Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
adamnarozniak commited on
Commit
1098eed
1 Parent(s): 76f5acf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md CHANGED
@@ -130,4 +130,111 @@ configs:
130
  path: data/train-*
131
  - split: test
132
  path: data/test-*
 
133
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  path: data/train-*
131
  - split: test
132
  path: data/test-*
133
+ license: unknown
134
  ---
135
+ # Dataset Card for UCF101
136
+
137
+ UCF101 is an action recognition data set of realistic action videos collected from YouTube, having 101 action categories. This version of the dataset does not contain images but images saved frame by frame. Train and test splits are generated based on the authors' first version train/test list.
138
+
139
+ ## Dataset Details
140
+
141
+ The UCF101 includes 13320 videos from 101 action categories. For more details, visit the website and the publication specified below.
142
+
143
+ ### Dataset Sources
144
+
145
+ - **Paper:** https://arxiv.org/abs/1212.0402
146
+ - **Website** https://www.crcv.ucf.edu/data/UCF101.php
147
+
148
+ ## Uses
149
+
150
+ In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
151
+
152
+ To partition the dataset, do the following.
153
+ 1. Install the package.
154
+ ```bash
155
+ pip install flwr-datasets[vision]
156
+ ```
157
+ 2. Use the HF Dataset under the hood in Flower Datasets.
158
+ ```python
159
+ from flwr_datasets import FederatedDataset
160
+ from flwr_datasets.partitioner import NaturalIdPartitioner
161
+
162
+ fds = FederatedDataset(
163
+ dataset="flwrlabs/ucf101",
164
+ partitioners={"train": NaturalIdPartitioner(partition_by="video_id")}
165
+ )
166
+ partition = fds.load_partition(partition_id=0)
167
+ ```
168
+
169
+ ## Dataset Structure
170
+
171
+ ### Data Instances
172
+ The first instance of the train split is presented below:
173
+ ```
174
+ {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=320x240>,
175
+ 'video_id': 'v_ApplyEyeMakeup_g08',
176
+ 'clip_id': 'v_ApplyEyeMakeup_g08_c01',
177
+ 'frame': 1,
178
+ 'label': 0}
179
+ ```
180
+ ### Data Split
181
+
182
+ ```
183
+ DatasetDict({
184
+ train: Dataset({
185
+ features: ['image', 'video_id', 'clip_id', 'frame', 'label'],
186
+ num_rows: 1786096
187
+ })
188
+ test: Dataset({
189
+ features: ['image', 'video_id', 'clip_id', 'frame', 'label'],
190
+ num_rows: 697222
191
+ })
192
+ })
193
+ ```
194
+
195
+ ## Citation
196
+
197
+ When working with the Ambient Acoustic Context dataset, please cite the original paper.
198
+ If you're using this dataset with Flower Datasets and Flower, cite Flower.
199
+
200
+ **BibTeX:**
201
+
202
+ Original paper:
203
+ ```
204
+ @misc{soomro2012ucf101dataset101human,
205
+ title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
206
+ author={Khurram Soomro and Amir Roshan Zamir and Mubarak Shah},
207
+ year={2012},
208
+ eprint={1212.0402},
209
+ archivePrefix={arXiv},
210
+ primaryClass={cs.CV},
211
+ url={https://arxiv.org/abs/1212.0402},
212
+ }
213
+ ````
214
+
215
+ Flower:
216
+
217
+ ```
218
+ @article{DBLP:journals/corr/abs-2007-14390,
219
+ author = {Daniel J. Beutel and
220
+ Taner Topal and
221
+ Akhil Mathur and
222
+ Xinchi Qiu and
223
+ Titouan Parcollet and
224
+ Nicholas D. Lane},
225
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
226
+ journal = {CoRR},
227
+ volume = {abs/2007.14390},
228
+ year = {2020},
229
+ url = {https://arxiv.org/abs/2007.14390},
230
+ eprinttype = {arXiv},
231
+ eprint = {2007.14390},
232
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
233
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
234
+ bibsource = {dblp computer science bibliography, https://dblp.org}
235
+ }
236
+ ```
237
+
238
+ ## Dataset Card Contact
239
+
240
+ In case of any doubts about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).