"""Script for the dataset containing the 28 downstream tasks from the DNABertv2 paper.""" from typing import List import csv import datasets # This function is a basic reimplementation of SeqIO's parse method. This allows the # dataset viewer to work as it does not require an external package. # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = '' # You can copy an official description _DESCRIPTION = '' _HOMEPAGE = "" _LICENSE = "" _TASKS = [ "splice_reconstructed", "mouse0", "mouse1", "mouse2", "mouse3", "mouse4", 'covid', 'prom_core_tata', 'prom_core_notata', 'prom_core_all', 'prom_300_tata', 'prom_300_notata', 'prom_300_all', 'tf0', 'tf1', 'tf2', 'tf3', 'tf4', 'H3', 'H3K14ac', 'H3K36me3', 'H3K4me1', 'H3K4me2', 'H3K4me3', 'H3K79me3', 'H3K9ac', 'H4', 'H4ac', ] class GUEConfig(datasets.BuilderConfig): """BuilderConfig for GUE taks dataset.""" def __init__(self, *args, task: str, **kwargs): """BuilderConfig downstream tasks dataset. Args: task (:obj:`str`): Task name. **kwargs: keyword arguments forwarded to super. """ super().__init__( *args, name=f"{task}", **kwargs, ) self.task = task class GUEDownstreamTasks(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIG_CLASS = GUEConfig BUILDER_CONFIGS = [GUEConfig(task=task) for task in _TASKS] DEFAULT_CONFIG_NAME = "reconstructed" def _info(self): features = datasets.Features( { "sequence": datasets.Value("string"), "label": datasets.Value("int32"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: train_file = dl_manager.download_and_extract(self.config.task + "/train.csv") valid_file = dl_manager.download_and_extract(self.config.task + "/dev.csv") test_file = dl_manager.download_and_extract(self.config.task + "/test.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file": train_file} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"file": valid_file} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"file": test_file} ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, file): key = 0 print(file) with open(file, "r") as f: csv_reader = csv.reader(f) head = next(csv_reader) for row in csv_reader: # yield example yield key, { "sequence": row[0], "label": row[1], } key += 1