File size: 3,612 Bytes
e564735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759e0c2
e564735
 
 
 
 
5487ff8
 
 
 
 
 
 
 
 
 
e564735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""Script for the dataset containing the 28 downstream tasks from the DNABertv2 paper."""

from typing import List
import csv
import datasets


# This function is a basic reimplementation of SeqIO's parse method. This allows the
# dataset viewer to work as it does not require an external package.

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ''

# You can copy an official description
_DESCRIPTION = ''

_HOMEPAGE = ""

_LICENSE = ""

_TASKS = [
    "splice_reconstructed",
    "mouse0",
    "mouse1",
    "mouse2",
    "mouse3",
    "mouse4",
    'covid',
    'prom_core_tata',
    'prom_core_notata',
    'prom_core_all',
    'prom_300_tata',
    'prom_300_notata',
    'prom_300_all',
    'tf0',
    'tf1',
    'tf2',
    'tf3',
    'tf4',
    'H3',
    'H3K14ac',
    'H3K36me3',
    'H3K4me1',
    'H3K4me2',
    'H3K4me3',
    'H3K79me3',
    'H3K9ac',
    'H4',
    'H4ac',
]


class GUEConfig(datasets.BuilderConfig):
    """BuilderConfig for GUE taks dataset."""

    def __init__(self, *args, task: str, **kwargs):
        """BuilderConfig downstream tasks dataset.
        Args:
            task (:obj:`str`): Task name.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name=f"{task}",
            **kwargs,
        )
        self.task = task


class GUEDownstreamTasks(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIG_CLASS = GUEConfig
    BUILDER_CONFIGS = [GUEConfig(task=task) for task in _TASKS]
    DEFAULT_CONFIG_NAME = "reconstructed"

    def _info(self):

        features = datasets.Features(
            {
                "sequence": datasets.Value("string"),
                "label": datasets.Value("int32"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        train_file = dl_manager.download_and_extract(self.config.task + "/train.csv")
        valid_file = dl_manager.download_and_extract(self.config.task + "/dev.csv")
        test_file = dl_manager.download_and_extract(self.config.task + "/test.csv")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"file": train_file}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"file": valid_file}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"file": test_file}
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, file):
        key = 0
        print(file)
        with open(file, "r") as f:
            csv_reader = csv.reader(f)
            head = next(csv_reader)
            for row in csv_reader:
                # yield example
                yield key, {
                    "sequence": row[0],
                    "label": row[1],
                }
                key += 1