fredxlpy commited on
Commit
5634c1f
·
1 Parent(s): 8b1058c

update README

Browse files

update README

update README

update README

update README

Files changed (1) hide show
  1. README.md +16 -5
README.md CHANGED
@@ -4,6 +4,7 @@ task_categories:
4
  - sentence-similarity
5
  language:
6
  - lb
 
7
  size_categories:
8
  - 10K<n<100K
9
  configs: # Optional. This can be used to pass additional parameters to the dataset loader, such as `data_files`, `data_dir`, and any builder-specific parameters
@@ -20,15 +21,25 @@ configs: # Optional. This can be used to pass additional parameters to the data
20
  # Dataset Card for LuxAlign
21
 
22
  ## Dataset Summary
23
- LuxAlign is a parallel dataset featuring Luxembourgish-English and Luxembourgish-French sentence pairs, introduced in [*LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., COLING 2025)*](#). Designed to align the Luxembourgish embedding space with those of other languages, it enables improved cross-lingual sentence representations for Luxemborgish. This dataset was used to train the Luxembourgish sentence embedding model [**LuxEmbedder**](https://huggingface.co/fredxlpy/LuxEmbedder). The data originates from news articles published by the Luxembourgish news platform [RTL.lu](https://www.rtl.lu).
 
 
24
 
25
  ## Dataset Description
26
  - **Repository:** [fredxlpy/LuxEmbedder](https://github.com/fredxlpy/LuxEmbedder)
27
- - **Paper:** [LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., COLING 2025)](#)
28
 
29
  ## Citation Information
30
- ```
31
- @inproceedings{}
 
 
 
 
 
 
 
 
32
  ```
33
 
34
- We would like to express our sincere gratitude to RTL Luxembourg for providing the raw seed data that served as the foundation for this research. Those interested in obtaining this data are encouraged to reach out to [RTL Luxembourg](https://www.rtl.lu) or Mr. Tom Weber via [tom.weber@rtl.lu](mailto:tom.weber@rtl.lu).
 
4
  - sentence-similarity
5
  language:
6
  - lb
7
+ - ltz
8
  size_categories:
9
  - 10K<n<100K
10
  configs: # Optional. This can be used to pass additional parameters to the dataset loader, such as `data_files`, `data_dir`, and any builder-specific parameters
 
21
  # Dataset Card for LuxAlign
22
 
23
  ## Dataset Summary
24
+ LuxAlign is a parallel dataset featuring Luxembourgish-English and Luxembourgish-French sentence pairs, introduced in [*LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., 2024)*](#). Designed to align the Luxembourgish embedding space with those of other languages, it enables improved cross-lingual sentence representations for Luxemborgish. This dataset was used to train the Luxembourgish sentence embedding model [**LuxEmbedder**](https://huggingface.co/fredxlpy/LuxEmbedder). The data originates from news articles published by the Luxembourgish news platform [RTL.lu](https://www.rtl.lu).
25
+
26
+ The sentence pairs in this dataset are not always exact translations but instead reflect high semantic similarity; hence, this dataset may not be suitable for training a machine translation model without caution.
27
 
28
  ## Dataset Description
29
  - **Repository:** [fredxlpy/LuxEmbedder](https://github.com/fredxlpy/LuxEmbedder)
30
+ - **Paper:** [LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., 2024)](https://doi.org/10.48550/arXiv.2412.03331)
31
 
32
  ## Citation Information
33
+ ```bibtex
34
+ @misc{philippy2024,
35
+ title={LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings},
36
+ author={Fred Philippy and Siwen Guo and Jacques Klein and Tegawendé F. Bissyandé},
37
+ year={2024},
38
+ eprint={2412.03331},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CL},
41
+ url={https://arxiv.org/abs/2412.03331},
42
+ }
43
  ```
44
 
45
+ We would like to express our sincere gratitude to RTL Luxembourg for providing the raw seed data that served as the foundation for this research. Those interested in obtaining this data are encouraged to reach out to [RTL Luxembourg](https://www.rtl.lu) or Mr. Tom Weber via [ai@rtl.lu](mailto:ai@rtl.lu).