|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to AMTTL CWS Dataset""" |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{xing2018adaptive, |
|
title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text}, |
|
author={Xing, Junjie and Zhu, Kenny and Zhang, Shaodian}, |
|
booktitle={Proceedings of the 27th International Conference on Computational Linguistics}, |
|
pages={3619--3630}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop |
|
when dealing with domain text, especially for a domain with lots of special terms and diverse |
|
writing styles, such as the biomedical domain. However, building domain-specific CWS requires |
|
extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant |
|
knowledge from high resource to low resource domains. Extensive experiments show that our mode |
|
achieves consistently higher accuracy than the single-task CWS and other transfer learning |
|
baselines, especially when there is a large disparity between source and target domains. |
|
|
|
This dataset is the accompanied medical Chinese word segmentation (CWS) dataset. |
|
The tags are in BIES scheme. |
|
|
|
For more details see https://www.aclweb.org/anthology/C18-1307/ |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/" |
|
_TRAINING_FILE = "forum_train.txt" |
|
_DEV_FILE = "forum_dev.txt" |
|
_TEST_FILE = "forum_test.txt" |
|
|
|
|
|
class AmttlConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AMTTL""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for AMTTL. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AmttlConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Amttl(datasets.GeneratorBasedBuilder): |
|
"""AMTTL Chinese Word Segmentation dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
AmttlConfig( |
|
name="amttl", |
|
version=datasets.Version("1.0.0"), |
|
description="AMTTL medical Chinese word segmentation dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"B", |
|
"I", |
|
"E", |
|
"S", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.aclweb.org/anthology/C18-1307/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
tags = [] |
|
for line in f: |
|
line_stripped = line.strip() |
|
if line_stripped == "": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"tags": tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
tags = [] |
|
else: |
|
splits = line_stripped.split("\t") |
|
if len(splits) == 1: |
|
splits.append("O") |
|
tokens.append(splits[0]) |
|
tags.append(splits[1]) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"tags": tags, |
|
} |
|
|