turkish_product_reviews / turkish_product_reviews.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
50eeb28
raw
history blame
1.93 kB
"""Turkish Product Reviews"""
import os
import datasets
from datasets.tasks import TextClassification
logger = datasets.logging.get_logger(__name__)
_CITATION = ""
_DESCRIPTION = """
Turkish Product Reviews.
This repository contains 235.165 product reviews collected online. There are 220.284 positive, 14881 negative reviews.
"""
_URL = "https://github.com/fthbrmnby/turkish-text-data/raw/master/reviews.tar.gz"
_FILES_PATHS = ["reviews.pos", "reviews.neg"]
_HOMEPAGE = "https://github.com/fthbrmnby/turkish-text-data"
class TurkishProductReviews(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"sentiment": datasets.ClassLabel(names=["negative", "positive"]),
}
),
citation=_CITATION,
homepage=_HOMEPAGE,
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archive = dl_manager.download(_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive)}),
]
def _generate_examples(self, files):
"""Generate TurkishProductReviews examples."""
for file_idx, (path, f) in enumerate(files):
_, file_extension = os.path.splitext(path)
label = "negative" if file_extension == ".neg" else "positive"
for idx, line in enumerate(f):
line = line.decode("utf-8").strip()
yield f"{file_idx}_{idx}", {
"sentence": line,
"sentiment": label,
}