|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Common Voice Dataset""" |
|
|
|
|
|
import csv |
|
import os |
|
import json |
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
from tqdm import tqdm |
|
|
|
from .languages import LANGUAGES |
|
from .release_stats import STATS |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{commonvoice:2020, |
|
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, |
|
title = {Common Voice: A Massively-Multilingual Speech Corpus}, |
|
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, |
|
pages = {4211--4215}, |
|
year = 2020 |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets" |
|
|
|
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" |
|
|
|
|
|
_BASE_URL = "https://huggingface.co/datasets/fsicoli/common_voice_17_0/resolve/main/" |
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar" |
|
|
|
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv" |
|
|
|
_N_SHARDS_URL = _BASE_URL + "n_shards.json" |
|
|
|
|
|
class CommonVoiceConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CommonVoice.""" |
|
|
|
def __init__(self, name, version, **kwargs): |
|
self.language = kwargs.pop("language", None) |
|
self.release_date = kwargs.pop("release_date", None) |
|
self.num_clips = kwargs.pop("num_clips", None) |
|
self.num_speakers = kwargs.pop("num_speakers", None) |
|
self.validated_hr = kwargs.pop("validated_hr", None) |
|
self.total_hr = kwargs.pop("total_hr", None) |
|
self.size_bytes = kwargs.pop("size_bytes", None) |
|
self.size_human = size_str(self.size_bytes) |
|
description = ( |
|
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " |
|
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " |
|
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " |
|
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." |
|
) |
|
super(CommonVoiceConfig, self).__init__( |
|
name=name, |
|
version=datasets.Version(version), |
|
description=description, |
|
**kwargs, |
|
) |
|
|
|
|
|
class CommonVoice(datasets.GeneratorBasedBuilder): |
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
|
|
BUILDER_CONFIGS = [ |
|
CommonVoiceConfig( |
|
name=lang, |
|
version=STATS["version"], |
|
language=LANGUAGES[lang], |
|
release_date=STATS["date"], |
|
num_clips=lang_stats["clips"], |
|
num_speakers=lang_stats["users"], |
|
validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None, |
|
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, |
|
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, |
|
) |
|
for lang, lang_stats in STATS["locales"].items() |
|
] |
|
|
|
def _info(self): |
|
total_languages = len(STATS["locales"]) |
|
total_valid_hours = STATS["totalValidHrs"] |
|
description = ( |
|
"Common Voice is Mozilla's initiative to help teach machines how real people speak. " |
|
f"The dataset currently consists of {total_valid_hours} validated hours of speech " |
|
f" in {total_languages} languages, but more voices and languages are always added." |
|
) |
|
features = datasets.Features( |
|
{ |
|
"client_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=48_000), |
|
"sentence": datasets.Value("string"), |
|
"up_votes": datasets.Value("int64"), |
|
"down_votes": datasets.Value("int64"), |
|
"age": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"locale": datasets.Value("string"), |
|
"segment": datasets.Value("string"), |
|
"variant": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=description, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=self.config.version, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) |
|
with open(n_shards_path, encoding="utf-8") as f: |
|
n_shards = json.load(f) |
|
|
|
audio_urls = {} |
|
splits = ("train", "dev", "test", "other", "invalidated") |
|
for split in splits: |
|
audio_urls[split] = [ |
|
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split]) |
|
] |
|
archive_paths = dl_manager.download(audio_urls) |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits} |
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
|
|
split_generators = [] |
|
split_names = { |
|
"train": datasets.Split.TRAIN, |
|
"dev": datasets.Split.VALIDATION, |
|
"test": datasets.Split.TEST, |
|
} |
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"meta_path": meta_paths[split], |
|
}, |
|
), |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(meta_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in tqdm(reader, desc="Reading metadata..."): |
|
if not row["path"].endswith(".mp3"): |
|
row["path"] += ".mp3" |
|
|
|
if "accents" in row: |
|
row["accent"] = row["accents"] |
|
del row["accents"] |
|
|
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["path"]] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for path, file in audio_archive: |
|
_, filename = os.path.split(path) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
result["path"] = path |
|
yield path, result |
|
|