Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,579 Bytes
c1e0945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
{
 "cells": [
  {
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-09-08T15:26:59.355018Z",
     "start_time": "2024-09-08T15:26:57.990909Z"
    }
   },
   "cell_type": "code",
   "source": [
    "import pandas as pd\n",
    "\n",
    "# 定义一个函数,将 Options 字符串转换为 key-value 格式的列表\n",
    "def format_options(options_str):\n",
    "    options_list = []\n",
    "    # 按行分割选项\n",
    "    options_lines = options_str.split(\"\\n\")\n",
    "    for line in options_lines:\n",
    "        if len(line) > 1:\n",
    "            key = line[0]  # 第一个字符为选项字母\n",
    "            value = line[2:].strip()  # 从第三个字符开始为选项内容\n",
    "            options_list.append({\"key\": key, \"value\": value})\n",
    "    return options_list\n",
    "\n",
    "# 读取 CSV 文件\n",
    "train_data = pd.read_csv('./data/train.csv', encoding='utf-8')\n",
    "valid_data = pd.read_csv('./data/val.csv', encoding='utf-8')\n",
    "test_data = pd.read_csv('./data/test_with_annotations.csv', encoding='utf-8')\n",
    "\n",
    "# 将json数据只保留与train和valid一致的字段\n",
    "test_data = test_data[['Question', 'Options', 'Answer', 'Explanation']]\n",
    "\n",
    "# 遍历数据集,将每个样本的 Options 列格式化\n",
    "train_data['Options'] = train_data['Options'].apply(format_options)\n",
    "valid_data['Options'] = valid_data['Options'].apply(format_options)\n",
    "test_data['Options'] = test_data['Options'].apply(format_options)\n",
    "\n",
    "# 将修改后的 DataFrame 保存为 JSON 文件\n",
    "train_data.to_json('./data/train.json', orient='records', lines=True, force_ascii=False)\n",
    "valid_data.to_json('./data/valid.json', orient='records', lines=True, force_ascii=False)\n",
    "test_data.to_json('./data/test.json', orient='records', lines=True, force_ascii=False)\n"
   ],
   "id": "c003560dea95e12e",
   "outputs": [],
   "execution_count": 5
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": "",
   "id": "8d142ed01196946"
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}