Datasets:

Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
File size: 12,956 Bytes
b162ba8
 
 
6f3949c
 
 
 
 
 
 
 
 
 
 
 
24b638e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
c0f8bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
fc58e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
8675294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
46921b9
b162ba8
 
 
 
 
 
 
 
 
 
 
5bd56e7
b162ba8
 
5bd56e7
b162ba8
 
5bd56e7
46921b9
b162ba8
 
 
 
 
 
 
 
 
 
 
5bd56e7
b162ba8
 
5bd56e7
b162ba8
 
5bd56e7
46921b9
b162ba8
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
b162ba8
 
5bd56e7
b162ba8
 
5bd56e7
46921b9
b162ba8
 
 
 
 
 
 
 
 
 
 
 
 
5bd56e7
b162ba8
 
5bd56e7
b162ba8
 
5bd56e7
b162ba8
6f3949c
 
 
 
24b638e
 
 
 
 
 
c0f8bd9
 
 
 
 
 
fc58e3b
 
 
 
 
 
8675294
 
 
 
 
 
0e6cb83
b162ba8
 
 
 
 
46921b9
b162ba8
 
 
 
 
46921b9
b162ba8
 
 
 
 
46921b9
b162ba8
 
 
 
 
5bd56e7
 
 
 
 
 
 
e3564a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
---
license: cc-by-nc-4.0
dataset_info:
- config_name: symbolic_simulation
  features:
  - name: num_var
    dtype: int64
  - name: function
    dtype: string
  splits:
  - name: train
    num_bytes: 700
    num_examples: 15
  download_size: 1816
  dataset_size: 700
- config_name: audio_RBFP
  features:
  - name: file_name
    dtype: string
  - name: label
    dtype: string
  - name: position
    dtype: int64
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
        mono: false
  splits:
  - name: train
    num_bytes: 27157123544.625
    num_examples: 84843
  - name: validation
    num_bytes: 3194785897.375
    num_examples: 9981
  download_size: 30351871119
  dataset_size: 30351909442
- config_name: audio_RBRP
  features:
  - name: file_name
    dtype: string
  - name: label
    dtype: string
  - name: position
    dtype: int64
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
        mono: false
  splits:
  - name: train
    num_bytes: 27157123544.625
    num_examples: 84843
  - name: validation
    num_bytes: 3194785897.375
    num_examples: 9981
  download_size: 30351960252
  dataset_size: 30351909442
- config_name: audio_SBFP
  features:
  - name: file_name
    dtype: string
  - name: label
    dtype: string
  - name: position
    dtype: int64
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
        mono: false
  splits:
  - name: train
    num_bytes: 27157123544.625
    num_examples: 84843
  - name: validation
    num_bytes: 3194785897.375
    num_examples: 9981
  download_size: 30351832397
  dataset_size: 30351909442
- config_name: audio_SBRP
  features:
  - name: file_name
    dtype: string
  - name: label
    dtype: string
  - name: position
    dtype: int64
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
        mono: false
  splits:
  - name: train
    num_bytes: 27157123544.625
    num_examples: 84843
  - name: validation
    num_bytes: 3194785897.375
    num_examples: 9981
  download_size: 30351924920
  dataset_size: 30351909442
- config_name: vision_RBFP
  features:
  - name: image
    dtype: image
  - name: foreground_label
    dtype: int64
  - name: position_x
    dtype: int64
  - name: position_y
    dtype: int64
  splits:
  - name: train
    num_bytes: 7539715850
    num_examples: 50000
  - name: validation
    num_bytes: 1507888500
    num_examples: 10000
  download_size: 9047652019
  dataset_size: 9047604350
- config_name: vision_RBRP
  features:
  - name: image
    dtype: image
  - name: foreground_label
    dtype: int64
  - name: position_x
    dtype: int64
  - name: position_y
    dtype: int64
  splits:
  - name: train
    num_bytes: 7540447300
    num_examples: 50000
  - name: validation
    num_bytes: 1508033000
    num_examples: 10000
  download_size: 9049041434
  dataset_size: 9048480300
- config_name: vision_SBFP
  features:
  - name: image
    dtype: image
  - name: foreground_label
    dtype: int64
  - name: background_label
    dtype: int64
  - name: position_x
    dtype: int64
  - name: position_y
    dtype: int64
  splits:
  - name: train
    num_bytes: 4010519200
    num_examples: 50000
  - name: validation
    num_bytes: 808377090
    num_examples: 10000
  download_size: 4858077382
  dataset_size: 4818896290
- config_name: vision_SBRP
  features:
  - name: image
    dtype: image
  - name: foreground_label
    dtype: int64
  - name: background_label
    dtype: int64
  - name: position_x
    dtype: int64
  - name: position_y
    dtype: int64
  splits:
  - name: train
    num_bytes: 4015499450
    num_examples: 50000
  - name: validation
    num_bytes: 810681220
    num_examples: 10000
  download_size: 4874719512
  dataset_size: 4826180670
configs:
- config_name: symbolic_simulation
  data_files:
  - split: train
    path: data/symbolic_simulation/train-*
- config_name: audio_RBFP
  data_files:
  - split: train
    path: data/audio/RBFP/train-*
  - split: validation
    path: data/audio/RBFP/validation-*
- config_name: audio_RBRP
  data_files:
  - split: train
    path: data/audio/RBRP/train-*
  - split: validation
    path: data/audio/RBRP/validation-*
- config_name: audio_SBFP
  data_files:
  - split: train
    path: data/audio/SBFP/train-*
  - split: validation
    path: data/audio/SBFP/validation-*
- config_name: audio_SBRP
  data_files:
  - split: train
    path: data/audio/SBRP/train-*
  - split: validation
    path: data/audio/SBRP/validation-*
- config_name: vision_RBFP
  data_files:
  - split: train
    path: data/vision/RBFP/train-*
  - split: validation
    path: data/vision/RBFP/validation-*
- config_name: vision_RBRP
  data_files:
  - split: train
    path: data/vision/RBRP/train-*
  - split: validation
    path: data/vision/RBRP/validation-*
- config_name: vision_SBFP
  data_files:
  - split: train
    path: data/vision/SBFP/train-*
  - split: validation
    path: data/vision/SBFP/validation-*
- config_name: vision_SBRP
  data_files:
  - split: train
    path: data/vision/SBRP/train-*
  - split: validation
    path: data/vision/SBRP/validation-*
task_categories:
- feature-extraction
language:
- en
pretty_name: ChaosMining
size_categories:
- 10B<n<100B
---
# Dataset Card for Dataset Name

ChaosMining is a synthetic dataset that evaluates post-hoc local attribution methods in low signal-to-noise ratio (SNR) environments. 
The post-hoc local attribution methods are explainable AI methods such as Saliency (SA), DeepLift (DL), Integrated Gradient (IG), and Feature Ablation (FA).
This dataset is used to evaluate the feature selection ability of these methods when a large amount of noise exists.

## Dataset Descriptions

There exist three modalities:
- **Symbolic Functional Data**: Mathematical functions with noise, used to study regression tasks. Derived from human-designed symbolic functions with predictive and irrelevant features.
- **Vision Data**: Images combining foreground objects from the CIFAR-10 dataset and background noise or flower images. 224x224 images with 32x32 foreground objects and either Gaussian noise or structural flower backgrounds.
- **Audio Data**: Audio sequences with a mix of relevant (speech commands) and irrelevant (background noise) signals.

### Dataset Sources [optional]

Please check out the following

- **Repository:** [https://github.com/geshijoker/ChaosMining/tree/main] for data curation and evaluation.
- **Paper:** [https://arxiv.org/pdf/2406.12150] for details.

### Dataset Details

### Symbolic Functional Data

- **Synthetic Generation:** Data is derived from predefined mathematical functions, ensuring a clear ground truth for evaluation.
- **Functions:** Human-designed symbolic functions combining primitive mathematical operations (e.g., polynomial, trigonometric, exponential functions).
- **Generation Process:** Each feature is sampled from a normal distribution N(μ,σ^2) with μ=0 and σ=1. Predictive features are computed using the defined symbolic functions, while noise is added by including irrelevant features.
- **Annotations:** Ground truth annotations are generated based on the symbolic functions used to create the data.
- **Normalization:** Data values are normalized to ensure consistency across samples.

### Vision Data

- **Foreground Images:** CIFAR-10 dataset, containing 32x32 pixel images of common objects.
- **Background Images:** Flower102 dataset and Gaussian noise images.
- **Combination:** Foreground images are overlaid onto background images to create synthetic samples. Foreground images are either centered or randomly placed.
- **Noise Types:** Backgrounds are generated using Gaussian noise for random noise conditions, or sampled from the Flower102 dataset for structured noise conditions.
- **Annotations:** Each image is annotated with the position of the foreground object and its class label.
- **Splitting:** The dataset is divided into training and validation sets to ensure no data leakage.

### Audio Data

- **Foreground Audio:** Speech Command dataset, containing audio clips of spoken commands.
- **Background Audio:** Random noise generated from a normal distribution and samples from the Rainforest Connection Species dataset.
- **Combination:** Each audio sample consists of multiple channels, with only one channel containing the foreground audio and the rest containing background noise.
- **Noise Conditions:** Background noise is either random (generated from a normal distribution) or structured (sampled from environmental sounds).
- **Annotations:** Each audio sample is annotated with the class label of the foreground audio and the position of the predictive channel.
- **Normalization:** Audio signals are normalized to a consistent range for uniform processing.

### Benchmark Metrics:

The benchmark processes a **Model × Attribution × Noise Condition** triplet design to evaluate the performance of various post-hoc attribution methods across different scenarios.

- **Uniform Score (UScore)**: Measures prediction accuracy normalized to a range of 0 to 1.
- **Functional Precision (FPrec)**: Measures the overlap between top-k predicted features and actual predictive features.

## Uses

### Dataset Structure
The configurations of the sub-datasets are ('symbolic_simulation', 'audio_RBFP', 'audio_RBRP', 'audio_SBFP', 'audio_SBRP', 'vision_RBFP', 'vision_RBRP', 'vision_SBFP', 'vision_SBRP').
Please pick one of them for use. The 'symbolic_simulation' data only has the 'train' split while the others have both the 'train' and 'validation' splits.

### Load Dataset

For the general dataloading usage of huggingface API, please refer to [general usage](https://huggingface.co/docs/datasets/loading), including how to work with TensorFlow, PyTorch, JAX ...
Here we provide the template codes for PyTorch users.

```python
from datasets import Dataset
from torch.utils.data import DataLoader

# Load the symbolic functional data from huggingface datasets
dataset = load_dataset('geshijoker/chaosmining', 'symbolic_simulation')
print(dataset)

Out: DatasetDict({
    train: Dataset({
        features: ['num_var', 'function'],
        num_rows: 15
    })
})

# Read the formulas as a list of (number_of_features, function_string) pairs
formulas = [[data_slice['num_var'], data_slice['function']] for data_slice in dataset['train']]

# Load the vision data from huggingface datasets
dataset = load_dataset('geshijoker/chaosmining', 'vision_RBFP', split='validation', streaming=True)

# Convert hugging face Dataset to pytorch Dataset for vision data
dataset = dataset.with_format('torch')

# Use a dataloader for minibatch loading
dataloader = DataLoader(dataset, batch_size=32)
next(iter(dataloader_vision))

Out: {'image':torch.Size([32, 3, 224, 224]), 'foreground_label':torch.Size([32]), 'position_x':torch.Size([32]), 'position_y':torch.Size([32])}

# Load the audio data from huggingface datasets
dataset = load_dataset('geshijoker/chaosmining', 'audio_RBFP', split='validation', streaming=True)

# Convert hugging face Dataset to pytorch Dataset for audio data.
# Define the transformation
def transform_audio(example):
    # Remove the 'path' field
    del example['audio']['path']
    
    # Directly access the 'array' and 'sampling_rate' from the 'audio' field
    example['sampling_rate'] = example['audio']['sampling_rate']
    example['audio'] = example['audio']['array']
    
    return example

# Apply the transformation to the dataset
dataset = dataset.map(transform_audio)
dataset = dataset.with_format('torch')

# Use a dataloader for minibatch loading
dataloader = DataLoader(dataset, batch_size=32)
next(iter(dataloader_vision))

Out: {'audio':torch.Size([32, 10, 16000]), 'sampling_rate':torch.Size([32]), 'label':List_of_32, 'file_name':List_of_32}
```

### Curation Rationale

To create controlled, low signal-to-noise ratio environments that test the efficacy of post-hoc local attribution methods.

- **Purpose:** To study the effectiveness of neural networks in regression tasks where relevant features are mixed with noise.
- **Challenges Addressed:** Differentiating between predictive and irrelevant features in a controlled, low signal-to-noise ratio environment.

### Source Data

Synthetic data derived from known public datasets (CIFAR-10, Flower102, Speech Commands, Rainforest Connection Species) and generated noise.

### Citation

If you use this dataset or code in your research, please cite the paper as follows:

**BibTeX:**
@article{shi2024chaosmining,
  title={ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments},
  author={Shi, Ge and Kan, Ziwen and Smucny, Jason and Davidson, Ian},
  journal={arXiv preprint arXiv:2406.12150},
  year={2024}
}

**APA:**
Shi, G., Kan, Z., Smucny, J., & Davidson, I. (2024). ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments. arXiv preprint arXiv:2406.12150.

## Dataset Card Contact

Davidson Lab at UC Davis

Ian: indavidson@ucdavis.edu