File size: 1,743 Bytes
f785c3e
57a1191
 
 
 
 
 
 
 
f785c3e
 
 
 
 
 
 
 
57a1191
f785c3e
 
57a1191
f785c3e
 
 
 
57a1191
f785c3e
 
 
 
 
 
 
 
 
 
ebd595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- fr
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-classification
pretty_name: Comments under Le Monde Ukraine war articles (1 year)
dataset_info:
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 133853
    num_examples: 323
  - name: validation
    num_bytes: 54736
    num_examples: 139
  - name: unlabeled
    num_bytes: 64192366
    num_examples: 174891
  download_size: 39789476
  dataset_size: 64380955
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: unlabeled
    path: data/unlabeled-*
---

## Comments under Le Monde Ukraine War Articles (1 Year)

### Description
This dataset contains 175k comments extracted from Le Monde articles about the Ukraine war during its first year (February 2022 to 2023).  
Among these, around 500 comments are manually labeled into categories: 0. Explicit support for Ukraine, 1. pro Russia, 2. "Other".  

### Dataset Structure

#### Features
- `text`: The comment text (string).
- `label`: The label for the comment (integer). The labels are as follows:
  - 0: pro_Ukraine
  - 1: pro_Russia
  - 2: other
  - 4: no_label (the unlabeled data).

#### Splits
Train and validation are manually labeled. Unlabeled data could be used for knowledge distillation for instance.
- `train`: 323 examples.
- `validation`: 139 examples.
- `unlabeled`: 174,891 examples.


### Additional Information

- **Homepage**: [Project Repository](https://github.com/matthieuvion/lmd_classi)
- **License**: MIT License
- **Language**: French
- **Task Categories**: Text Classification
- **Size Categories**: 100K < n < 1M