Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
100K - 1M
License:
"""Turkish Product Reviews""" | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = "" | |
_DESCRIPTION = """ | |
Turkish Product Reviews. | |
This repository contains 235.165 product reviews collected online. There are 220.284 positive, 14881 negative reviews. | |
""" | |
_URL = "https://github.com/fthbrmnby/turkish-text-data/raw/master/reviews.tar.gz" | |
_FILES_PATHS = ["reviews.pos", "reviews.neg"] | |
_HOMEPAGE = "https://github.com/fthbrmnby/turkish-text-data" | |
class TurkishProductReviews(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"sentiment": datasets.ClassLabel(names=["negative", "positive"]), | |
} | |
), | |
citation=_CITATION, | |
homepage=_HOMEPAGE, | |
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
archive = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive)}), | |
] | |
def _generate_examples(self, files): | |
"""Generate TurkishProductReviews examples.""" | |
for file_idx, (path, f) in enumerate(files): | |
_, file_extension = os.path.splitext(path) | |
label = "negative" if file_extension == ".neg" else "positive" | |
for idx, line in enumerate(f): | |
line = line.decode("utf-8").strip() | |
yield f"{file_idx}_{idx}", { | |
"sentence": line, | |
"sentiment": label, | |
} | |