optional[bool] = field(default=None, alias="show", kw_only=True) _sort_key: Any = field( default=None, alias="sort_key", converter=lambda x: NO_USER_SORT_KEY if x is None else x, ) converter: Optional[Callable] = field(default=None, kw_only=True) validator: Tuple[Callable, ...] = field( default=None, converter=lambda x: cast(Tuple[Callable, ...], to_tuple_converter(x)), kw_only=True, ) default_parameter: Optional["Parameter"] = field( default=None, validator=_group_default_parameter_must_be_none, kw_only=True, ) def __str__(self): return self.name @property def show(self): return bool(self.name) if self._show is None else self._show @show.setter def show(self, value): self._show = value @property def sort_key(self): return None if self._sort_key is NO_USER_SORT_KEY else self._sort_key @sort_key.setter def sort_key(self, value): self._sort_key = value @classmethod def create_default_arguments(cls): return cls("Arguments") @classmethod def create_default_parameters(cls): return cls("Parameters") @classmethod def create_default_commands(cls): return cls("Commands") @classmethod def create_ordered(cls, *args, sort_key=None, **kwargs): """Create a group with a globally incremented :attr:`~Group.sort_key`. Used to create a group that will be displayed **after** a previously declared :meth:`Group.create_ordered` group on the help-page. If a :attr:`~Group.sort_key` is provided, it is **prepended** to the globally incremented counter value (i.e. has priority during sorting). """ count = next(_sort_key_counter) if sort_key is None: sort_key = (NO_USER_SORT_KEY, count) elif is_iterable(sort_key): sort_key = (tuple(sort_key), count) else: sort_key = (sort_key, count) return cls(*args, sort_key=sort_key, **kwargs) # Path: cyclopts/utils.py def record_init(target: str): """Class decorator that records init argument names as a tuple to ``target``.""" def decorator(cls): original_init = cls.__init__ signature = inspect.signature(original_init) @functools.wraps(original_init) def new_init(self, *args, **kwargs): bound = signature.bind(self, *args, **kwargs) original_init(self, *args, **kwargs) # Circumvent frozen protection. object.__setattr__(self, target, tuple(k for k, v in bound.arguments.items() if v is not self)) cls.__init__ = new_init return cls return decorator # Path: cyclopts/parameter.py import inspect import attrs from typing import Any, Callable, Optional, Tuple, Type, Union, cast, get_args, get_origin from attrs import field, frozen from cyclopts._convert import ( AnnotatedType, convert, get_origin_and_validate, optional_to_tuple_converter, resolve, resolve_optional, to_tuple_converter, ) from cyclopts.group import Group from cyclopts.utils import record_init def _double_hyphen_validator(instance, attribute, values): if not values: return for value in values: if value is not None and not value.startswith("--"): raise ValueError(f'{attribute.alias} value must start with "--".') def _negative_converter(default: Tuple[str, ...]): def converter(value) -> Tuple[str, ...]: if value is None: return default else: return to_tuple_converter(value) return converter @record_init("_provided_args") @frozen class Parameter: """Cyclopts configuration for individual function parameters.""" # All documentation has been moved to ``docs/api.rst`` for greater control with attrs. name: Tuple[str, ...] = field( default=None, converter=lambda x: cast(Tuple[str, ...], to_tuple_converter(x)), )
converter: Callable = field(default=None, converter=attrs.converters.default_if_none(convert))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RoboFlamingo/RoboFlamingo # Path: open_flamingo/open_flamingo/src/helpers.py class GatedCrossAttentionBlock(nn.Module): def __init__( self, *, dim, dim_visual, dim_head=64, heads=8, ff_mult=4, only_attend_immediate_media=True, ): super().__init__() self.attn = MaskedCrossAttention( dim=dim, dim_visual=dim_visual, dim_head=dim_head, heads=heads, only_attend_immediate_media=only_attend_immediate_media, ) self.attn_gate = nn.Parameter(torch.tensor([0.0])) self.ff = FeedForward(dim, mult=ff_mult) self.ff_gate = nn.Parameter(torch.tensor([0.0])) def forward( self, x, media, media_locations=None, use_cached_media=False, ): x = ( self.attn( x, media, media_locations=media_locations, use_cached_media=use_cached_media, ) * self.attn_gate.tanh() + x ) x = self.ff(x) * self.ff_gate.tanh() + x return x # Path: open_flamingo/open_flamingo/src/utils.py def getattr_recursive(obj, att): """ Return nested attribute of obj Example: getattr_recursive(obj, 'a.b.c') is equivalent to obj.a.b.c """ if att == "": return obj i = att.find(".") if i < 0: return getattr(obj, att) else: return getattr_recursive(getattr(obj, att[:i]), att[i + 1 :]) # Path: open_flamingo/open_flamingo/src/utils.py def setattr_recursive(obj, att, val): """ Set nested attribute of obj Example: setattr_recursive(obj, 'a.b.c', val) is equivalent to obj.a.b.c = val """ if "." in att: obj = getattr_recursive(obj, ".".join(att.split(".")[:-1])) setattr(obj, att.split(".")[-1], val) # Path: open_flamingo/open_flamingo/src/flamingo_lm.py import torch.nn as nn import copy from .helpers import GatedCrossAttentionBlock from .utils import getattr_recursive, setattr_recursive class FlamingoLayer(nn.Module): """ FlamingoLayer is a wrapper around the GatedCrossAttentionBlock and DecoderLayer. """ def __init__( self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False, residual=False ): super().__init__() self.gated_cross_attn_layer = gated_cross_attn_layer self.decoder_layer = decoder_layer self.vis_x = None self.media_locations = None self.residual = residual if self.gated_cross_attn_layer is not None: self.gated_cross_attn_layer._use_gradient_checkpointing = ( gradient_checkpointing ) self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing def clone_parameters(self): self.res_layer = copy.deepcopy(self.gated_cross_attn_layer) if self.res_layer is not None: self.res_layer.requires_grad_(False) def is_conditioned(self) -> bool: """Check whether the layer is conditioned.""" return self.vis_x is not None and self.media_locations is not None # Used this great idea from this implementation of Flamingo (https://github.com/dhansmair/flamingo-mini/) def condition_vis_x(self, vis_x): self.vis_x = vis_x def condition_media_locations(self, media_locations): self.media_locations = media_locations def condition_use_cached_media(self, use_cached_media): self.use_cached_media = use_cached_media def forward( self, lang_x, attention_mask=None, **decoder_layer_kwargs, ): # Cross attention if self.gated_cross_attn_layer is not None: if self.vis_x is None: raise ValueError("vis_x must be conditioned before forward pass") if self.media_locations is None: raise ValueError( "media_locations must be conditioned before forward pass" ) lang_x = self.gated_cross_attn_layer( lang_x, self.vis_x, media_locations=self.media_locations, use_cached_media=self.use_cached_media, ) # Residual if self.residual and self.res_layer is not None: lang_x_res = self.res_layer( lang_x, self.vis_x, media_locations=self.media_locations, attend_previous=self.attend_previous, ) lang_x = (lang_x + lang_x_res) / 2.0 # Normal decoder layer lang_x = self.decoder_layer( lang_x, attention_mask=attention_mask, **decoder_layer_kwargs ) return lang_x class FlamingoLMMixin(nn.Module): """ Mixin to add cross-attention layers to a language model. """ def set_decoder_layers_attr_name(self, decoder_layers_attr_name): self.decoder_layers_attr_name = decoder_layers_attr_name def _get_decoder_layers(self):
return getattr_recursive(self, self.decoder_layers_attr_name)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: XinyuanLiao/ComplexNN # Path: complexNN/functional.py def complexRelu(inp): return torch.complex(relu(inp.real), relu(inp.imag)) # Path: complexNN/functional.py def complexGelu(inp): return torch.complex(gelu(inp.real), gelu(inp.imag)) # Path: complexNN/functional.py def complexTanh(inp): return torch.complex(tanh(inp.real), tanh(inp.imag)) # Path: complexNN/functional.py def complexSigmoid(inp): return torch.complex(sigmoid(inp.real), sigmoid(inp.imag)) # Path: complexNN/functional.py def complexMaxPool2d(inp, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): """ copy from https://github.com/wavefrontshaping/complexPyTorch """ absolute_value, indices = max_pool2d(inp.abs(), kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode, return_indices=True) absolute_value = absolute_value.type(torch.complex64) angle = torch.atan2(inp.imag, inp.real) angle = _retrieve_elements_from_indices(angle, indices) return absolute_value * ( torch.cos(angle).type(torch.complex64) + 1j * torch.sin(angle).type(torch.complex64) ) # Path: complexNN/functional.py def complexAvgPool2d(inp, *args, **kwargs): """ copy from https://github.com/wavefrontshaping/complexPyTorch """ absolute_value_real = avg_pool2d(inp.real, *args, **kwargs) absolute_value_imag = avg_pool2d(inp.imag, *args, **kwargs) return absolute_value_real.type(torch.complex64) + 1j * absolute_value_imag.type( torch.complex64 ) # Path: complexNN/functional.py def complexAvgPool1d(inp, *args, **kwargs): absolute_value_real = avg_pool1d(inp.real, *args, **kwargs) absolute_value_imag = avg_pool1d(inp.imag, *args, **kwargs) return absolute_value_real.type(torch.complex64) + 1j * absolute_value_imag.type( torch.complex64 ) # Path: complexNN/functional.py def complexDropout(inp, p=0.5, training=True): """ copy from https://github.com/wavefrontshaping/complexPyTorch """ mask = torch.ones(*inp.shape, dtype=torch.float32, device=inp.device) mask = dropout(mask, p, training) * 1 / (1 - p) mask.type(inp.dtype) return mask * inp # Path: complexNN/functional.py def complexDropout2d(inp, p=0.5, training=True): """ copy from https://github.com/wavefrontshaping/complexPyTorch """ mask = torch.ones(*inp.shape, dtype=torch.float32, device=inp.device) mask = dropout2d(mask, p, training) * 1 / (1 - p) mask.type(inp.dtype) return mask * inp # Path: complexNN/functional.py def complexElu(inp): return torch.complex(elu(inp.real), elu(inp.imag)) # Path: complexNN/functional.py def complexLeakyRelu(inp): return torch.complex(leaky_relu(inp.real), leaky_relu(inp.imag)) # Path: complexNN/functional.py def complexSoftmax(inp): return torch.complex(softmax(inp.real), softmax(inp.imag)) # Path: complexNN/nn.py import numpy as np import torch import torch.nn as nn from complexNN.functional import complexRelu, complexGelu, complexTanh, complexSigmoid, complexMaxPool2d, \ complexAvgPool2d, complexAvgPool1d, complexDropout, complexDropout2d, complexElu, complexLeakyRelu, complexSoftmax class cRelu(nn.Module): @staticmethod def forward(inp): return complexRelu(inp) class cElu(nn.Module): @staticmethod def forward(inp): return complexElu(inp) class cLeakyRelu(nn.Module): @staticmethod def forward(inp): return complexLeakyRelu(inp) class cSoftmax(nn.Module): @staticmethod def forward(inp): return complexSoftmax(inp) class cGelu(nn.Module): @staticmethod def forward(inp): return complexGelu(inp) class cTanh(nn.Module): @staticmethod def forward(inp): return complexTanh(inp) class cSigmoid(nn.Module): @staticmethod def forward(inp):
return complexSigmoid(inp)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: sanmusen214/BAAH # Path: modules/configs/defaultSettings.py # Path: modules/configs/settingMaps.py def configname2screenshotname(configfilename): """ 根据config文件名,返回截图文件名 config文件名包含后缀不包含路径 """ screenshotfilehash = hashlib.sha1(configfilename.encode('utf-8')).hexdigest() # 如果长度大于8,截取前8位 if len(screenshotfilehash) > 8: screenshotfilehash = screenshotfilehash[:8] # 如果长度小于8,补0 elif len(screenshotfilehash) < 8: screenshotfilehash = screenshotfilehash.zfill(8) return screenshotfilehash + ".png" # Path: modules/configs/MyConfig.py import json import logging import os import time from modules.configs.defaultSettings import defaultUserDict, defaultSoftwareDict from modules.configs.settingMaps import configname2screenshotname # 程序入口应当先import这个类,然后调用parse_user_config方法解析该config实例 # 然后程序入口再import其他模块,在其他模块中import这个类,就可以直接使用这个类的实例了 class MyConfigger: """ 维护config字典,包含软件config,用户任务config,语言包 """ NOWVERSION="1.2.0" USER_CONFIG_FOLDER="./BAAH_CONFIGS" SOFTWARE_CONFIG_FOLDER="./DATA/CONFIGS" LANGUAGE_PACKAGE_FOLDER="./DATA/i18n" SOFTWARE_CONFIG_NAME="software_config.json" # 读取config这个py里面的配置 def __init__(self): self.current_dir = os.getcwd() # 软件的config self.softwareconfigdict = {} # 软件的语言包 self.languagepackagedict = {} # 一次区服任务的config self.userconfigdict = {} # 一次区服任务运行的session self.sessiondict = {} # 读取软件的config self.parse_software_config(self.SOFTWARE_CONFIG_NAME) def parse_user_config(self, file_name): """ 读取config文件并解析 同时会清空sessiondict """ file_path = os.path.join(self.current_dir, self.USER_CONFIG_FOLDER, file_name) # 字典新值 self.userconfigdict = self._read_config_file(file_path) # 清空sessiondict self.sessiondict = {} # 检查缺失的配置 self._check_user_config() # 强制设置截图文件名为配置名 self.userconfigdict["SCREENSHOT_NAME"] = configname2screenshotname(file_name) # 检查截图文件夹路径里是否有DATA, 如果没有DATA,说明是1.1.x版本的配置,需要转换 if "DATA" not in self.userconfigdict["PIC_PATH"]:
fromkey = defaultUserDict["PIC_PATH"]["m"]["from"]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: lucidrains/gateloop-transformer # Path: gateloop_transformer/gateloop_transformer.py class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.gamma # Path: gateloop_transformer/associative_scan.py def associative_scan( operator: Callable, elems: Tuple[Tensor, Tensor] ): num_elems = int(elems[0].shape[1]) if not all(int(elem.shape[1]) == num_elems for elem in elems[1:]): raise ValueError('Array inputs to associative_scan must have the same ' 'first dimension. (saw: {})' .format([elem.shape for elem in elems])) def _scan(elems): """Perform scan on `elems`.""" num_elems = elems[0].shape[1] if num_elems < 2: return elems # Combine adjacent pairs of elements. reduced_elems = operator( [elem[:, :-1:2] for elem in elems], [elem[:, 1::2] for elem in elems]) # Recursively compute scan for partially reduced tensors. odd_elems = _scan(reduced_elems) if num_elems % 2 == 0: even_elems = operator( [e[:, :-1] for e in odd_elems], [e[:, 2::2] for e in elems]) else: even_elems = operator( odd_elems, [e[:, 2::2] for e in elems]) # The first element of a scan is the same as the first element # of the original `elems`. even_elems = [ torch.cat([elem[:, :1], result], dim=1) for (elem, result) in zip(elems, even_elems)] return list(map(_interleave, even_elems, odd_elems)) return _scan(elems) # Path: gateloop_transformer/simplified_gate_loop.py from functools import partial from torch import nn, Tensor from torch.nn import Module from typing import Tuple from einops import rearrange, pack, unpack from einops.layers.torch import Rearrange from gateloop_transformer.gateloop_transformer import RMSNorm from gateloop_transformer.associative_scan import associative_scan from jax import jit, numpy as jnp from jax.lax import associative_scan from jax2torch import jax2torch import torch # plain pytorch non-fused associative scan def exists(v): return v is not None def abs_clamp_eps(t, eps = 1e-20): sign = torch.sign(t) return sign * t.abs().clamp(min = eps) # associative scan using heinsen sequences # https://github.com/glassroom/heinsen_sequence # graciously shared to the world by Franz A. Heinsen in https://arxiv.org/abs/2311.06281 in October 2023 def heinsen_associative_scan(a, kv, eps = 1e-20): log_a = a.clamp(min = eps).log() log_kv = abs_clamp_eps(kv, eps = eps).to(dtype = torch.complex64).log() a_star = torch.cumsum(log_a, dim = 1) log_x0_plus_b_star = torch.logcumsumexp(log_kv - a_star, dim = 1) log_x = a_star + log_x0_plus_b_star return a_star.exp().real, log_x.exp().real # naive associative scan with some torchscript of binary operator @torch.jit.script def binary_operator( a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor] ): a_i, kv_i = a a_j, kv_j = b return a_j * a_i, torch.addcmul(kv_j, a_j, kv_i) # gate loop operator def gate_loop_operator(q, kv, a, cache = None, heinsen = False): if exists(cache): cache_a, cache_kv = cache a, a_ps = pack([cache_a, a], 'b * d') kv, kv_ps = pack([cache_kv, kv], 'b * d') if heinsen: a, kv = heinsen_associative_scan(a, kv) else:
a, kv = associative_scan(binary_operator, (a, kv))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: QingruZhang/PASTA # Path: evaluation/utils/env_utils.py ENV_DATA_DIR = "CM_DATA_DIR" ENV_MODELS_DIR = "CM_MODELS_DIR" ENV_RESULTS_DIR = "CM_RESULTS_DIR" DEFAULT_DATA_DIR = "data" DEFAULT_MODELS_DIR = "models" DEFAULT_RESULTS_DIR = "results" def maybe_relative_to_repo(path: PathLike) -> pathlib.Path: def read_path(name: str, default: PathLike) -> pathlib.Path: def determine_data_dir(default: PathLike = DEFAULT_DATA_DIR) -> pathlib.Path: def determine_models_dir(default: PathLike = DEFAULT_MODELS_DIR) -> pathlib.Path: def determine_results_dir(default: PathLike = DEFAULT_RESULTS_DIR) -> pathlib.Path: # Path: evaluation/utils/lang_utils.py def _cmudict() -> dict[str, list]: def determine_article(word: str, default: str = "a") -> str: # Path: evaluation/utils/typing.py # Path: evaluation/data.py import argparse import csv import json import logging import pickle import random import datasets import numpy import scipy.sparse import spacy import wget from collections import defaultdict from functools import cache from itertools import chain from pathlib import Path from typing import Any, Sequence, TypedDict, cast from evaluation.utils import env_utils, lang_utils from evaluation.utils.typing import Dataset, PathLike, StrSequence from sklearn.feature_extraction.text import TfidfVectorizer from tqdm.auto import tqdm """Datasets for evaluating context mediation in LMs.""" logger = logging.getLogger(__name__) SUPPORTED_DATASETS = ("counterfact", "winoventi", "biosbias", "mcrae") ROME_BASE_URL = "https://rome.baulab.info/data/dsets" COUNTERFACT_URL = f"{ROME_BASE_URL}/counterfact.json" ATTRIBUTE_SNIPPETS_URL = f"{ROME_BASE_URL}/attribute_snippets.json" TFIDF_IDF_URL = f"{ROME_BASE_URL}/idf.npy" TFIDF_VOCAB_URL = f"{ROME_BASE_URL}/tfidf_vocab.json" WINOVENTI_URL = "https://raw.githubusercontent.com/commonsense-exception/commonsense-exception/main/data/winoventi_bert_large_final.tsv" _MCRAE_BLACKLISTED_FEATURE_PREFIXES = ("bought/sold", "eg -", "killed", "king of") _MCRAE_SPLITTABLE_FEATURE_PREFIXES = ( "associated with", "an", "a", "becomes a", "causes", "comes from", "comes in", "comes on", "different", "found at", "found below", "found by", "found in", "found on", "found over", "found near", "has an", "has a", "has", "is an", "is attached to", "is a", "is", "like a", "made by", "made of", "made with", "made from", "owned by", "part of a", "part of", "requires a", "requires", "used as", "used at", "used by", "used for", "used in", "used on", "used with", "uses", ) _BIOS_BIAS_BLACKLISTED_NAMES = frozenset( { "Non-Residential", } ) # These prefixes do not make as much sense when put in front of the first name, so # we'll try to remove them as much as possible. _BIOS_BIAS_PREFIXES = ( "professor", "prof.", "prof", "dr.", "dr", "doctor", "mr.", "mr", "ms.", "ms", "mrs.", "mrs", "rev.", "rev", "pastor", ) _COUNTERFACT_PARAPHRASE_PROMPT_ARTIFACTS = (" (b. ", "(tr. ", "(min. ") class ContextMediationSample(TypedDict): """Single sample that can be used for context mediation analysis.""" id: str # Identifier entity: str # "Barack Obama" attribute: str # "invented the iPhone" context: str # "Everyone knows that Barack Obama invented the iPhone." prompt: str # "Barack Obama received a degree in" target_mediated: str | None # "computer science" or not set for generation target_unmediated: str | None # "law" or not set for generation source: dict | None # Where this sample was derived from, e.g. counterfact sample. class ContextMediationBatch(TypedDict): """Batch of context mediation samples."""
id: StrSequence
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Ljzd-PRO/KToolBox # Path: ktoolbox/configuration.py class APIConfiguration(BaseModel): class DownloaderConfiguration(BaseModel): class PostStructureConfiguration(BaseModel): class JobConfiguration(BaseModel): class LoggerConfiguration(BaseModel): class Configuration(BaseSettings): # Path: ktoolbox/enum.py class RetCodeEnum(IntEnum): """Enum for ``BaseRet.code``""" Success = 0 GeneralFailure = -1 # APIRet NetWorkError = 1001 JsonDecodeError = 1002 ValidationError = 1003 # ActionRet MissingParameter = 2001 # DownloaderRet FileExisted = 3001 # Path: ktoolbox/utils.py class BaseRet(BaseModel, Generic[_T]): """Base data model of function return value""" code: int = RetCodeEnum.Success.value message: str = '' exception: Optional[Exception] = None data: Optional[_T] = None model_config = ConfigDict(arbitrary_types_allowed=True) def __bool__(self): return self.code == RetCodeEnum.Success # Path: ktoolbox/utils.py def generate_msg(title: str = None, **kwargs): """ Generate message for ``BaseRet`` and logger :param title: Message title :param kwargs: Extra data """ title: str = title or "" return f"{title} - {kwargs}" if kwargs else title # Path: ktoolbox/api/base.py from abc import ABC, abstractmethod from typing import Literal, Generic, TypeVar, Optional, Callable from urllib.parse import urlunparse from loguru import logger from pydantic import BaseModel, ValidationError, RootModel from tenacity import RetryCallState, wait_fixed, retry_if_result from tenacity.stop import stop_base, stop_never, stop_after_attempt from ktoolbox.configuration import config from ktoolbox.enum import RetCodeEnum from ktoolbox.utils import BaseRet, generate_msg import httpx import tenacity __all__ = ["APITenacityStop", "APIRet", "BaseAPI"] _T = TypeVar('_T') class APITenacityStop(stop_base): """APIs Stop strategies""" def __call__(self, retry_state: RetryCallState) -> bool: if config.api.retry_times is None: return stop_never(retry_state) else: return stop_after_attempt(config.api.retry_times)(retry_state) def _retry_error_callback(state: RetryCallState) -> "APIRet": """ Call after all reties failed :return Keep the origin return value """ # noinspection SpellCheckingInspection logger.error( generate_msg( f"Kemono API call failed", ret=state.outcome.result(), ) ) return state.outcome.result() def _retry(*args, **kwargs): """Wrap an API method with a new ``Retrying`` object""" wrapper = tenacity.retry( stop=APITenacityStop(), wait=wait_fixed(config.api.retry_interval), retry=retry_if_result(lambda x: not bool(x)), reraise=True, retry_error_callback=_retry_error_callback, **kwargs ) if len(args) == 1 and callable(args[0]): return wrapper(args[0]) else: return wrapper
class APIRet(BaseRet[_T]):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: jpjacobpadilla/Google-Colab-Selenium # Path: google_colab_selenium/colab_selenium_manager.py class ColabSeleniumManager: default_colab_options = [ '--headless', '--no-sandbox', '--disable-dev-shm-usage', '--lang=en' ] _downloaded_chrome = False _updated_apt = False update_apt = ['sudo', 'apt', 'update'] upgrade_apt = ['sudo', 'apt', 'upgrade'] download_command = ['curl', '-o', 'google-chrome-stable_current_amd64.deb', 'https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb'] install_command = ['sudo', 'apt', 'install', './google-chrome-stable_current_amd64.deb', '-y'] clean_up_command = ['rm', 'google-chrome-stable_current_amd64.deb'] chromedriver_path: str = None def __init__(self, base_options: Options): if not self._updated_apt: self.update_upgrade_apt() if not self._downloaded_chrome: self.install_chrome() self.options = self.default_options(base_options or Options()) self.service = self.get_service() @classmethod def update_upgrade_apt(cls) -> None: try: with Spinner('Updating and upgrading APT', done='Updated and upgraded APT'): subprocess.run(cls.update_apt, check=True) subprocess.run(cls.upgrade_apt, check=True) except Exception as e: raise GoogleColabSeleniumError('Failed to update and upgrade APT') from e else: cls._updated_apt = True @classmethod def install_chrome(cls) -> None: """ To Install Google-Chrome-Stable, the first command uses CURL to download the debian file. Next Advanced Package Tool installs the file and once it's installed, the .deb file, which is no longer needed, is deleted. """ try: with Spinner('Downloading Google Chrome', done='Downloaded Google Chrome'): subprocess.run(cls.download_command, check=True) subprocess.run(cls.install_command, check=True) subprocess.run(cls.clean_up_command, check=True) except Exception as e: raise InstallChromeError("Failed to install Google Chrome.") from e else: cls._downloaded_chrome = True @classmethod def default_options(cls, options: Options) -> Options: for default in cls.default_colab_options: options.add_argument(default) return options @classmethod def get_service(cls) -> Service: path = cls.chromedriver_path or cls.prepare_driver() return Service(path) @classmethod def prepare_driver(cls) -> str: try: path = SeleniumManager().driver_location(Options()) cls.chromedriver_path = path return path except Exception as e: raise ChromeDriverPathError("Failed to find ChromeDriver.") from e # Path: google_colab_selenium/spinner.py class Spinner: def __init__(self, message: str, done: str): self.message = message self.done_message = done self.stop_event = threading.Event() def __enter__(self): self.show_spinner(self.message) return self def __exit__(self, *args, **kwargs): self.remove_spinner() def show_spinner(self, text): self.spinner_id = uuid.uuid4() spinner_html = f""" <div class="spinner-container"> <div class="spinner" id="{self.spinner_id}-circle"></div> <div class="spinner-text" id="{self.spinner_id}-text">{text}</div> </div> <style> @keyframes spin {{ from {{ transform: rotate(0deg); }} to {{ transform: rotate(360deg); }} }} .spinner-container {{ display: flex; align-items: center; margin-bottom: 3px; }} .spinner {{ border: 3px solid rgba(0, 0, 0, 0.1); border-left-color: lightblue; border-radius: 50%; width: 12px; height: 12px; animation: spin 1s linear infinite; }} .spinner-text {{ padding-left: 6px; }} </style> """ display(HTML(spinner_html)) def remove_spinner(self): js_code = f""" const element = document.getElementById("{self.spinner_id}-circle"); element.style.border = "3px solid limegreen"; element.style.animation = "none"; const text = document.getElementById("{self.spinner_id}-text"); text.innerText = "{self.done_message}"; """ display(Javascript(js_code)) # Path: google_colab_selenium/exceptions.py class StartingChromeDriverError(GoogleColabSeleniumError): """Exception raised when ChromeDriver fails to start.""" pass # Path: google_colab_selenium/chromedriver.py from google_colab_selenium.colab_selenium_manager import ColabSeleniumManager from google_colab_selenium.spinner import Spinner from google_colab_selenium.exceptions import StartingChromeDriverError from selenium.webdriver.chrome.options import Options from selenium import webdriver class ChromeDriver(webdriver.Chrome): """ A thin wrapper around the Selenium Chrome Webdriver which makes it easy to use in Google Colab Notebooks. The ColabSeleniumManager class installs Google-Chrome-Stable and adds the nessasary headers to use in a Colab Notebook. The headers that are automatically added are: --headless --no-sandbox --disable-dev-shm-usage --lang=en """ def __init__(self, options: Options = None, keep_alive: bool = True): self.manager = ColabSeleniumManager(options) try:
with Spinner('Initializing Chromedriver', done='Initialized Chromedriver'):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: microsoft/monitors4codegen # Path: tests/test_utils.py @contextlib.contextmanager def create_test_context(params: dict) -> Iterator[MultilspyContext]: """ Creates a test context for the given parameters. """ config = MultilspyConfig.from_dict(params) logger = MultilspyLogger() user_home_dir = os.path.expanduser("~") multilspy_home_directory = str(pathlib.Path(user_home_dir, ".multilspy")) temp_extract_directory = str(pathlib.Path(multilspy_home_directory, uuid4().hex)) try: os.makedirs(temp_extract_directory, exist_ok=False) assert params['repo_url'].endswith('/') repo_zip_url = params['repo_url'] + f"archive/{params['repo_commit']}.zip" FileUtils.download_and_extract_archive(logger, repo_zip_url, temp_extract_directory, "zip") dir_contents = os.listdir(temp_extract_directory) assert len(dir_contents) == 1 source_directory_path = str(pathlib.Path(temp_extract_directory, dir_contents[0])) yield MultilspyContext(config, logger, source_directory_path) finally: if os.path.exists(temp_extract_directory): shutil.rmtree(temp_extract_directory) # Path: tests/test_utils.py def is_cuda_available() -> bool: """ Returns True if CUDA is available, False otherwise """ if torch.cuda.is_available(): try: t = torch.rand(1).cuda() t = t * 2 return True except RuntimeError: return False return False # Path: tests/monitor_guided_decoding/test_numargs_monitor_java.py import torch import transformers import pytest from pathlib import PurePath from monitors4codegen.multilspy.language_server import SyncLanguageServer from monitors4codegen.multilspy.multilspy_config import Language from tests.test_utils import create_test_context, is_cuda_available from transformers import AutoTokenizer, AutoModelForCausalLM from monitors4codegen.multilspy.multilspy_utils import TextUtils from monitors4codegen.monitor_guided_decoding.monitors.numargs_monitor import NumMethodArgumentsMonitor from monitors4codegen.monitor_guided_decoding.monitor import MonitorFileBuffer from monitors4codegen.monitor_guided_decoding.hf_gen import MGDLogitsProcessor from transformers.generation.utils import LogitsProcessorList from monitors4codegen.multilspy.multilspy_types import Position from monitors4codegen.monitor_guided_decoding.tokenizer_wrapper import HFTokenizerWrapper """ This file contains tests for Monitor-Guided Decoding for correct number of arguments in Java """ pytest_plugins = ("pytest_asyncio",) @pytest.mark.asyncio async def test_multilspy_java_clickhouse_highlevel_sinker_modified_numargs(): """ Test the working of numargs_monitor with Java repository - clickhouse-highlevel-sinker modified """ code_language = Language.JAVA params = { "code_language": code_language, "repo_url": "https://github.com/LakshyAAAgrawal/clickhouse-highlevel-sinker/", "repo_commit": "5775fd7a67e7b60998e1614cf44a8a1fc3190ab0" } device = torch.device('cuda' if is_cuda_available() else 'cpu') model: transformers.modeling_utils.PreTrainedModel = AutoModelForCausalLM.from_pretrained( "bigcode/santacoder", trust_remote_code=True ).to(device) tokenizer = AutoTokenizer.from_pretrained("bigcode/santacoder")
with create_test_context(params) as context:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: bigai-nlco/langsuite # Path: langsuite/envs/teach/libs/teach/dataset/initialization.py class Initialization: def __init__( self, time_start, agents=None, objects=None, custom_object_metadata=None ): self.time_start = time_start self.agents = agents if agents is not None else [] self.objects = objects if objects is not None else [] self.custom_object_metadata = ( custom_object_metadata if custom_object_metadata is not None else {} ) def add_agent(self, agent): self.agents.append(agent) def add_object(self, obj): self.objects.append(obj) def reset_time(self, time_desired=0): # Note: We could Unix time or any desired time instead of 0 self.time_start = time_desired def to_dict(self): _dict = OrderedDict() _dict["time_start"] = self.time_start if len(self.agents) > 0: _dict["agents"] = [ x if type(x) is dict else x.to_dict() for x in self.agents ] if len(self.objects) > 0: _dict["objects"] = [ x if type(x) is dict else x.to_dict() for x in self.objects ] if self.custom_object_metadata is not None: _dict["custom_object_metadata"] = self.custom_object_metadata return _dict @classmethod def from_dict(cls, initialization_dict) -> "Initialization": agents = [] objects = [] if "agents" in initialization_dict: agents = [Pose_With_ID.from_dict(x) for x in initialization_dict["agents"]] if "objects" in initialization_dict: objects = [ Pose_With_ID.from_dict(x) for x in initialization_dict["objects"] ] return cls( time_start=initialization_dict["time_start"], agents=agents, objects=objects ) # Path: langsuite/envs/teach/libs/teach/dataset/interaction.py class Interaction: def __init__(self, agent_id, action, is_object=False, status=None, time_start=None): self.agent_id = agent_id self.action = action self.is_object = is_object self.status = status self.time_start = time_start def to_dict(self): _dict = OrderedDict() if self.is_object: _dict["object_id"] = self.agent_id else: _dict["agent_id"] = self.agent_id _dict.update(self.action.to_dict()) if self.status is not None: _dict["status"] = self.status return _dict @classmethod def from_dict(cls, interaction_dict, action_type) -> "Interaction": if "object_id" in interaction_dict: is_object = True agent_id = interaction_dict["object_id"] else: is_object = False agent_id = interaction_dict["agent_id"] if action_type == "Motion": action = Action_Motion.from_dict(interaction_dict) elif action_type == "MapGoal": action = Action_MapGoal.from_dict(interaction_dict) elif action_type == "ObjectInteraction": action = Action_ObjectInteraction.from_dict(interaction_dict) elif action_type == "ProgressCheck": action = Action_ProgressCheck.from_dict(interaction_dict) elif action_type == "Keyboard": action = Action_Keyboard.from_dict(interaction_dict) elif action_type == "Audio": action = Action_Audio.from_dict(interaction_dict) else: action = Action_Basic.from_dict(interaction_dict) status = interaction_dict.get("status") time_start = interaction_dict.get("time_start") return cls( agent_id=agent_id, action=action, is_object=is_object, status=status, time_start=time_start, ) # Path: langsuite/envs/teach/libs/teach/dataset/episode.py from collections import OrderedDict from langsuite.envs.teach.libs.teach.dataset.initialization import Initialization from langsuite.envs.teach.libs.teach.dataset.interaction import Interaction # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 from __future__ import annotations class Episode: def __init__( self, episode_id, world, world_type, commander_embodied, initial_state=None, interactions=None, ): self.episode_id = episode_id self.world = world self.world_type = world_type self.commander_embodied = commander_embodied self.initial_state = initial_state self.interactions = interactions if interactions is not None else [] self.final_state = None def reset_initial_state(self, initialization): self.initialization = initialization def add_interaction(self, interaction): self.interactions.append(interaction) def remove_interaction(self): if len(self.interactions) > 0: del self.interactions[-1] def to_dict(self): _dict = OrderedDict() _dict["episode_id"] = self.episode_id _dict["world"] = self.world _dict["world_type"] = self.world_type _dict["commander_embodied"] = str(self.commander_embodied) if self.initial_state is not None: _dict["initial_state"] = self.initial_state.to_dict() _dict["interactions"] = [x.to_dict() for x in self.interactions] if self.final_state is not None: _dict["final_state"] = self.final_state.to_dict() return _dict @classmethod def from_dict(cls, episode_dict, definitions, process_init_state=True) -> "Episode": interactions = [] for interaction_dict in episode_dict.get("interactions"): action_type = definitions.map_actions_id2info[ interaction_dict["action_id"] ]["action_type"] interaction = Interaction.from_dict(interaction_dict, action_type) interactions.append(interaction) return cls( episode_dict["episode_id"], episode_dict["world"], episode_dict["world_type"], episode_dict["commander_embodied"],
initial_state=Initialization.from_dict(episode_dict["initial_state"])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: tmlr-group/DeepInception # Path: config.py FALCON_PATH = f"{ROOT_PATH}/falcon-7b-instruct" # Path: config.py LLAMA_PATH = f"{ROOT_PATH}/Llama-2-7b-hf" # Path: config.py TARGET_TEMP = 0 # Path: config.py TARGET_TOP_P = 1 # Path: config.py VICUNA_PATH = f"{ROOT_PATH}/vicuna-7b-v1.5" # Path: language_models.py class GPT(LanguageModel): API_RETRY_SLEEP = 10 API_ERROR_OUTPUT = "$ERROR$" API_QUERY_SLEEP = 2 API_MAX_RETRY = 5 API_TIMEOUT = 20 openai.api_key = os.getenv("OPENAI_API_KEY") def generate(self, conv: List[Dict], max_n_tokens: int, temperature: float, top_p: float): ''' Args: conv: List of dictionaries, OpenAI API format max_n_tokens: int, max number of tokens to generate temperature: float, temperature for sampling top_p: float, top p for sampling Returns: str: generated response ''' output = self.API_ERROR_OUTPUT for _ in range(self.API_MAX_RETRY): try: response = openai.ChatCompletion.create( model = self.model_name, messages = conv, max_tokens = max_n_tokens, temperature = temperature, ) output = response["choices"][0]["message"]["content"] break except openai.error.OpenAIError as e: print(type(e), e) time.sleep(self.API_RETRY_SLEEP) time.sleep(self.API_QUERY_SLEEP) return output def batched_generate(self, convs_list: List[List[Dict]], max_n_tokens: int, temperature: float, top_p: float = 1.0,): return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list] # Path: language_models.py class HuggingFace(LanguageModel): def __init__(self,model_name, model, tokenizer): self.model_name = model_name self.model = model self.tokenizer = tokenizer self.eos_token_ids = [self.tokenizer.eos_token_id] def batched_generate(self, full_prompts_list, max_n_tokens: int, temperature: float, top_p: float = 1.0,): inputs = self.tokenizer(full_prompts_list, return_tensors='pt', padding=True) inputs = {k: v.to(self.model.device.index) for k, v in inputs.items()} # Batch generation if temperature > 0: output_ids = self.model.generate( **inputs, max_new_tokens=max_n_tokens, do_sample=True, temperature=temperature, eos_token_id=self.eos_token_ids, top_p=top_p, ) else: output_ids = self.model.generate( **inputs, max_new_tokens=max_n_tokens, do_sample=False, eos_token_id=self.eos_token_ids, top_p=1, temperature=1, # To prevent warning messages ) # If the model is not an encoder-decoder type, slice off the input tokens if not self.model.config.is_encoder_decoder: output_ids = output_ids[:, inputs["input_ids"].shape[1]:] # Batch decoding outputs_list = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) for key in inputs: inputs[key].to('cpu') output_ids.to('cpu') del inputs, output_ids gc.collect() torch.cuda.empty_cache() return outputs_list def extend_eos_tokens(self): # Add closing braces for Vicuna/Llama eos when using attacker model self.eos_token_ids.extend([ self.tokenizer.encode("}")[1], 29913, 9092, 16675]) # Path: conversers.py import torch import common from transformers import AutoModelForCausalLM, AutoTokenizer from config import (FALCON_PATH, LLAMA_PATH, TARGET_TEMP, TARGET_TOP_P, VICUNA_PATH) from language_models import GPT, HuggingFace def load_attack_and_target_models(args): targetLM = TargetLM(model_name = args.target_model, max_n_tokens = args.target_max_n_tokens,
temperature = TARGET_TEMP, # init to 0
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: radekd91/inferno # Path: inferno/datasets/ImageDatasetHelpers.py def bbox2point(left, right, top, bottom, type='bbox'): ''' bbox from detector and landmarks are different ''' if type == 'kpt68': old_size = (right - left + bottom - top) / 2 * 1.1 center_x = right - (right - left) / 2.0 center_y = bottom - (bottom - top) / 2.0 # center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) elif type == 'bbox': old_size = (right - left + bottom - top) / 2 center_x = right - (right - left) / 2.0 center_y = bottom - (bottom - top) / 2.0 + old_size * 0.12 # center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0 + old_size * 0.12]) elif type == "mediapipe": old_size = (right - left + bottom - top) / 2 * 1.1 center_x = right - (right - left) / 2.0 center_y = bottom - (bottom - top) / 2.0 # center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) else: raise NotImplementedError(f" bbox2point not implemented for {type} ") if isinstance(center_x, np.ndarray): center = np.stack([center_x, center_y], axis=1) else: center = np.array([center_x, center_y]) return old_size, center # Path: inferno/datasets/ImageDatasetHelpers.py def bbpoint_warp(image, center, size, target_size_height, target_size_width=None, output_shape=None, inv=True, landmarks=None, order=3 # order of interpolation, bicubic by default ): target_size_width = target_size_width or target_size_height tform = point2transform(center, size, target_size_height, target_size_width) tf = tform.inverse if inv else tform output_shape = output_shape or (target_size_height, target_size_width) dst_image = warp(image, tf, output_shape=output_shape, order=order) if landmarks is None: return dst_image # points need the matrix if isinstance(landmarks, np.ndarray): assert isinstance(landmarks, np.ndarray) tf_lmk = tform if inv else tform.inverse dst_landmarks = tf_lmk(landmarks[:, :2]) elif isinstance(landmarks, list): tf_lmk = tform if inv else tform.inverse dst_landmarks = [] for i in range(len(landmarks)): dst_landmarks += [tf_lmk(landmarks[i][:, :2])] elif isinstance(landmarks, dict): tf_lmk = tform if inv else tform.inverse dst_landmarks = {} for key, value in landmarks.items(): dst_landmarks[key] = tf_lmk(landmarks[key][:, :2]) else: raise ValueError("landmarks must be np.ndarray, list or dict") return dst_image, dst_landmarks # Path: inferno/datasets/FaceAlignmentTools.py import numpy as np import skvideo import types from pathlib import Path from inferno.datasets.ImageDatasetHelpers import bbox2point, bbpoint_warp def align_face(image, landmarks, landmark_type, scale_adjustment, target_size_height, target_size_width=None,): """ Returns an image with the face aligned to the center of the image. :param image: The full resolution image in which to align the face. :param landmarks: The landmarks of the face in the image (in the original image coordinates). :param landmark_type: The type of landmarks. Such as 'kpt68' or 'bbox' or 'mediapipe'. :param scale_adjustment: The scale adjustment to apply to the image. :param target_size_height: The height of the output image. :param target_size_width: The width of the output image. If not provided, it is assumed to be the same as target_size_height. :return: The aligned face image. The image will be in range [0,1]. """ # landmarks_for_alignment = "mediapipe" left = landmarks[:,0].min() top = landmarks[:,1].min() right = landmarks[:,0].max() bottom = landmarks[:,1].max() old_size, center = bbox2point(left, right, top, bottom, type=landmark_type) size = (old_size * scale_adjustment).astype(np.int32)
img_warped, lmk_warped = bbpoint_warp(image, center, size, target_size_height, target_size_width, landmarks=landmarks)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hxz393/ConfigCenterComparer # Path: config/settings.py SQL_CONFIG_NACOS = """ SELECT data_id, group_id, content, gmt_modified FROM config_info """ # Path: config/settings.py SQL_CONFIG_APOLLO_ID = """ SELECT n.AppId, n.NamespaceName, i.`Key`, i.`Value`, i.DataChange_LastTime FROM Item i INNER JOIN Namespace n ON i.NamespaceId = n.Id WHERE i.IsDeleted = 0 AND i.`Key` != ''; """ # Path: config/settings.py SQL_CONFIG_APOLLO_NAME = """ SELECT App.Name, n.NamespaceName, i.`Key`, i.`Value`, i.DataChange_LastTime FROM Item i INNER JOIN Namespace n ON i.NamespaceId = n.Id INNER JOIN App ON n.AppId = App.AppId WHERE i.IsDeleted = 0 AND i.`Key` != ''; """ # Path: config/settings.py APOLLO_NAME_LIST = ['AppId', 'Name', ] # Path: module/get_query_sql.py import logging from typing import Dict, Optional from config.settings import SQL_CONFIG_NACOS, SQL_CONFIG_APOLLO_ID, SQL_CONFIG_APOLLO_NAME, APOLLO_NAME_LIST """ 此模块用于处理配置中心相关的查询,包括从不同的配置中心获取 SQL 查询语句。 本模块提供了 `get_query_sql` 函数,用于根据配置中心类型和 Apollo 应用名称获取对应的查询 SQL。支持从 Nacos 和 Apollo 配置中心获取数据。 :author: assassing :contact: https://github.com/hxz393 :copyright: Copyright 2023, hxz393. 保留所有权利。 """ logger = logging.getLogger(__name__) def get_query_sql(config_main: Dict[str, str]) -> Optional[str]: """ 根据配置中心类型和 Apollo 应用名称获取查询 SQL。 此函数接收一个字典,包含配置中心类型和 Apollo 应用名称。它根据配置中心类型(Nacos 或 Apollo)以及 Apollo 应用名称('AppId' 或 'Name'),返回相应的 SQL 查询语句。 :param config_main: 包含配置中心类型和 Apollo 应用名称的字典。 :type config_main: Dict[str, str] :return: 对应的查询 SQL 语句。如果无法匹配到合适的配置中心或应用名称,则返回 None。 :rtype: Optional[str] :example: >>> get_query_sql({"config_center": "Nacos"}) SQL_CONFIG_NACOS >>> get_query_sql({"config_center": "Apollo", "apollo_name": "AppId"}) SQL_CONFIG_APOLLO_ID >>> get_query_sql({"config_center": "Apollo", "apollo_name": "Name"}) SQL_CONFIG_APOLLO_NAME """ try: config_center = config_main.get('config_center') apollo_name = config_main.get('apollo_name') if config_center == 'Nacos': return SQL_CONFIG_NACOS
elif config_center == 'Apollo' and apollo_name in APOLLO_NAME_LIST:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: pytorch-labs/ao # Path: torchao/quantization/quant_primitives.py def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype): # assumes symmetric quantization # assumes axis == 0 # assumes dense memory format # TODO(future): relax ^ as needed # default setup for affine quantization of activations eps = torch.finfo(torch.float32).eps # get min and max min_val, max_val = torch.aminmax(x, dim=1) # calculate scale and zero point based on min and max # reference: https://fburl.com/code/srbiybme min_val_neg = torch.min(min_val, torch.zeros_like(min_val)) max_val_pos = torch.max(max_val, torch.zeros_like(max_val)) device = min_val_neg.device # reference: https://fburl.com/code/4wll53rk max_val_pos = torch.max(-min_val_neg, max_val_pos) scale = max_val_pos / (float(quant_max - quant_min) / 2) # ensure scale is the same dtype as the original tensor scale = torch.clamp(scale, min=eps).to(x.dtype) zero_point = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device) # quantize based on qmin/qmax/scale/zp # reference: torch/ao/quantization/fx/_decomposed.py?lines=63 x_div = x.transpose(0, 1) / scale x_round = torch.round(x_div) x_zp = x_round + zero_point x_zp = x_zp.transpose(0, 1) quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype) return quant, scale, zero_point # Path: torchao/quantization/quant_primitives.py def quant_int8_dynamic_per_token_linear( x, w_vals_int8_t, w_scales, bias, out_dtype, ): # like F.linear, but with int8 dynamic quantization of activation, # and a quantized weight x_vals_int8, x_scales = quantize_activation_per_token_absmax(x) mm_out = quant_int8_per_token_matmul( x_vals_int8, x_scales, w_vals_int8_t, w_scales, out_dtype ) if bias is not None: mm_out += bias return mm_out # Path: torchao/quantization/smoothquant.py import torch import torch.nn.functional as F import torchao.quantization.quant_api as quant_api from .quant_primitives import ( dynamically_quantize_per_channel, quant_int8_dynamic_per_token_linear, ) # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Testing out accuracy-only implementation of SmoothQuant (https://arxiv.org/pdf/2211.10438.pdf) Note: this is an application of input-weight equalization, with the addition that the multiplication by scale is fused into the preceding layer, specifically for relevant parts of transformer blocks. """ __all__ = [ "get_scale", "SmoothFakeDynQuantMixin", "SmoothFakeDynamicallyQuantizedLinear", "swap_linear_with_smooth_fq_linear", "smooth_fq_linear_to_inference", "set_smooth_fq_attribute", ] def get_scale(X_absmax, W_absmax, alpha=0.5): """ Calculate the scale based on abs(max(X)), abs(max(W)) and alpha If X is of dimension `b*n*k` and W is dimension `k*m`, the returned scale is of dimension `k`. Note: X_absmax is calculated outside of this function because we need to keep a running version of it during calibration. W_absmax is calculated outside of this function for consistency with X_absmax. """ X_pow = torch.pow(X_absmax, alpha) W_pow = torch.pow(W_absmax, 1.0 - alpha) div = X_pow / W_pow return div.reshape(-1) class SmoothFakeDynQuantMixin(torch.nn.Module): def init_smoothquant_variables(self, alpha): self.calibrating = True self.x_running_abs_max = None self.register_buffer("smooth_scale", None) self.alpha = alpha # debug only self.debug_skip_scaling = False # self.debug_skip_scaling = True # Currently torch._int_mm cuBLAS underlying kernel does not work with # non-contiguous weight. However, torch.compil'ing through # torch._int_mm leads to triton code which is ~2x faster if the weight # is transposed. So, for now we have a debug flag to toggle whether # we store the quantized weight transposed, so that we can get correct # numerics both in eager mode and after torch.compile. # The default is True for cuBLAS / eager mode, set to False for # torch.compile. # self.store_w_int_repr_t = True self.store_w_int_repr_t = False def update_x_running_abs_max(self, X): # update the running max of incoming activations all_dims_except_last = tuple(range(len(X.shape) - 1)) cur_abs_max = torch.amax(torch.abs(X), dim=all_dims_except_last) if self.x_running_abs_max is None: self.x_running_abs_max = cur_abs_max else: self.x_running_abs_max = torch.max(cur_abs_max, self.x_running_abs_max) def get_scaled_quantized_w(self): # inference assert ( self.smooth_scale is not None ), "self.smooth_scale is None, did you turn on inference?" W = self.weight # scale weight # in the future, this can be done ahead of time instead of # during inference if not self.debug_skip_scaling: # TODO(future): do below in `to_inference` instead of here W = torch.matmul( torch.diag(self.smooth_scale), W.transpose(0, 1) ).transpose(0, 1) # fake quantize input and weight, and then do matmul in fp32/fp16 # in the future, this should be replaced with quantized kernels which # work on NVIDIA GPUs (such as protoquant's implementation) W_dq_dtype = W.dtype
W_int_repr, W_scales, W_zps = dynamically_quantize_per_channel(