File size: 2,928 Bytes
53b5b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
{
    "amttl": {
        "description": "Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop\nwhen dealing with domain text, especially for a domain with lots of special terms and diverse\nwriting styles, such as the biomedical domain. However, building domain-specific CWS requires\nextremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant\nknowledge from high resource to low resource domains. Extensive experiments show that our mode\nachieves consistently higher accuracy than the single-task CWS and other transfer learning\nbaselines, especially when there is a large disparity between source and target domains.\n\nThis dataset is the accompanied medical Chinese word segmentation (CWS) dataset.\nThe tags are in BIES scheme.\n\nFor more details see https://www.aclweb.org/anthology/C18-1307/\n",
        "citation": "@inproceedings{xing2018adaptive,\n  title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text},\n  author={Xing, Junjie and Zhu, Kenny and Zhang, Shaodian},\n  booktitle={Proceedings of the 27th International Conference on Computational Linguistics},\n  pages={3619--3630},\n  year={2018}\n}\n",
        "homepage": "https://www.aclweb.org/anthology/C18-1307/",
        "license": "",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "tokens": {
                "feature": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "_type": "Sequence"
            },
            "tags": {
                "feature": {
                    "names": [
                        "B",
                        "I",
                        "E",
                        "S"
                    ],
                    "_type": "ClassLabel"
                },
                "_type": "Sequence"
            }
        },
        "builder_name": "parquet",
        "dataset_name": "amttl",
        "config_name": "amttl",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 1132196,
                "num_examples": 3063,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 324358,
                "num_examples": 822,
                "dataset_name": null
            },
            "test": {
                "name": "test",
                "num_bytes": 328509,
                "num_examples": 908,
                "dataset_name": null
            }
        },
        "download_size": 274351,
        "dataset_size": 1785063,
        "size_in_bytes": 2059414
    }
}